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Abstract—Wireless Sensor nodes consist of communication 
devices, physical devices (environmental Sensors), processing 
unit, memory and radio. Optimizing the power consumed by the 
sensor nodes is always a challenge. The power consumed during 
communication is high. Therefore, optimizing the power and 
energy during communication is really necessary. This paper 
addresses this issue by implementing stochastic power model of 
wireless sensor nodes to handle any Mission Critical Systems 
(MCS). Mission Critical Systems are systems that handle tasks 
and accomplish the real-time deadlines. If a deadline is not met, 
something catastrophe may occur and the sensor nodes sleep 
during critical times which will lead to an unstable system. So 
instead of going to sleep state, the state changes to idle state to 
handle critical tasks. In this paper, the motes are characterized 
using Semi Markov Decision Process (SMDP). Various policies 
were framed for Non-Critical and Mission Critical Systems. 
Mission Critical Systems uses nodes that meet the deadlines, 
thereby, optimizing the power and energy used. Our 
experimental setup improves the energy efficiency of MCS by at 
least 25%. The model is validated using Crossbow Sensor motes. 
Also, the model selects the action in the node in order to suggest 
the best policy for better energy optimization. The SMDP 
modeling is solved by Dynamic programming using the value 
iteration function with discounted rewards. Our results have 
shown that the nodes can go from active to sleep state for non-
critical applications and active to semi-sleep state for mission 
critical application. Our performance results have shown that 
25% more power saving is achieved. 

Keywords—Wireless sensor networks; simulation; Semi 
Markov Decision Process (SMDP); Markov process; dynamic 
programming 

I. INTRODUCTION 

Wireless sensor networks play a vital role in monitoring 
various environmental factors like temperature, pressure, 
radiation, light, sound, pollution level, among others [1]. These 
devices are powered by a small battery, with limited lifetime, a 
small processor, memory and a radio. These devices (motes) 

are prone to failure frequently and are consuming energy 
during communication, radio processing and memory [2]-[4]. 
So, modeling these devices for power management is essential. 
There are various works that models the motes either in the 
communication, routing, radio and even processors. Some of 
the works perform the modeling using queuing models, and 
Markov models for various components that belong to sensor 
networks [4]-[7]. For example, [2] states that the nodes were 
characterized based on semi active and full active mode, which 
is then analyzed with numerical analysis for energy 
consumption for sensor operations, transmitting energy and the 
average energy consumption in the node in the active mode 
[1]-[7]. One of the paper implements a solar energy harvesting 
model that improvises the SMAC (an access mechanism for 
wireless sensors). This is done using a queuing model deriving 
from duty cycle and throughput [12]. 

The authors in [13] implemented a dynamic low power 
listening schemes just uses an analytical model to analyze the 
energy consumption during polling. Hady et al. [14] deals with 
Low Energy Adaptive Clustering Hierarchy (LEACH) with 
centralized sleeping protocol that extends the lifetime of a 
sensor node by going to sleep mode when there is an 
insignificant data from the clusters. Also in [15], Wang et al. 
talks about Sensor network with single hop or multi-hops. 
Single hop seems to be efficient in topology, managing power, 
and placing nodes according to the design choice. In [16], 
model sensor networks based on event trigger mechanism that 
reveals the correlation in energy between the nodes. Terasson 
et al. [8] describes the work based on modeling component for 
sensor node that is demanded by the application in which it is 
deployed. 

Wang et al. [9] suggested the reliability of sensor nodes that 
depends on the sleep and active mode of a node. Alternating 
between the modes improves the lifetime and reliability of the 
node. In [10], a dynamic power management scheme, using 
scheduled switching modes that improve the battery lifetime 
after a packet transmission, has been devised. Moreover, this 
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paper addresses the battery recovery effect to handle the power 
management. Some works handle power consumption models 
that address a particular manufacture of sensor motes [11]. 
Most of these papers address the modeling for the components 
of sensor networks that does not handle the type of the 
network. We model power management problem using 
Discounted Semi Markov Decision processes (DSMDP) for 
Mission Critical Systems. We devise an optimal policy that 
uses the Markov Decision process, which is solved using 
Dynamic Programming. The latter computes the utilization 
factor per energy consumption. More research in sensor 
networks is carried out in [19]-[28]. Section II describes the 
problem statement and basics of Semi Markov Decision 
process along with Dynamic Programming. Section III informs 
the actual proposed idea. Section IV deals with the 
implementation and result analysis and finally Section V 
contains the summary and conclusion of the work. 

