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Abstract—Data centers are originally composed of servers 
that deal with different services, and have been developed into 
rack-mounted computers and blade server systems. At the same 
time, the traffic between different servers is increasing, and the 
interconnection network performance between servers has 
significant influence on the overall performance of the system. 
Based on the resource pools background in the development of 
data center recently, this paper proposes a rack-scale 
interconnection network structure named RSI. According to the 
features of the interconnection structure, the routing tables are 
designed with two levels, which can reduce the size of tables and 
be convenient to realize adaptive routing. Then a low cost 
adaptive routing called LAR with a threshold to decide the choice 
of routing is proposed. We come up with a deadlock prevention 
mechanism and the deadlock can be prevented in LAR with only 
2 VCs. In addition, a fault tolerance algorithm is used to deal 
with potential failures. Compared to current interconnection 
topologies in a rack, RSI hierarchical topology can support 
larger scale of nodes with comparable performance. Finally, the 
evaluation results show that in extreme traffics, LAR achieves 
about 6 times throughput than minimal routing which performs 
well in uniform random traffic. 

Keywords—Rack scale; resource pooling; interconnection; 
adaptive routing; fault-tolerant 

I. INTRODUCTION 

With the development of cloud computing and large data 
technology, the scale of the data center is growing, but the cost 
of building a large-scale data center cannot be ignored. With 
the expansion of the data center, the cost will grow 
geometrically if the servers, storages and other equipment are 
simply stacked. This type of expansion is not only costly, but 
also the utilization of resources is relatively low. This is 
because the equipment is isolated, forming a seat “island”. In 
order to solve this problem, the concept of “resource pool” has 
been proposed, such as Intel’s RSD (Rack-Scale Design) [9]. 
In “resource pool” design, computing, storage and network 
devices are abstracted into logical resources or services with 
APIs which can be invoked by the upper platform or 
application and the resources can be allocated flexibly. 

Nowadays some new storage technologies such as 3D 
XPoint [2] and NVMe [3] are used to build the next generation 
of data center. And the interconnection network among the 
new type of storages should be better than current ones. The 
storage medium itself has a lower data operation delay, so the 
network needs to have a lower communication delay to match 

the performance of the new storage medium. In addition, the 
communication of storages is different from other flows such 
as video traffic, which allows the data to a certain error. The 
communication between storage devices requires high 
reliability support, so the storage network should guarantee the 
quality of communication. Most of the current data center 
storage networks are based on Ethernet or FC protocol. The 
versatility and low cost of Ethernet is the main reason of its 
wildly usage, but also led to excessive protocols, bringing a 
higher communication delay. 

In this paper, a storage structure for resource pool design is 
proposed, and an interconnection structure is designed to meet 
the rack-scale interconnection request. The main innovations of 
this paper are as follows: (1) New storage architecture in order 
to build a storage pool. With new storage technologies such as 
Non-Volatile Memory (NVM), the performance of storage 
system grows rapidly. So we propose a new way to 
interconnect storage devices with SerDes technology in an 
integrated way other than current I/O subsystems with bridge 
chips to match the performance of emergency NVMs. (2) A 
rack scale interconnection architecture with routing and 
deadlock prevention mechanisms. Rack scale design (RSD) 
was proposed by Intel [9], and develops well in recent years. 
We combine the new storage architecture with RSD to build a 
storage pool in a rack. So we design a hierarchical inter- 
connection topology to connect nodes in a rack. And we design 
the routing tables with two layers to match hierarchical 
topology. Then we propose a low cost adaptive routing 
algorithm (LAR) to balance the load in extreme traffic in 
which the evaluation result shows that LAR can realize about 6 
times throughput than minimal routing algorithm. Moreover, 
the deadlock can be prevented with only 2 VCs in LAR. (3) A 
fault-tolerance mechanism to update the routing tables when 
failures occur or recover. The mechanism will keep listening 
relative packets to judge whether some links or nodes are failed 
or recovered from failure. Then the routing tables will be 
updated according to the algorithms of it. 

