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Abstract—Force Myography (FMG) is a method of tracking 

movement and functional activity that is based on the volumetric 

changes that occur in a limb during muscle contraction. There 

are several advantages of FMG over other myographic 

modalities that support its implementation in rehabilitative and 

assistive technology to track upper extremity movement during 

activities of daily living. The aim of the current work is to explore 

the stability of FMG sensors during non-static upper extremity 

activities. Twenty-one participants with varying age and gender 

were recruited to perform a set of tasks while wearing a custom 

FMG band. The participants were required to move between two 

extremes of range of motion (wrist flexion/extension and forearm 

pronation/supination) or between two extremes of grasp force 

(squeeze and relax). FMG presented low variability (<6%) and 

demonstrated little to no drift with ongoing task duration 

(Spearman’s |R| < 0.3). FMG variability did not present any 

relationship to differences in anthropometry or grip strength 

(Spearman’s |R| < 0.3), suggesting that FMG wearers will present 

a stable FMG signal despite differing musculoskeletal 

characteristics. Finally, variability in FMG presented no 

significant relationship between user variables and the testing 

accuracies of machine learning models trained on FMG data. 

The results of this study demonstrate the stability of FMG signals 

during non-stationary tasks and support the potential of 

implementing FMG into user-machine interface technology. 

Keywords—Activities of daily living; age-related rehabilitation; 

assistive technology; biomedical devices; human factors; 
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I. INTRODUCTION 

Force myography is a technique of tracking movement and 
motor activity, and is relatively new when compared to other 
myographic methods. As such, there is a lot of opportunity to 
better understand its strengths and limitations as a user 
interface technology. Myography, generally, refers to a method 
of data collection that characterizes the force produced by a 
muscle during contraction. The method is particularly useful 
for tracking patterns of movement and activity using regression 
and classification techniques. The applications for myography 
ranges from activity monitoring, rehabilitative devices/systems, 
assistive devices/systems, prosthetic limbs, gesture recognition 
and classification. Myography exists in multiple forms: 
Mechanomyography, Ultrasound Myography, Optical 
Myography, Electromyography, and Force Myography. Each 
of these forms operates on different principles. 

Mechanomyography (MMG), is based on the resonant 
oscillations of muscle tissue during contraction [1]. It has 
successfully been used to monitor muscle fatigue [2], control 
prosthesis [3], track balance [4], and classify hand gestures [5]. 
Unfortunately, MMG usage typically requires a significant 
amount of signal processing [6] and there aren’t any successful 
attempts to fashion MMG into a wearable and portable device. 
This is possibly due to its sensitivity to muscle artifacts [1]. 

Ultrasound Myography (UMG) uses Doppler ultrasound to 
measure muscle movement velocity, which is directly related 
to muscle force production [7]. The main uses for UMG have 
been for diagnostic and therapeutic purposes [7], with a few 
applications in the control of peripheral devices [8]. 
Unfortunately, acoustics fields created by ultrasound have been 
known to give rise to heating [7] which can lead to tissue 
damage, most ultrasound technologies are too expensive [8], 
and the ultrasound probe is too large for practical use [8]. 

Optical Myography (OMG) relies on optically tracking the 
skin undulations that occur with gesture formation [9], which is 
distinct from MMG which tracks vibrations at the skin’s 
surface. However, all OMG studies thus far have been limited 
to having the arm in fixed positions [9], and have yet to address 
the nature of occlusion and visual noise that typically plague 
vision-based movement tracking systems. 

Electromyography (EMG) measures the electrical activity 
that occurs with muscle depolarization during activation, and 
can be achieved with either intramuscular electrodes or surface 
electrodes [10]. EMG is distinguished by its far and wide 
reaching applications, and is the preferred implementation for 
rehabilitation and human interface purposes. Applications of 
EMG [11] range between ergonomics, exercise physiology, 
rehabilitation medicine, biofeedback, and the control of 
exoskeletons and prostheses. There are several challenges 
associated to using surface electromyography (EMG), 
including: inherent noise in the electrode, movement artifacts, 
electromagnetic noise, cross talk, artifacts from heart 
depolarizations, skin formation, blood flow velocity, skin 
temperature, tissue structure (composition of muscle, fat, etc.), 
and the measuring site [12]. Although many of these 
challenges can be addressed through machine learning and data 
preprocessing [12], constricted computing resources may be a 
limiting factor for small wearable implementations. 

