
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1073 | P a g e

Implementation of Distance Transformation in the
Processing Language

Rama Prasada Reddy Peddireddy
Department of Computer Science,

University of Colorado, Colorado Springs,
CO, USA

rpeddire@uccs.edu

Sudhanshu Kumar Semwal
Department of Computer Science,

University of Colorado, Colorado Springs,
CO, USA

ssemwal@uccs.edu

Abstract—In this paper, we describe three different
approaches for determining or finding a distance map for a
binary image. The algorithms that solve such problems are
known as Distance Transforms. These algorithms that solve such
problems are known as Distance Transformations. These
algorithms operate on binary images but can be extended to
receive any type of digital image if a conversion algorithm that
converts a digital image into a binary digital image is executed
prior to executing the Distance Transform algorithm. Therefore,
we also examine how to transform any regular digital image into
a binary image, that is, into a black and white image. A Distance
Transformation algorithm operates on a binary image consisting
of featured pixels and non-featured pixels. It outputs a distance
map or distance matrix where each cell matches a pixel of the
input image and contains a value indicating the distance to the
nearest featured pixel. Distance Transforms represent a natural
way to blur feature locations geometrically and they allow other
image effects like skeletonizing, image matching, object
recognition, path planning and navigation. Five test cases are
presented and the execution times of the three techniques are
compared.

Keywords—City-block; Euclidian distance transformations;
image processing; Processing language

I. INTRODUCTION

Our objective is to implement distance transformation [1],
[2], [4]-[7] using processing programming language using a
binary image as an input. To understand distance
transformations, first we need to understand the fundamentals
of image processing such as image types, pixels in an image,
pixel values and pixel connectivity. Pixel connectivity is a
relation between the neighboring pixels. There are different
types of pixel connectivity. For two-dimensional images we
explained three basic pixel connectivity and they are explained
below. In four-connected pixel connectivity, pixels are
connected by their sides. This means that a pair of pixels are
connected horizontally or vertically [2], [4], [10]. Every pixel
that has the coordinates (x ± 1, y) or (x, y ± 1) is connected to
the pixel at (x, y). In diagonal-connected pixel connectivity,
pixels are connected by their corners. This means that a pair of
pixels is connected diagonally [17]. Every pixel that has the
coordinates (x-1, y±1) or (x + 1, y ± 1) is connected to the pixel
at (x, y). This connectivity is union of both four-connected
pixel connectivity and diagonal-connected pixel connectivity.
Every pixel that has the coordinates (x ± 1, y ± 1) is connected
to the pixel at (x, y) [2], [4], [10].

The Processing language is an open source software
environment and a programming language for artists who want
to program images, animation and sound. The objective behind
the creation of processing is to guide fundamentals of computer
programming within a visual context and to serve the
programmers as a software sketchbook and professional
production tool. Processing is developed by artists and
designers to serve artists as a tool to design sketches with in the
same domain. Processing is consisting of all the principles,
structures and concepts like other programming languages
[11]. The main advantages of the Processing software are free
to download by anyone and runs on the Mac, Windows, and
Linux platforms and it’s developing environments is very
flexible as well as user friendly to code. The processing
programming language is a text programming language and as
mentioned above its main aim is to generate new images as
well as alterations for existing images [11].

II. DISTANCE TRANSFORMATIONS

Distance transformations are well known as a technique to
compute distances from the featured pixel to non-featured
pixels. There are various distance transformations proposed
and among all these there are three distance transformations
which have been proposed for two-dimensions [2], [3].

A distance transformation is an operation that converts a
binary picture, consisting of feature and non-feature elements,
to a picture where each element has a value that approximates
the distance to the nearest feature element [3]. The distance
values of these featured and non-featured pixels are computed
based on its neighbors. Computing the distance between a non-
feature pixel to a feature pixel is essentially a global operation.
In case of large images these operations are computationally
costly unless the images are very small [2].