Some related work is discussed in Section II. A new 
storage structure and the rack scale interconnection design are 
proposed in Section III. Section IV contains a low cost 
adaptive routing algorithm called LAR with deadlock 
prevention. Then a fault-tolerance mechanism has been 
proposed in Section V. The evaluation results are illustrated in 
Section VI. 
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II. RELATED WORK 

A. Storage Network Technologies 

Storage devices are able to communicate with the processor 
through the I/O expansion port provided by the bridge chip on 
the motherboard, which is called direct-attached storage (DAS) 
[12]. This approach has been used in personal computers, but 
DAS is difficult to expend to a large scale such as in a data 
center. So storage area network (SAN) [13] came up. SAN 
systems often use Fiber Channel (FC) and specific FC switches 
to connect storage arrays with servers. But there are only a 
small number of vendors who can provide FC equipment, 
which makes the cost of SAN high. Another way to support 
large scale storage capacity is Network Attach Storage (NAS) 
[14] and NAS can be implemented over TCP/IP networks. 
Most of the existing storage networks are based on Ethernet 
and require a wide range of protocols and standard 
conversions, resulting in higher latency and lower efficiency. 
One possible solution is a new and efficient in-rack 
communication protocols that have lower overhead to improve 
link bandwidth utilization, enabling high bandwidth and low 
latency. 

In addition, InfiniBand technology [15] is wildly used in 
Data Center interconnection now. InfiniBand contains an 
interconnection protocol with a flat exchange architecture but 
centralized management. It is originally designed for low 
latency and high bandwidth communication. The I/O 
performance in Intel architecture is restricted by the speed of 
PCI or PCI-X bus which is 500MBps and 1GBps, respectively. 
The communication ability between servers and storage 
devices is restricted much. Infiniband will be integrated 
directly into the system board and interact directly with the 
CPU and the memory/storage subsystem. But it is still 
supported by the PCI adapter and is restricted by to PCI bus by 
now. And expensive specific Infiniband switches are 
necessary. 

B. Noval Interconnection Technologies to Storage Systems 

With the development of storage technology like some 
Non-Volatile Memory (NVM) [10], [11], the performance of 
storage system grows rapidly. So the traditional interconnect 
technology may not be able to be well matched about the 
performance of storage media performance. It has been 
mentioned that the storage and network will often become a 
bottleneck in some descriptions of RSD by Intel. We need to 
explore some new interconnect structure. 

Hewlett-Packard officially announced a new computer 
prototype “The Machine” with NVM called memristors in 
London on November 27, 2016. And all memories of nodes are 
connected so every processor can fetch memories of any other 
nodes by load/store instructions. With the interconnection in 
memory level, the low cost communication can be achieved. In 
the meanwhile, the interface to the storage medium also needs 
to be changed to match the high performance of storage 
devices. The PCIe or DDR3 interface called Dual In-line 
Memory Module (DIMM) can solve this problem. But they 
need more pins, and the board wiring is a great challenge. The 
latest 25G SerDes technology may become a new solution to it. 
Table 1 illustrates the comparison of the above three high-
speed interfaces. The high-speed SerDes doubles the 

performance of DDR3, and the number of pins is about 1/12. 
Compared to the latest PCIe technology, SerDes consumes 1/4 
pins of the former. 

Due to high degree of integration, the rack scale inter-
connection network is limited by the number of pins. In 
addition, the storage network is different from the general 
transmission network, requiring a certain quality assurance to 
avoid the high cost of retransmission. And current storage 
networks like bus or star networks are difficultly expend to 
rack-scale. We propose a hierarchical network which can easily 
support 512 to 1024 nodes with low latency to support rack 
scale interconnection. 