Finally, Force Myography is based on the increase in limb 
cross sectional area that occurs with muscle contraction. The 



Future Technologies Conference (FTC) 2017 

29-30 November 2017 | Vancouver, Canada 

892 | P a g e  

 

predictive power of FMG comes from tracking the pressure 
changes along the surface of the skin for gesture recognition 
and the control of devices. The inclusion of FMG has gained 
momentum in innovative device designs typically dominated 
by EMG [13], and it demonstrates several advantages over 
previously motioned myographic methods. These include that 
it: 1) is robust to external electrical interference and sweating 
[14]; 2) does not require precise sensor placement or extensive 
skin preparation [15]; 3) does not require the same level of 
signal processing required in EMG datasets [16]; 4) can be a 
cost effective method of tactile sensing, with off-the-shelf 
discrete FSRs sensors costing less than $10 [17]; and 5) FMG 
signals are more stable over time during static gestures [18]. In 
addition, the nature of the sensors used in FMG acquisition is 
not associated with increasing tissue heat, as ultrasound is. 

Most FMG research has focused on implementations with 
Force Sensitive Resistors (FSRs), which present variable 
resistance depending on the amount of force applied [22], [23]. 
FMG has already been fashioned into portable devices and has 
mainly been used on the upper extremity. For FMG collected 
on the arm, the underlying tissue is composed of muscle tissue, 
bone, connective tissue, adipose tissue, and skin - each which 
their own distributions, mechanical properties, and age-related 
changes. Despite the variability in underlying tissue within a 
population, FMG has been successfully used in areas of 
rehabilitation [19], device/prosthetic control [15], [18], gait 
analysis [20], and grip strength analysis [21].  However, given 
these areas of promise, FMG research would benefit from 
further characterization of the strengths and limitations of 
FMG signals during functional tasks. 

One area that warrants further development, and is the 
focus of this current work, is the characteristics of FMG signal 
stability during non-stationary activity. To date, most of the 
work with FMG has involved static gesture and hand/wrist 
orientations classification. However, the study of FMG in non-
static scenarios presents an opportunity to expand the 
application of FMG with increased confidence in its signal 
quality. 

This manuscript is organized as follows: Section II outlines 
the methods of the study, including participant recruitment, 
instrumentation, experimental protocol, and data 
processing/analysis. Section III provides an overview of the 
descriptive statistics of the recruitment pool, as well as the 
results for the experimental protocol. Finally, avenues for 
future study are presented in Section IV, with concluding 
remarks in Sections V. 

II. METHODS AND MATERIALS 

A. Participants 

Participants were recruited from the students, faculty, and 
staff of Simon Fraser University. Inclusion criteria for 
participation required that participants can follow the 
instructions of the experimental protocol and perform the 
required gestures/tasks to completion. Exclusion criteria were 

limited to self-identified neurological or musculoskeletal 
barriers to functional movements of the upper extremities. All 
participants provided informed and written consent. Save for 
muscle fatigue, there was little to no risk to participants. 

B. Instrumentation 

The primary instrumentation for this work is a custom 
designed FMG sensing device, lined with 16 polymer-thick-
film FSRs (25.5 mm

2
 active areas) in a staggered design. 

Smaller FSRs (Interlink Technologies, model: 400) were used 
to allow for placing the FSRs in closer proximity to each other, 
without overlapping the active areas. They were also used to 
maximize the number of discrete FSRs in contact with the skin 
at one time. The FSRs were backed with Flex foam and 
fastened to a flexible and non-elastic backing used for the 
interior of the band. As the data sheet for FSRs recommends 
more rigid backing in implementation [22], the cellulose 
acetate backing was used to facilitate better contact between 
the FSR’s and the skin while allowing the band to conform to 
the shape of the wrist. The FMG band is shown in Fig. 1. 