II. PROBLEM STATEMENT AND FORMULATION 

A. Motivation 

Energy is consumed by sensor nodes when communicating 
with other sensor nodes by either transmitting or receiving. 
Radios, processors, sub systems of sensor nodes also consume 
energy. Hence, energy is a crucial factor that should be 
optimized for extending the lifetime of the sensor nodes 
(Motes). This paper models the energy occupation of sensor 
nodes that were deployed in Mission Critical Systems (MCS).  
This work is motivated to: 

 Improve the lifetime of sensor nodes for a Mission 
Critical Systems using stochastic modeling. 

 Optimize energy during communication, which will be 
decided based on the states of the node with reward. 
SMDPs are used to model the sensor nodes by fixing 
immediate rewards through policies and actions, 
thereby, identify the power-hungry areas of sensor 
nodes. 

B. Mission Critical Systems 

Mission critical systems (MCS) are systems, which when 
not meeting their deadlines might cause a catastrophic failure. 
Some examples of MCS are Nuclear Reactor wherein if the 
radiation is not arrested within a deadline, it can lead to loss of 
human lives through radiation leakage. The deadlines 
associated with a MCS are usually hard deadlines. If any task 
could not meet the deadlines, it can lead to an unstable system. 
This paper handles the power management for MCS and 
compares it to that of a Non-Critical System (NCS). 

C. Markov Decision Process (MDP) 

MDPs consist of set of policies, probability transition 
matrices, an objective function, reward functions (matrices) 
and above all a decision maker. These five components are part 
of Markov decision framework, which is helpful in solving the 
MDP. 

Let µ(i) refers to the policy which states that the action 
selected in the ith state for the policy µ. All policies in the 
system are deterministic. Probability Transition Matrix (PTM) 

is unique for each policy chosen. For each transition, there will 
be a reward, which we call as immediate reward and the 
average reward will be allowed once the entire transition is 
made and is represented using Probability Rewards Matrix 
(PRM). Finally, the decision maker is also an agent or a 
controller. 

D. Model Description 

Wireless Sensors nodes usually stay in any one of the states 
like transmit/receive, sleep/idle or active state. Since this work 
deals with mission critical and non-critical systems, there 
should be a convincing factor that decides the importance of 
these systems. Sensor nodes consume more power during 
transmitting/receiving data and also when they are active. 
However, they consume minimal power when they are in sleep 
or idle state. Idle state [16] almost consumes as equal as 
receiving state as the entire node is waiting for an input. Fig. 1 
shows the basic state transition diagram of a given sensor node. 

There are totally five states at a given sensor node can stay 
in based on the system in which it is deployed. 

 For mission Critical Systems, the transition mainly 
occurs in the idle state rather than in the sleep state. As 
in sleep state, the power occupation is very low; the 
sensor nodes may tend not to handle a critical task that 
needs a service. But being in idle state, almost 
equivalent to the receiving state, will satisfy the job. If 
a deadline is not met by a task that comes with a 
critical deadline, not only the system performance is 
affected, the system may go to an unstable state. 

 For Non-Critical systems, the transition occurs in the 
sleep state after each operation. As the tasks are not 
critical, even missing a deadline does not affect the 
performance of the system, it will simple degrade the 
system over a period of time. 

E. Energy Management in Mote 

Sensor nodes usually have a radio, processor, sensing unit 
and a limited memory; all these components need power to 
sense. So, this model, uses a utilization factor corresponds to 
each components of the system. Table 1 depicts the Power 
model in these states. 

Table 1 shows various states of a mote and the status of 
processor, sensing unit and radio. Depending on the type of the 
system (MCS or NCS), the utilization factor changes in the 
Transmit/Receive state. The processor will be half active 
during this state (s4) for a mission critical system and remains 
in the sleep state for non-critical systems. 

 
Fig. 1. State transition diagram of a node. 