TABLE I. COMPARISON OF THREE TYPES OF HIGH SPEED INTERFACES 

Items 4*25G[17] DDR3 PCIe3.0 16x 

Maximum transfer rate 12.5GB/s 6.4GB/s 12.5GB/s 

64-bit transmission delay 0.64ns 1.25ns 0.5ns 

Number of pins 16 200 64 

In high performance computing (HPC) [18], Blue Gene 
[16] adopts 5D Torus to connect nodes which integrate routing 
unit to avoid using additional switches. But the network is 
larger in diameter due to the limited number of I/O pins. The 
tree like structure such as Fat Tree (FT) [4] is also commonly 
used now. But it does not suit for a rack because the limited 
pins or degree of nodes, k. For example, the maximum number 
of nodes that can be interconnected at two levels FT is 128 
with k=8. If more nodes should be connected, additional 
switches may be used to form an indirect network [1]. 

C. Routing and Deadlock Prevention 

When the network traffic is evenly distributed, the shortest 
routing can maximize the use of network bandwidth. But local 
link congestion may occur in some extreme cases. For 
example, when many nodes send packets to the same one, 
intermediate nodes will be needed to alleviate congestion. We 
proposed a low cost adaptive routing mechanism where the 
egress port of each hop is dynamically selected based on the 
local state. 

Deadlocks arise because the number of resources is finite 
[1]. When a packet is holding a channel, and then it requests 
another channel, so there is a dependency between those 
channels. Cyclic dependencies may lead to deadlocks. Using 
Virtual Channel (VC) [1] can prevent deadlocks, and the 
number of VC is related to the diameter of the network [7]. In 
Dragonfly with Valiant routing mechanism [5], a packet will 
traverse no more than 5 hops (l-g-l-g-l, l: intra-layer routing, g: 
inter-layer routing) to reach the destination. So it need 5 VCs 
(VC1 to VC5) to pretend deadlocks, and the order of the VC 
request must be in an ascending way. For example, the first 
hop will apply for VC1 while the 5th hop will apply for VC5. 
Furthermore, combined with the feature of Dragonfly and 
Valiant routing, it can be seen that 1, 3, 5 hops only occur 
within a layer and the 2, 4 hops only occur between two layers. 
So the number of VCs can be set differently according to the 
type of port to save resources. Moreover, Marina [8] proposed 
a “symbol + parity” routing mechanism where there are 4 types 
of channels and the request rules of them are restricted in order 
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to prevent deadlocks without external VC but more 
complicated logics. 

III. RACK SCALE INTERCONNECTION ARCHITECTURE 

In traditional architecture (Fig. 1 right), the processor fetch 
the local storage devices through bridge chips. If the processor 
wants to access some storage devices in other nodes (such as 
SAN storage array), PCIe and network is necessary, leading to 
much delay. The NIC is integrated to the storage controller in 
RSI (Fig. 1 left). With some specific protocols, high-speed 
access to remote storage devices and a pooling storage will 
come true. The high-speed interfaces in Table 1 can be used in 
RSI, but the SerDes technology is more about to be used in the 
future. 

To interconnect nodes in a rack, a hierarchical topology is 
proposed in Fig. 2 named RSI topology. Nodes (represented by 
cycles) will be interconnected in layer 1 to form a “super node” 
(represented by a matrix). The number of ports in a super node 
is called “virtual radix” which depends on a) the radix (the 
number of ports) of each node and b) the interconnection way 
in layer 1. In layer 2, the number of links between two super 
nodes ranges from 1 to more which depends on the scale of 
whole network. 

CPU
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To other nodes
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CPU

Bridge
Chips

PCIe

Memory 
Controller

DRAM

SCSI

Internal bus

Traditional designPooling  storage design

Memory 
Controller

Storage 
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Fig. 1. RSI architecture(left) vs. traditional architecture(right). 
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Layer 2 interconnection

……

Layer 1

 
Fig. 2. Hierarchical interconnection design. 

q=3

a) Hypercube b) Slimfly c) 2D Butterfly  

Fig. 3. Layer 1 interconnection topology. 