Consider a binary image which consists of a featured pixel
and non-featured pixels. These featured pixels can be points,
edges or objects and non-featured pixels are unoccupied
(blanks). The challenge is to calculate the distance from non-
featured pixel to nearest featured pixel. This distance
calculation is computationally costly to begin with every non-
featured pixel and to scan the image until we find a featured
pixel [2]. In this paper, we particularly concentrated on
implementing the distance transformation algorithms which are
proposed by Borgefors. There are several distance metrics to
calculate the distance between non-featured pixel and featured
pixel. In two-dimensions there are proposed three main

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1074 | P a g e

distance transformations and they are known as city block,
chessboard and Euclidean distances [1]. These distance
transformations can be implemented using both sequential and
parallel algorithms [2]. A brief explanation about these
techniques is in the next section. The same basic idea is
involved in all three distance transformations and it is
approximations of the global Euclidean distance which then
can be computed using local operations.

Several issues arise when dealing with distance transform
algorithms. One of these issues and perhaps the most
significant of all is accuracy. Some distance transform
algorithms produce results with minimal errors; others are
theoretically proven to be error free. From a scientific point of
view it is important to be able to validate the implementation of
the algorithm. A second important issue relates to the
computational time that it takes to provide an output. It is
relatively straightforward to develop an exhaustive method that
requires a great deal of processing time and computes the
distance map previously mentioned [5]. In general distance
transform algorithms exhibit varying degrees of accuracy of
the result, computational complexity, hardware requirements
(such as parallel processors) and conceptual complexity of the
algorithms themselves.

Distance transform algorithms are relying on the idea of
propagating distances between pixels. Calculating the distance
map can have a high computational time cost therefore the
strategy applied by distance transform algorithms is to
approximate the global or real distances by propagating the
local distances, that is, the distance between neighbor pixels
[2]. The propagation can be accomplished sequentially or in
parallel. The algorithms presented in this document were
developed using a sequential approach.

In distance transform algorithms, the distance map has the
same dimension as the input image and it’s initializing as
follows [3], [5]:

If x = [i, j] is a featured pixel then dist_map [i, j] = 0

else dist_map [i, j] = Infinity

Note that every featured pixel will have a value of 0 in the
distance map and every non-featured pixel a value of Infinity.

Setting these initial values this way will prove to be
necessary when propagating local distances and calculating the
rest of the distance map.

Thus, distance measure has been used for the calculation of
the distance but no description of such distance measure has
been provided. The distance measures that will be applied in
the algorithm described throughout this paper are: the
Manhattan or City Block Distance, the Chessboard Distance
and the Euclidean Distance.

After the initialization stage a distance transform algorithm
executes two stages [3] over the image, one is called forward
propagation and the other backward propagation. In these
stages, the algorithm typically uses a mask that is distance
measure dependent and is divided into two masks, one for the
forward propagation known as forward mask and another for
the backward propagation known as backward mask (Fig. 1
and 2). The forward propagation consists of a sweep of the

image from left to right and top to bottom applying the forward
mask every moment and updating the value of cells in the
distance map as follows:

Dist_map[j] ←min(Dist_map[j], Dist_map[j-1] +1)

In the forward propagation, the distance map is updated by
considering the value of the previous cell adding the neighbor
distance (adjacent cells are always at distance 1) and the
distance value of the current cell. Note that in the last formula
refers to the value of the pixel at position

X = (i, j).

In the backward propagation, you sweep the image from
right to left and bottom to top applying the backward mask and
updating values according to the next formula

Dist_map[j] ←min(Dist_map[j], Dist_map[j+1] +1)

As one can notice the formula both formulas are similar,
the only transcendent change is the direction of the update.
Assuming a distance transform algorithm and a Manhattan
distance measure (explained shortly) which receive an input
image with a single featured pixel in the middle the results
obtained from the forward and backward passes would be the
ones illustrated in the following figure.

Fig. 1. Forward mask propagation.

Fig. 2. Backward mask propagation.

III. DISTANCE TRANSORMATION TYPES

After getting a good idea on distance transformation three
distance transformation techniques are explained next. These

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1075 | P a g e

are Chessboard, City-block and Euclidean distance
transformations based on their distance metrics.

A. Chessboad Distance Transformation

The chessboard distance metric measures the path between
the pixels based on 8-connected neighborhood (Fig. 3(a)).
Pixels are connected if their edges or corners touch. This
means that if two adjoining pixels are on, they are part of the
same object, regardless of whether they are connected along
the horizontal, vertical, or diagonal direction [2]. Pixels whose
edges or corners are one unit apart. On the other hand, we can
say this metric assumes that you can make moves on the pixel
grid as if you are a king making moves in chess game.
Suppose that two points (x1, y1), (x2, y2) are given. Fig. 3(c)
show the chessboard distance transformation technique
implemented for a simple image shown in 3b.