Sleep Idle

Active Process Tx/Rx 
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TABLE I. POWER MODE OF VARIOUS STATES 

States P SU Radio UF 

Sleep (s0) Sleep OFF OFF Negligible 

Run/ 

Active (s1) 
Active ON ON Xs+Xr+Xp+Xt 

Idle (s2) Half active ON OFF Xs+Xp/2 

Process (s3) Active ON OFF Xs+Xt 

Transmit/ 

Receive (s4) 

Half active 
(MCS) 

Sleep NCS) 
OFF ON 

Xp/2+Xt+Xr 

 

Xt+Xr 

P – refers the processor status 

Su – refers the status of the sensing Unit 

UF – refers the utilization factor based on P, SU and 
Radio. 

III. MATHEMATICAL MODEL FOR POLICY EVALUATION 

This paper uses the Semi Markov Decision Process 
(SMDP) modeling to model the states of the sensor nodes. 
Fig. 1 shows the states of a mote under Mission Critical 
Systems (MCS) and Non-Critical Systems (NCS). 

SMDP consists of: 1) states 2) actions 3) transition 
probabilities 4) rewards and 5) decision makers. Table 2 shows 
the characteristics of each components of SMDP. 

𝑋ሺ𝑖ሻ ൌ 𝑅   ∑ ൣ 𝑒ି௧𝑐𝑃
௬

 ൧𝐹 𝑑𝑣∈|ௌ|          (1) 

A. Assumptions 

The list of assumptions being followed in this paper is 

 SMDP says the transition time between the states is not 
unity, but it is deterministic and non–exponential. 

 F is the time distribution in state S (this tells the state at 
which time the transition should happen). 

 Let tiaj represents the transition time between state i to j 
when there is an action a. 

 Ciaj is the reward rate. 

 Let Piaj be probability of the transition.  

 Riaj will be the immediate reward when there is a 
transition between state i and j. 

 Riaj, Piaj and tiaj are stored in the form of a matrix called 
Time matrix (TM), reward matrix (RM), probability 
matrix (PM) during transition, respectively. 

To solve the SMDP, value iteration algorithm is used 
instead of policy iteration which needs to be solved for many 
equations. Value iteration algorithm is easier to compute and 
can be simulated easily. 

The Bellman’s optimality equation to solve the value based 
iteration algorithm using Dynamic programming is given by: 

𝑇ሺ𝑖ሻ ൌ max∈ൣ𝑟 െ 𝜌∗𝑡  ∑ 𝑃 . 𝑇ሺ𝑗ሻ|ௌ|
ୀଵ ൧ (2) 

Where, A(i) is the set of actions. 

T* - Set of unknowns just equal to the number of states (S) 

TABLE II. CHARACTERISTICS OF SMDP 

States 
There are 5 states namely sleep (S0), idle (S1), active 
(S2), process (S3) and Tx/Rx (S4), S={S0,S1,S2,S3,S4} 

Actions 
In each state, there is an action that transfer from one 
state to another, aij means transition from state Si to Sj 
when action is aij 

Transition 
probabilities 

The next decision time is determined by the probability 
distribution P(j) 

Rewards 
Reward function as mentioned by SMDP is given below 
as (1)  

ρ* - Average reward associated with the optimal (2) 

B. Optimal Policy 

The policy here is to improve the lifetime of the sensor 
mote after identifying the power profile of a mote during 
various states. We use dynamic programming to solve the 
SMDP for the optimal policy. Two topologies (Star and linear) 
were tested using Crossbow MTS310 sensor motes. 

Model (1) represents the average reward being computed 
over a period of time based on the number of states. In sensor 
mote, the reward is allocated based on the following equation: 

𝑅 ൌ  
௧௦௧ ி௧ ሺிሻ

ሺሺ௪∗்௦௧ ்ሻା∈ሻ
   (3) 

C. Rewards 

In this paper, rewards are awarded when a state is 
transitioned however if the energy is not optimized during a 
transition then there will be a penalty which is called the 
discounted reward. Hence, whenever the resource is utilized 
optimistically, a positive reward is awarded; else there will be a 
negative reward. 