TABLE II. SCALE OF WHOLE NETWORK WITH DIFFERENT LAYER 1 
TOPOLOGY 

Layer 1 topologies 
(number of nodes)

Virtual radix 
of super nodes 

The maximum number 
of nodes in network

Full (5) 20 105 

Hypercube (16) 64 1040 

Slim Fly (16) 54 990 

We will next compare RSI topology with Dragonfly [5] 
which is also a hierarchical topology. In Dragonfly, nodes are 
fully interconnected in each group and groups are fully 
interconnected too. When the radix of each node equal to 8 
(k=8), the maximum number of nodes can be interconnected is 
105 which is much less than the number of nodes in a rack. 
There are three types of layer 1 interconnection topology 
illustrated in Fig. 3. They are Hypercube, Slim Fly [6] and 2D 
Butterfly. We choose them to interconnect nodes in layer in 
because of their scalability compared to fully interconnection 
topology and comparable local performance. For example, the 
communication distance in 2D Butterfly is no more than 2 
hops, and the resulting super node owns 32 virtual ports which 
can connect to other 32 super nodes at most. The largest 
number of nodes can be interconnected in different way are 
shown in Table 2, when k=8. Full means nodes are fully 
interconnected, so there are 5 nodes in each super node with 
virtual radix equal to 20 in Dragonfly. 

Three layer 1 topologies in Fig. 3 are able to form a 
network which is able to interconnect all nodes in a rack. As a 
consequence, there may be only one link between every two 
super nodes. And it is more likely to become a bottle neck. 
There should be an appropriate routing mechanism to balance 
the load and we will show that in Sector IV. Moreover, the 
diameter of Hypercube is larger than another two topologies 
which makes the performance degradation faster in hot spot 
traffic. 

IV. LOW COST ADAPTIVE ROUTING 

A. Routing Table Design 

Since the topology is hierarchical in RSI with two layers, 
we design two routing tables: 1) a routing table for 
communication within each layer; 2) a routing table of super 
nodes information. The hierarchical routing tables can a) 
reduce the size of whole routing table, and b) bring 
convenience to design adaptive routing. For example, in a RSI 
network with 3 super nodes and 16 nodes in every super node, 
there need to be 47 routing entries in each node before but only 
2+15 entries totally with two routing tables. Meanwhile, 
adaptive routing inside layer 1 can be achieved by looking for 
Table 1. According to the above, we design the format of head 
and routing table in Fig. 4. Note that there may be more than 
one minimal path for some nodes. 

Source node
Src_L1

Source super 
node
Src_L2

Destination 
node
Des_L1

Destination 
super node
Des_L2

Routing phase
Phase

Egress port 
Po

Destination 
super node
Des_L2

Egress port  of 
minimal routing

PA

Destination 
node
Des_L1

Egress port of 
minimal routing 

PA

Routing table 2. Routing 
information of super 

nodes

Routing table 1. Routing 
information within a 

super node

Head format

 
Fig. 4. Head format and two routing tables in RSI. 
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Fig. 5. VC allocation in BR (L: links inside a super node, G: links between 

two super nodes). 

B. Low Cost Adaptive Routing with Deadlock Prevention 

We define two different priority routing methods before we 
discuss the adaptive routing algorithm: 1) the minimal routing 
with high priority; and 2) non-minimal routing with low 
priority. In non-minimal routing, packets will not be sent to the 
destination super node directly but an intermediate super node. 
Once a packet arrives at the intermediate super node, it will be 
sent to the destination super node in minimal routing to avoid 
live-lock [1]. We use routing phase tag to identify the routing 
phase of a packet in Fig. 4. 

A counter is set in each egress port to record the request 
number of it. When a packet arrives at a node, the egress port 
Po will be selected by minimal routing computing (or looking 
for tables) initially. If the counter number of Po is less than a 
threshold, the packet will be sent to Po and the counter will 
self-increase. Otherwise, the egress port will be recalculated by 
non-minimal routing. The threshold is vital in adaptive routing 
and should be carefully selected. The low cost adaptive routing 
algorithm named LAR is described in detail below in Table 3. 