The chessboard distance is then defined as: D = Max {|x1 -
x2|, |y1- y2|.

Fig. 3. (a): Chessboard distance transformation with feature pixel at the

center.

Fig. 3. (b): Input binary image to our program.

Fig. 3. (c): The chessboard distance transformation using the Processing

language.

B. City Block Distancet Transformation

The city block distance metric measures (Fig. 4(a)) the path
between the pixels based on a four-connected neighborhood.
Pixels whose edges touch are one of unit apart, pixels
diagonally touching are two units apart. It is also known as the
Manhattan distance. This metric assumes that it is going from
one pixel to other. It is only possible to travel directly along
pixel gridlines. In this technique, diagonal moves are not
allowed [2], [3].

Suppose that two points (x1, y1), (x2, y2) are given.

Then the City block distance is then defined as: D =|x1-
x2|+|y1-y2|. Fig. 4(b) shows a simple image and its city block
distance transformation (Fig. 4(c)).

Fig. 4. (a): City-block distance transformation with feature pixel at the center.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1076 | P a g e

Fig. 4. (b): Original image to the processing program.

Fig. 4. (c): City-block distance transformation of the image in Fig. 4(b).

C. Euclidean Distance Transformation

The Euclidean distance transformation is a familiar straight
line distance between two points [2], [7] (Fig. 5(a)). Suppose
that two points (x1, y1), (x2, y2) are given. Then the
chessboard distance is then defined as:

D =ඥሺx1 െ x2ሻ ∗ ሺx1 െ x2ሻ ൅ ሺy1 െ y2ሻ ∗ ሺy1 െ y2ሻ.

Fig. 5(b) and 5(c) show a simple image and its Euclidean
distance transformation.

Fig. 5. (a): Euclidean distance transformation with two feature pixels at (2,2)

and (4,4).

Fig. 5. (b): Input image to the Euclidean distance transformation program.

Fig. 5. (c): Euclidean distance transformation implemented using processing.

IV. IMPLEMENTATION

In converting a color or digital image into a binary image
we use the r, g, b value, and the following equation:

0.3*r + 0.59*g + 0.11*b > 127

With 127 being used as the threshold [8], [9] for deciding
whether a pixel is colored, black or white.

A. Minimum Distance Calculation

Next, we are going to explain how are we calculating the
minimum distance from non-feature pixel to the nearest
featured pixel with the mask. In the first part of the pseudo
code we are focusing backward mask propagation and in the
later part about forward mask propagation. The both forward
and backward propagations are very similar except in the
direction of mask propagation. To calculate this minimum
distance value, we need to assign the pixel values as Infinity
for non-featured pixel and zero for featured pixel. Based on
mask size here we are calculating a bandwidth which is a side
width of the mask for both forward mask and backward mask
propagations. We are using for loops here to find out various
pixels located on the images. Current state parameter gives the
distance value of the pixel once we identify the location of the
pixel. The co-ordinates of the pixels are useful to find out
distance based on distance transformation technique [2], [3].

B. Main Transformative Process

In this section, we are discussing the distance
transformation of a binary image using forward scan and
backward scan for sequential algorithm [2]. To process output

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1077 | P a g e

image, we must initialize a process for creating an empty
image along with a distance matrix with an empty data metrics.
The next step is to get a pixel value at the position (i, j) which
is a co-ordinate of image. The distance matrix identifies these
positions of the pixel with image height and width. To perform
distance transformation, we need to find the pixel’s state at the
position and we can achieve this by comparing the temporary
distance transformation array which is a distance matrix. In
case of sequential algorithms this process takes place twice.
One is forward scan and other one is backward scan. In the
forward scan, it scans the image from left to right and top to
bottom to find out the distance based on nearest featured pixel
and other hand the backward scan propagates from right to left
as well as bottom to top as explained in [3].

C. Output Image

Using the distance matrix, distance values are mapped to
grey scale and displayed.