The immediate reward is being given to states during 
transition. For example, x(S0, a12) represents the immediate 
reward in state S0 under action a12. From Fig. 1, the rewards 
are Rs1,a12, Rs2,a21, Rs2,a23, Rs3,a31, …etc. 

The immediate reward for the state diagram of Fig. 1 is 
shown below. For assumption, the rewards and the discount 
factor allocated are same for MCS and NCS. 

The rewards are normalized on a scale of 0 to 1.0. Since 1 
is a perfect system, which is impossible to reach, 0.9 is chosen 
as the maximum value for active, Tx/Rx state. Also, there will 
be a penalty if a transition does not happen. For active process 
and Tx/Rx states, the penalty is high because if a transition 
does not happen this leads to heavy usage of the resources. 

IV. PROBLEM SOLUTION 

This paper solves the Bellman’s equation using Dynamic 
Programming approach and hence the model (2) is solved 
using the Probability Matrix (PM), Transition Matrix (TM) and 
Rewards Matrix (RM) as given below. For all the states shown 
in the Fig. 1, the PM, RM and TM are computed and solved 
using dynamic programming approach. 

Rewards are fixed for these cases using Table 3. There will 
be a discount factor and a penalty also in case the transition 
does not happen. These cases are solved based only on the 
states and the actions as specified in the Tuple of SMDP. 
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TABLE III. REWARD AND DISCOUNT FACTOR 

States Reward(R) Discount Factor (D) 
Sleep (s0) 0 < R < 2 -1 < D < -5 
Run/ 
Active (s1) 

R >= 6 -7 

Idle (s2) 5 < R < 8 -2 < D < -5 
Process (s3) 7 < R < 8 -7 
Transmit/ 
Receive (s4) 

7 < R < 12 -7 

TABLE IV. SOLVING SMDP 

MCS High Power/availability H 
MCS Low Power/availability L 
NCS  High Power/availability H 
NCS Low Power/availability L 

 
Fig. 2. Idle to process states of MCS. 

The MCS and NCS differs by the state idle and sleep, as 
the MCS have to save power at the same time, the tasks and the 
deadlines need not be compromised. So MCS rather than going 
to sleep, it goes to idle mode. Dynamic switching to sleep state 
is possible at times when there is no demand for a period of 
time tD (The time by which the network is not handling any 
system tasks, if this threshold is reached, the idle state is 
moved to sleep state). 

There are four cases to be solved: 

Table 4 shows 4 levels, H, L for MCS and NCS. To solve 
mathematically, the state idle and process is shown in Fig. 2. 

H means high availability and high power whereas L 
indicates low availability and low power mode. Each of the 
states process Tx/Rx, and active states go to idle mode 
whenever the resources need to be used less. So, all the three 
states move to idle state fewer numbers of times during their 
process. Fig. 2 represents the state transition diagram between 
the idle and the process state. The transition is represented by a 
tuple 

<H/L, Pi, Ri, Ti>      (4) 

This indicates High/Low Power/availability, transition 
probability, immediate reward and the transition time. Since 
SMDP is chosen, this has a transition time between the states. 
The transition is computed for all the states in MCS and NCS 
and Fig. 2 only show the transition between the idle and 
process states. The above state is solved based on Bellman’s 
Equation (2) and this is solved using Dynamic programming. 

This is an optimality equation, which tells which state is 
suitable for a given transition and in this work, it tells which 

transition uses the optimal resource utilization. So, to begin 
with, let us apply the algorithm of policy evaluation. (Here the 
policy is to optimize the power and resource usage in a given 
MCS and NCS System.) 

 Let us take the number of iterations be k and the 
number of states be S. 

 Assume that policy is selected arbitrarily and let U be 
the optimal policy. 

 Here in the above equation, there are Tk unknowns and 
ρk unknowns. So, one of the above has to be replaced 
by 0, since ρ is a reward which is mandatory for the 
system not have it 0, so the Tk has to be replaced by 0 
and we solve for the equation. 