TABLE III. LOW COST ADAPTIVE ROUTING ALGORITHM 

Algorithm 1.  Low cost adaptive routing algorithm(LAR) of RSI

1. Input：Head of packet; Address of current node: Cur_L1, Cur_L2; 
Routing tables generated by minimal routing algorithm: T1, T2; 
The counter value of each egress port, Qi, i=0..n-1; The threshold 
value, Th. 

2. Ouput：The No of egress port Po 

3.   
4. Receiving FD(Region) 
5. if Cur_L2 == Des_L2 then 
6.   if Cur_L1 == Des_L1 then 
7.     The packet arrive at destination 
8.   else  
9.     Get PA from T1 by Des_L1 
10.   end if 
11. else  
12.   Get PA from T2 by Des_L2 
13. end if 
14. if Qa < Th or Phase == 1 then  

//Phase == 1 means that the adaptive routing has ever been done, so 
//the minimal routing must be adopted next to avoid //live-lock 

15.   Po = Pa 
16. else  
17.   if Cur_L2 == Des_L2 then  
18. //congestion occurs in the super node 
19.     Get a set of egress port no, P(exclude PA) where Qi < Th and Pi 

connect to nodes in the same super node 
20.   else //congestion occurs between super nodes 
21.     Get a set of egress port no, P(exclude PA) where Qi < Th and Pi 

connect to nodes in other super nodes 
22.   end if 
23.   Po is selected from P randomly 
24.    set Phase = 1 
25. end if 

Then we will show how to prevent deadlock with 
additional VCs in above adaptive routing. Packets will travel 
an external super node in non-minimal routing, leading to 2 
hops of inter-layer routing. So we set 2 VCs in egress ports 
which connect to nodes in different super nodes. For those 
egress ports that belong to intra-layer links, 2 VCs are enough 
because there are 2 hops at most within a super node. But the 
request rule of those VCs is restricted by the hop number 
within the super node, which is illustrated at Fig. 5. It will need 
more VCs if they are set as [7] where VCs are added according 
to the total hops that a packet will travel. There are 4 local hops 
and 2 global hops at most in RSI with 2D Butterfly (BR), and it 
will need 4 VCs in local egress ports if we do as [7]. So we use 
less VCs to prevent dead-locks but need more logics to record 
the hops information of routing. 

V. FAULT-TOLERANCE MECHANISM 

In order to cope with the possible problems such as node or 
link fault and man-made loading and unloading operations, we 
propose a fault- tolerance mechanism to update the routing 
information. Based on link state, the algorithm will generate 
fault messages or handle messages received from other nodes 
to update the routing table, and then the fault messages will be 
sent out to other nodes. When the failure link recovering or 
receiving recover messages from other nodes, the routing table 
will be recovered and updated by the algorithm. In this way, 
we can achieve the purpose of fault tolerance with little reduce 
of network performance. What we assume is that each port has 
a copy of two routing tables in Section IV to speed up the 
process of looking for them. Note that the router component 
should track and identify the availability of links, which is the 
premise of the algorithm. And the information and state of 
links can be obtained from some related registers of router. We 
define two types of packets used to error detection and 
recovery: FD (Fault discovery) and FR (Fault recovery). The 
failure detection and recovery algorithms are shown in 
Tables 4 and 5 below. 

TABLE IV. FAILURE DETECT ALGORITHM 

Algorithm 2. Failure detect algorithm 
1. Inpu: FD packet because of the failure of port A; or FD packet from 

port A. 
2. Output: Forward FD(Region) to other nodes; Updated routing table. 
3.   
4. Receiving  FD  packet 
5. if  FD  is  generated  by  local  then 
6.     Compute  the  region  influeced  by  the  failure 
7. end  if 
8. for  each  port  B  do 
9.     for  each  entry  C  in  routing  table  do 
10.         if  C  contains  the  Region  then 
11.             if  port  A  is  not  in  C  then 
12.                 Pass 
13.             else  if  port  A  is  in  C  then 
14.                 Set  A  invalid  in  C 
15.             end  if 
16.             if  C  contains  Port  A  only  then 
17.                 Send  FD(Region)  out  throug  port  B 
18.             end  if 
19.         end  if 
20.     end  for 
21. end  for 
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TABLE V. FAILURE REVOCER ALGORITHM 