 

 
Fig. 1. (Top) Custom Force Myography Band donned on participants arm. 

(Bottom) Close-up view of interior surface of FMG band lined with Force 

Sensitive Resistor (FSR) sensors. 
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                                            (a)                                               (b)                                                                       (c)                                          (d) 

    
                                                        (e)                                                                   (f)                                                                            (g) 

Fig. 2. Experimental Protocol. Note. Motions Shown are (a) Wrist Flexion, (b) Wrist Extension, (c) Forearm Pronation, (d) Forearm Supination, (e) Cylindrical 

Grip, (f) Key Grip, (g) Tripod Grip. The object held in tasks e-g is the Vernier Hand Dynamometer (Model HD-BTA). 

FSRs were implemented in a series with a 4.6 kΩ resistor 
and supplied with 3.7 V. An ATMega328 microprocessor was 
used to facilitate data collection and transmission. Each FSR 
was sampled at approximately 10 Hz, with raw analog values 
converted to a digital signal ranging from 0 to 1023 (0.00361 
V/bit). Digital values were time stamped and transmitted to an 
on-site computer via serial connection and saved to a .txt file 
for offline processing in MATLAB 2016b. 

In addition to FMG at the wrist, the following features and 
their associated measurement methods were also included: 
hand grip strength (Vernier Software & Technology, model: 
HD-BTA), forearm and wrist circumference, skin contact 
pressure (Force Sensitive Resistor, Model: 400, Interlink 
Technologies), angle of wrist flexion/extension (TT 
Electronics/BI Rotary Potentiometer, model: P160), and angle 
of forearm pronation/supination (SparkFun 9DoF IMU 
Breakout - LSM9DS1). 

C. Experimental Protocol 

Measurements and testing were performed while 
participants sat at a chair of standard height and depth. 
Instructions were given as images via a custom LabVIEW 
visual interface. All tasks were performed with a neutral 
shoulder and elbow flexed to approximately 90°. To explore 
the stability of FSR based FMG in repetitive no-static 
conditions, each participant was instructed to perform five 
tasks which consisted of either moving between two extremes 
of range-of-motion or producing a grip with minimal to 
maximal effort. These five tasks were: 1) wrist flexion and 
extension; 2) forearm pronation and supination; 3) cylindrical 
grip squeeze and relax; 4) lateral pinch squeeze and relax; and 
5) tripod squeeze and relax. Participants performed two 
repetitions of each dynamic motion for 60 seconds. These tasks 
are visualized in Fig. 2. 

D. Data Processing and Analysis 

The dependent variable considered for this protocol is the 
variability of FMG recordings obtained during non-static 
repetitive activity. An approximate linearization was applied to 
FMG by taking the inverse of each value. The FMG signal was 
then sorted either by amount flexion/extension/pronation/ 
supination or the amount of grip force exerted at that 
instantaneous FMG sample. Finally, the linearized and sorted 
signal was filtered using a low-pass Butterworth filter, as 
shown in Fig. 3. FMG variability, as discussed in this work, 
was described as the root mean square (RMS) residual between 
the raw signal and filtered signal, as shown below in (1): 

                  √∑ (                  )
  

            (1) 

 

Fig. 3. Example of variability in a sensor through repetitive movements. 

Note: Shown above are the raw FSR readings (blue), the filtered signal (red). 
The readings pertain to wrist flexion/extension, so forearm 

pronation/supination is shown (green). 
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Sources of variability and the significance of variability on 
machine learning with FMG were also considered. Impact of 
FMG variability on machine learning was illustrated using: 
Artificial Neural Network (ANN), Extreme Machine Learning 
(ELM), Linear Discriminant Analysis (LDA), and Support 
Vector Machine (SVM). Student’s t-Test, ANOVA, and 
Spearman’s correlation coefficient (R), Coefficient of 
Determination (R

2
) were used to evaluate the interaction 

between variables of interest. Significance tests were based on 
a significance level of (p < 0.1). 