 Uk will be the policy selected in iteration k and now a 
new policy is selected Uk+1, such that 

𝑈ାଵሺ𝑖ሻ ൌ max∈ 𝑎𝑟𝑔 ൣ𝑟  ∑ 𝑃𝑇ሺ𝑖ሻ|ௌ|
ୀଵ ൧ (5) 

 If Uk+1 = Uk, then the selected policy is final and 
optimal. Else, continue till the optimal policy is reached 
(where there is no further improvement in the value of 
iterations). 

 Since (2) uses tiaj which is the transition time between 
the states, it will also be taken in to account during the 
evaluation. 

Fig. 2 shows the states’ idle <=> process transition. The 
other transitions between idle <=> Tx/Rx, and idle <=> Active 
are also evaluated for policy making. The policy evaluation is 
done for the non-critical system (NCS) also in order to 
compare it with the mission critical systems (MCS) 

V. NUMERICAL ANALYSIS 

The tuple of model (4) shows the results as indicated 
below. For computation, the values taken are between 0.5to 0.9 
in the probability scale, where 0.5 being the lowest and 0.9 
being the highest. 

For example, in Fig. 2, <L,0.2,4,27> indicates the Low 
Power mode is preferred, with a transition probability of 0.2 if 
the idle state wants to move to process state. To maintain low 
power mode, the idle state tuple <L,0.8,8,5> holds true. So, to 
maintain, low power mode, being in the idle state will optimize 
power as the maximum transition probability is 0.8 and the 
transition probability for moving to process state is 0.2. Hence, 
the numerical analysis will be based on these factors. Also, the 
third element in the tuple is the immediate reward which gives 
the reward based on the power mode, for low power, the 
reward is 4 for a minimal probability and the reward is 8 for 
higher probability for the same low power mode. The last 
element is the transition time (which is special case of SMDP) 
that does not have a unit time during transition. The transition 
time is calculated again based on the probability of the 
switching. 

The SMDP model is solved using dynamic programming 
that shows the results as given below. 

The state with probability 1.0 is being tested for unreal case 
and the limiting probability is negative which shows that such 
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a probability value never exits. Fig. 3 and 4 shows the average 
reward calculated based on the states with the initial 
probabilities. In Fig. 3 and 4, in the x axis, there is a value 
“Actual” which shows the probability as per the actual energy 
usage by the sensor nodes. For a MCS system, the optimal state 
for Active is Active; for Tx/Rx, it is SWAP and for process 
state, it is process state. The optimal state for Tx/Rx is Idle and 
for idle state, it is Tx/Rx state. For MCS, hence in the Actual 
mode, the transceiver is used less which may lead to transmit 
or receive the data that is not preferred in our policy. For NCS 
system, the Sleep is the optimal state for all other states as all 
the states go to sleep state after their job is done. 

For example, the MTS310 sensor uses power in each state 
as shown below: 

The typical power level of various states of the Mica2 
(MTS310) mote is 

 Idle State – 270mW 

 Sleep State – 10mW 

 Active/Run State – 1000mW 

 Tx/Rx state – 420mW 

 Process State – 620mW 

The above values are normalized as actual reward for the 
system; see Fig. 3 and 4. As per the results, the following 
Table 5 predicts the actual values. The limiting probability 
determines the average reward of the given state by being in 
the same state or transition into other states. In most of the 
cases, probability with 0.9 works out well. 

As per the numerical analysis, the sensors tend to work 
more if the probability is fixed at 0.9. For this case, assuming 
the probability of being in a process or active state consumes 
more power and probability for moving to idle state or sleep 
state is only 0.1. This makes the sensors work for more amount 
of time, which might use more power and hence more 
resources. If the sensors are in the sleep or idle state and do not 
consume more power, then it may not work and the Mission 
critical systems may tend to malfunction and such a behavior is 
not acceptable for these systems. So, the numerical analysis is 
carried out mainly by considering all of these factors. The 
actual normalized values are taken for reward calculation. 

 
Fig. 3. Average reward for non-critical system. 

 
Fig. 4. Average reward for mission critical system. 