V. RESULTS

We have implemented five different tests. We provide the
results of each distance transformation types below. Fig. 6
shows the result of a black and white hand-drawn image, with
chessboard, city-block and Euclidean distance transformation
applied to the same image. Chessboard, city block and
Euclidean distance transformations are also shown for a variety
of black and white images in Fig. 7 and 8 as well. Next we
took some color images in Fig. 9 from Google images, and
applied our algorithm to their equivalent black and white
images after thresholding [7]-[11] in Fig. 10 and 11. Fig. 12
shows a chart of execution times for the three techniques for all
five images which we tested in our implementation. They
clearly show that for the same image, chessboard is the least
expensive and Euclidean distance transformation is the most
expensive processing technique. Execution time for the city-
block distance transformation technique is in between the
chessboard and the Euclidean distance transformation times.

Fig. 6. Test 1: Left original, chessboard, city-block, Euclidean (right).

Fig. 7. Test 2: Left original, chessboard, city-block, Euclidean (right).

Fig. 8. Test 3: Left original, chessboard, city-block, Euclidean (right).

Fig. 9. Tests 4 and 5 images.

Fig. 10. Test 4: Left grey scale, chessboard, city-block, Euclidean (right).

Fig. 11. Test 5: Left grey scale, chessboard, city-block, Euclidean (right).

Fig. 12. Comparison of the three techniques.

VI. CONCLUSIONS AND FUTURE WORK

We described three distance transform algorithms and some
of the different distance measures that are used in these
algorithms. Namely, we detailed the City Block, Chessboard
and Euclidean distances; the first two being the most efficient
but less accurate, the last one being the most accurate but less
efficient because of its floating-point calculations.

During the experimentation and comparison phase which
implemented different images we could see how distance
transforms using the Euclidean distance provided the most
reliable and close to reality results whereas city block and
chessboard in many cases introduced noise in the resulting
image because of the way the distance map is calculated and
the discretization errors committed in the process.

As future work, we recommend implementing new
methods that could provide better results and try to incorporate
to these new algorithms mask of size greater values, and
corresponding 3D implementations. Distance transformations
are the mainstay for several image processing techniques, and
have been well-studied in the past. We have implemented these
techniques in the Processing language. Our future goal is to

0

100

200

300

Test 1 Test 2 Test 3 Test 4 Test 5Ex
ec
u
ti
o
n
 T
im

e

Different Inputs

chessboard cityblock Euclidean

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1078 | P a g e

look into extending the distance transformation techniques for
novel medical applications.

ACKNOWLEDGMENT

All binary images were created in Paint Program. Test 3 is
from free pic. Tests 4 and 5 borrowed from freely available
Google images.

REFERENCES

[1] G. Borgefors, “Distance transformations in arbitrary dimensions”.
Comput. Vision, Graphics Image Process. 27, 1984, pp. 321-345.

[2] G. Borgefors, “Distance transformations in digital images”. Computer
Vision, Graphics, Image Processing, 34, 1986, pp. 344-371.

[3] S. K. Semwal and H. Kvarnstrom. “Directed Safe Zones and the Dual
Extend Algorithms for Efficient Grid Tracing during Ray Tracing”. In
Proceedings of Graphics Interface '97, pp. 76–87, May 1997.

[4] G Borgefors, "Hierarchical chamfer matching: a parametric edge
matching algorithm", IEEE Trans PAMI, vol. 10, no. 6, pp. 849-865,
1988.

[5] Grevera, G.J, “Distance transform algorithms and their implementation
and evaluation. In: Deformable Models”, pp 33–60, 2007.

[6] E. L. van den Broek, T. E. Schouten, "Distance transforms: Academics
versus industry", Recent Patents Comput. Sci., vol. 4, no. 1, pp. 1-15,
2011.

[7] H. Breu, J. Gil, D. Kirkpatrick, M. Werman, "Linear time Euclidean
Distance Transform Algorithms", IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 17, pp. 529-533, 1995

[8] Morse, Bryan S., "Lecture 4: Thresholding," Brigham Young
University, 1998-2000, pp. 1-5.

[9] P. K. Sahoo, S. Soltani, A. K. C. Wong, "A survey of thresholding
techniques", Comput. Vis. Graph. Image Process., vol. 41, pp. 233-260,
1988.

[10] Bryan S. Morse, “Lecture 2- Image Processing Review, Neighbors,
Connected Components, and Distance “, Brigham Young University,
1998-2000, pp. 1-7.

[11] Casey Reas, Ben Fry, John Maeda, Processing: A Programming
Handbook for Visual Designers and Artists, The MIT Press, 2007.