III. RESULTS AND DISCUSSION 

There were 21 participants in this study, who were grouped 
according to age and gender to illustrate any age or gender 
associated with differences in FMG variability. Table 1 
provides a general overview of the descriptive statistics of the 
recruitment pool. 

All participants were right hand dominant – except for 3 
left-hand dominant participants (2 senior females, and 1 non-
senior male). The measurements for weight, height, BMI, wrist 
circumference, forearm circumference, forearm length, wrist 
flexion/extension, and forearm pronation/supination fall within 
the bounds set by age and gender matched norms [24]-[28]. 
Grip strength demonstrated similar age/gender matched 
patterns as Canadian National norms [29]; however, grips 
strengths measured were significantly lower. This is attributed 
to differences in instruments. Canadian tests utilized a 
deformable hand dynamometer, which would allow for optimal 
hang/digit configuration, whereas the hand dynamometer used 
in this work was non-deformable. For wrist flexion/extension 
and forearm pronation/supination, the active range of motion 
(aROM) during testing was at least 60% of the full aROM 
measured offline. Likewise, grip strength measurements were 
at least 60% of the maximum voluntary grip strength. 

TABLE I. DESCRIPTIVE STATISTICS 

 
 Non-senior Seniors 

Units Female Male Female Male 

N -- 6 9 4 2 

(A) Age years 
26.25 
(2.44) 

27.11 
(3.55) 

74.75 
(5.44) 

64.50 
(4.95) 

(W) Weight kg 
65.40 
(14.71) 

87.11 
(9.25) 

74.50 
(15.51) 

82.41 
(3.41) 

(H) Height m 
1.61 

(0.04) 

1.83 

(0.08) 

1.59 

(0.07) 

1.65 

(0.07) 

(WC) Wrist 

Circumference 
cm 

15.92 

(1.88) 

17.72 

(0.97) 

16.88 

(1.80) 

19.25 

(0.35) 

(FC) Forearm 

Circumference 
cm 

24.33 

(2.82) 

27.50 

(3.82) 

25.00 

(1.78) 

27.25 

(0.35) 

(MGS) Max 
Grip Strength 

kg 
24.79 
(5.74) 

26.12 
(5.50) 

13.18 
(5.78) 

17.89 
(1.83) 

Wrist  

Flexion 
degree 

75.83 

(11.69) 

64.89 

(15.03) 

58.25 

(12.61) 

70.00 

(7.07) 

Wrist  

Extension 
degree 

70.83 

(9.70) 

66.89 

(8.22) 

58.50 

(7.51) 

56.00 

(15.56) 

Forearm  

Pronation 
degree 

91.17 

(13.79) 

88.44 

(5.15) 

93.00 

(5.60) 

86.00 

(1.41) 

Forearm  

Supination 
degree 

98.33 

(6.89) 

98.22 

(13.20) 

93.50 

(6.03) 

95.50 

(10.61) 

Values are presented as µ (σ2), where µ is the mean and σ2 is the standard 

deviation 

Approximately 95% of residuals calculated only represent 
between 2.85% to 6.47% of the range of FMG readings. 
Greater detail of the distribution of residuals for each of the 
tasks is shown in Fig. 4. 

A. Sources of Variability 

This variability could come from several sources. One 
source is the relaxation of skin around the FSR sensors after 
the initial compression during band donning. However, there 
was low (|R|<0.3) to no correlation between the magnitude or 
direction of residuals and the ongoing duration of the trials. 
These results are summarized in Fig. 5. A second source of 
variation in angle of other joints was considered. However, as 
tabulated in Table 2, the wrist and forearm angle were stable 
through dynamic tasks, with standard deviations ranging from 
0 and 2 degrees. A third source of variability considered was 
variability in underlying musculoskeletal tissue – such as grip 
strength, band tightness, and forearm circumference. However, 
there are only low correlations (|R|<0.3) with anthropometric 
variables. ANOVA indicated age based differences in 
variability, but no gender based differences. These results are 
summarized in Fig. 6.  