TABLE V. AVERAGE REWARD FOR 0.9 PROBABILITIES 

MCS Active 
0.62 for Low Power  
0.61 for High Power with P=0.9 

 Tx/Rx 
0.722 for Low power with p=0.9 
0.926 for high power with p=0.9 

 Process 
1.12 for Low Power with p=0.9 
1.1 for high power with p=0.9 

NCS Active 
0.294 for low power with p=0.9 
0.17 for high power with P>0.8 

 Tx/Rx 
0.62 for low power with p=0.9 
0.39 for high power with p=0.9 

 Process 
0.67 for low power with p=0.9 
0.43 for high power with p=0.9 

VI. EXPERIMENTAL EVALUATION 

We used the MTS310 Sensor motes (Crossbow) for 
identifying the power profile and power consumption during 
light duty and heavy-duty sensing areas. Experimentation has 
been carried out for two kinds of systems, Mission Critical 
Systems (MCS) and Non-Critical Systems (NCS). 

The MCS experiments were carried out in a road to monitor 
the movement of vehicles in a given time by calculating the 
vibrations using accelerometer and measuring the sound using 
mice. The NCS experiments were carried out inside a room to 
monitor temperature, sound and movement of persons within 
the room. If no one is there in the room for a period of time, the 
actuator actuates the power strip that switches off the electrical 
and electronic devices. The recorded data is reported to the 
base station through Zigbee IEEE802.15.4, wireless system. 

Also for MCS system, Mannasim [16] is used for large 
number of sensor nodes and the sensing data is collected for 
temperature and pressure for an aircraft cabin crew. Mannasim 
is a framework for Network Simulator 2(NS2) [17] used to 
simulate sensor networks based on temperature and carbon 
monoxide sensing. The data dissemination, data collection and 
sensing happens using Gauss theorem. So, the results obtained 
from Mannasim will be an approximation and results from the 
real MTS310 will be accurate as the data sensing, and data 
dissemination occur in real time. 

The MTS310 sensor motes has various pins that can be 
disabled for power saving. In this experimentation, as per 
Table 1, the components have been enabled/disabled and data 
is collected and disseminated. In this experiment, the motes 
form the mesh with two seconds consumes more power and 
three min mesh formation consumes less power. Star topology 
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is used for mission critical systems where there are 5 nodes, 
node 1,2,3,4 send packets to node 0 which is a gateway node 
connected to the internetwork and the packets arrive according 
to a Poisson distribution. 

So, the probability of receiving or transmitting packets after 
sensing will be calculated by these equations: 

𝑃ሺ𝑛ሻ ൌ
షഐೝሺ்ఘೝሻ

!
    (6) 

𝑃௧ሺ𝑛ሻ ൌ
షഐሺ்ఘሻ

!
    (7) 

The data is collected based on the arrival rate of the packets 
during transmission and reception by the motes. The entire 
process depends on the factors ρ and T. 

Motes 1 and 3 are set in low power mode and 2 and 4 are 
set in high power mode. During high power mode, the packet 
generation will be higher as more number of packets is 
generated. Also, the packet generation is directly proportional 
to the sensing. The motes were sensing the acceleration 
through accelerometer and vibration through magnetometer 
sensors. Whenever a vehicle is detected, the accelerometer 
senses signal and sends it to the nearest node which in turn 
sends to the gateway node for dissemination. Low power and 
high-power mode mainly depends on the capability of the 
mesh, bandwidth and latency, routing and mote radio and 
topology of the network. The MTS310 sensors were 
programmed to work as given in Table 1. Control signals were 
sent to disable sensors and stop the radio. MTS310 does not 
suspend the processor, so power consumed by the processor as 
shown in Table 6 is used. 

The following results show the energy consumption during 
state transition from higher power states to lower power states 
and low power states to high power states, and throughput of 
packets for MCS and NCS systems. 

Fig. 5 shows the energy consumption from active, Tx/Rx, 
process state to idle in a MCS system. The energy consumption 
is in the range of 1.2mW to 3.5mW. The active to idle state 
average is more as the processor, sensor unit and radio are ON 
in this state (see Table 1). Fig. 6 shows the switching energy 
for NCS systems when the high-power state transition to sleep 
state. The average value is more for active state when 
compared to other states. Also, here Tx/Rx is different from 
that of the MCS, as in the Tx/Rx state, only the radio unit is on, 
but in MCS systems the processor consumes half of its power. 

The throughput of packet generation for a Mica2 (MTS310) 
sensor is given below. The sensors generated data for period of 
23 hours and it is normalized to a 5s value at steps of 0.1 
seconds. The number of packets is generated during each 
second of information. The average throughput is 9.2kbps. The 
goodput is also one factor in which the performance of a 
network can be analyzed. In Fig. 7, the goodness of results 
happens at a time of 2.6seconds and the packet generated till 
this interval may not be useful for determining the performance 
of the network. Also, the goodput is constant beyond a 
particular period of time. 

TABLE VI. PARAMETERS USED FOR TESTING MTS310 

Parameter Value 
MAC  IEEE 802.15.4 (Zigbee) 

Topology 
Star Topology for MCS 
Linear Topology for NCS 

Number of motes  
5 motes (1 Base station and 4 Common 
Nodes) 

Period of Simulation 

24 hours for MCS (Vehicle vibration and 
sound) 
24 hours for NCS (Monitoring the Room 
temperature) 

Mesh Formation and 
dissemination interval 

Time =2sec (preferred for MCS) 
& T = 3min (Preferred for NCS) 

Power profile 

Idle State – 270mW 
Sleep State – 10mW 
Active/Run State – 1000mW 
Tx/Rx state – 420mW 
Process State- 620mW 

Memory Limited memory footprint 

 
Fig. 5. Energy consumption during transition of states in MCS. 

 
Fig. 6. Energy consumption during transition to sleep state in NCS. 

The throughput and goodput is calculated using Mannasim 
framework [18] for wireless sensor networks by replicating the 
parameters of MTS310 as given in Table 6. 

Some parameters of importance are: 

Setting up mica 2(MTS310) mote with Antenna/Omni 
Antenna and range = 100m 
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Fig. 7. Instantaneous throughput and goodput of sensor motes. 

TABLE VII. PARAMETERS OF NETWORKS USED IN SIMULATION 

No of Messages received by the 
Gateway Node 

1820 

Average Residual energy of sensor 
nodes 

6.78 joules  
(initial energy is 7 joules)  
 

Residual energy of Gateway node 
8.22 joules  
(initial Energy 10 joules) 

Average delay 3.848 seconds 

Nodes count: 

 1 access points 
 4 common nodes 
 0 cluster heads 
 5 nodes 
 Phy/Wireless Phy network interface 
 Scenario size: 100.0 x 100.0. 

The only change is that Mac 802.11 is used instead of Mac 
802.15.4 (ZigBee). 

Table 7 shows glimpse of the network simulated using 
Mannasim framework. 

VII. CONCLUSION 

In this paper, we investigated the problem of energy 
utilization in Mission critical and non-critical systems using 
wireless sensor networks. We considered two different 
topologies: star and linear for MCS and NCS, respectively in 
order to understand the energy consumption in these 
topologies. The MCS and NCS were modeled using Semi 
Markov Decision Process (SMDP) and solved using dynamic 
programming approach. Immediate Rewards were given based 
on the utilization factor of the motes, computed average reward 
using dynamic programming approach and analyzed power 
consumed areas of both the systems. 

An optimal policy that maximizes the long-term usage of 
motes in MCS and NCS systems before their energy is 
depleted. Our system performs well when compared to the 
“Always ON model for MCS or NCS”. We tested the model 
using MTS310 sensor motes and computed the energy utility 
for various cases. Under MCS systems, the active and process 
state need more power to perform the operations needed by the 
application.  Transceiver job is just to transmit and receive the 
data and enter the idle mode. Under NCS systems, the sleep 

mode is preferred during non-sensing. However, an NCS 
system goes to sleep mode rather than idle mode as the system 
demands that. Also, the motes were simulated in Mannasim 
Framework that computes the messages received by the 
gateway node. Throughput and goodness of the packet 
generation is being analyzed. 

Our system performs well when the nodes are minimal in 
size with a range of 100 x 100 meters. However, our system 
may not work well in larger scenarios like smart buildings, 
animal habitat, environmental monitoring, Internet of Things 
(IoT) Applications, etc. Reinforcement learning is another 
technique that trains the system by itself and adopts a best 
policy based on the power history of a network. Also, discount 
factor can be computed and not taken into our system. This 
will be extended further as future work. 
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