 

Fig. 4. Summary of FMG variability during dynamic tasks. 

 
Fig. 5. Correlation between variability and cumulative trial duration. Note: 

Grey lines indicate -0.67, -0.33, 0.33, 0.67 correlation values. 



Future Technologies Conference (FTC) 2017 

29-30 November 2017 | Vancouver, Canada 

895 | P a g e  

 

TABLE II. MEAN VARIABILITY OF WRIST AND FOREARM ANGLES 

THROUGHOUT RANGE OF MOTION AND RANGE OF EFFORT 

 
Wrist Flex/Ext Forearm Pro/Sup 

 degrees degrees 

Dynamic Wrist 
Flex/Ext 

-- 4.22 (2.02) 

Dynamic Forearm 

Pro/Sup 
4.95 (1.81) -- 

Cylindrical, squeeze 
& relax 

3.00 (0.89) 2.46 (0.94) 

Key, squeeze & relax 3.14 (1.92) 2.06 (0.88) 

Tripod, squeeze & 

relax 
3.16 (1.51) 2.47 (1.42) 

Values are presented as µ (σ2), where µ is the mean and σ2 is the standard 

deviation 

 
Fig. 6. Correlation between FMG variability and intrinsic variables. Note: 

Grey lines indicate -0.67, -0.33, 0.33, 0.67 correlation values. 

 
Fig. 7. Correlation between FMG variability and static machine learning 

model testing accuracy. Note: Grey lines indicate -0.67, -0.33, 0.33, 0.67 

correlation values. 

B. Affect Variability on Machine Learning Testing Accuracy 

The effect of signal variability on FMG model accuracy 
was also considered. For classification of static gestures, FMG 
variability presented low (|R|<0.3) to no correlation with the 
testing accuracies observed. These results are summarized in 
Fig. 7. 

IV. LIMITATIONS AND FUTURE RESEARCH 

Given the results of this work, there are several areas of 
further research that would benefit from the continued study of 
FMG. One would be further exploration of anthropometric 
features and their effect on FMG. In the same lane as this, 
increasing the recruitment pool of participants for a wider 
sample of anthropometric features is prudent. This would be 
significant as restricted data ranges have been shown to have a 
direct and negative influence on the correlations results [30]. 
Further work exploring the variability of FMG during 
repetitive and non-static activities would also benefit from 
exploring unconstrained activities. An example of an 
unconstrained monitoring would be tracking upper extremity 
movement during activities of daily living. Lastly, an avenue of 
further study should seek to collect data simultaneously from 
other myographic sources for a more comprehensive 
comparative analysis such as in [18]. 

V. CONCLUSION 

In movement tracking and gesture recognition FMG is 
more frequently being adopted as a myographic technique due 
the multiple advantages that FMG, particularly FSR based 
FMG, has over other myographic modalities. Previously, FMG 
was demonstrated to be stable during statically held gestures, 
more stable than the traditionally used sEMG. The aim of this 
study was to explore the stability of FSR based FMG during 
non-static repetitive motions. Twenty-one participants were 
recruited to complete five tasks whilst wearing the FMG band. 
These five tasks required the participants to move between two 
extremes motion (i.e. full wrist flexion to full wrist extension) 
or between two extremes of effort (squeezing and relaxing a 
specific hand gesture). FMG demonstrate low variability 
(<6%), and appeared to be robust to skin relaxation and 
variables of anthropometry. Lastly, measured variability 
demonstrated no significant influence on the performance of 
machine learning model testing accuracy. The results of this 
study support the stability FMG during dynamic tasks as well 
as its continued implementation into user interface technology. 
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