Algorithm 3. Failure recovery algorithm 
1. Input: Local port A recovers and FR is generated; or FD packet 

from port A. 
2. Output: Forward FD to other nodes; 

Updated routing table. 
3.   
4. Status  =  0 
5. Receiving  FD  packet 
6. for  each  port  B  do 
7.     for  each  entry  C  in  routing  table  do 
8.         if  port  A  is  not  in  C  then 
9.             Pass 
10.         else   
11.             Set  A  valid  in  C 
12.         end  if 
13.         if  C  contains  Port  A  only  then 
14.             Set  Status  =  1 
15.         end  if 
16.     end  for 
17.     for  each  routing  entry  D  do 
18.         if  there  is  invalid  port  in  D  then 
19.             Set  Status  =  0 
20.             Break 
21.         end  if 
22.     end  for 
23.     if  Status  ==  1  then//only  if  all  entries  are  //recovered 
24.         Forward  FR  out  through  port  B 
25.     end  if 
26. end  for 

As illustrated in Fig. 6, a node in BR network fails and the 
links among the adjacent nodes and it are signed as dash lines. 
Then the adjacent nodes will detect the failure and generate a 
FD packet. After that, Algorithm 2 in Table 4 will be executed 
first in these adjacent nodes to update their routing tables. In 
line 9, the layer 2 and layer 1 routing tables illustrated in Fig. 4 
will be detected respectively, which is same below in 
Algorithm 3. By examining each entry C in the routing tables 
of B, the algorithm checks whether the parameter Region 
belongs to address space of entry C or not. Once the fault 
region overlaps with the address area of entry C, the route 
options of entry C will be set invalid. And if C is the only one 
choice from B to A, the FD (Region) packet will be propagated 
to neighbors via port B. With many times of Algorithm 3, FD 
packets will then be forwarded to more and more nodes in the 
network gradually. When the FD packets are spread to other 
super nodes, the global links among the super nodes will be 
signed dashed meaning that there is some failure occurred in 
the area. Only if all nodes in a super node are failed, the 
corresponding entry in routing Table 2 of nodes in adjacent 
super nodes will be set invalid. Otherwise, there will be still 
many paths to reach the super node with some failure in it such 
as the case illustrated in Fig. 6. 

In turn, if the failure node is recovered, FR packets will be 
generated adjacent nodes will receive FR to update the state of 
tables by Algorithm 3 in Table 5. In Algorithm 3, the variable 
Status is used to distinguish whether all the routing entries of 
current port are valid. If none route option is valid, the Status 
will be set 0 in line 19. And the recovery procedure about the 
relative fault Region will be terminated at current node. Only if 
all nodes are recovered in a super node, the corresponding 
routing tables will be updated as valid if the entry was set 
invalid before. Note that only when all entries are recovered 
and become valid, the FR will be forwarded to other nodes. 

VI. EVALUATION 

We use OMNETPP [20] to model and simulate the 
networks in which each node contains a router module and a 
processor module used to generate and consume packets. There 
are input queues, a routing component, an arbiter with 
maximum match logic and a crossbar in router module. We set 
the length of input queues large enough in order to simplify 
design. And the threshold in adaptive routing are implemented 
as a percentage of the length of queues. We model Dragonfly 
and three types of RSI with different layer 1 topologies in 
Fig. 3 layer 1 interconnection topology. First of all, we set the 
number of groups or super nodes to the same which is 8 and 
there is only one link between every two groups or super 
nodes. So there are 40, 128, 144 and 128 nodes in Dragonfly 
(DF), RSI with Hypercube (HR), RSI with Slim Fly (SR) and 
RSI with 2D Butterfly (BR), respectively. 

……

Global links

Super node

 
Fig. 6. Failure occurs and will be resolved by fault-tolerance mechanism. 

The latency and throughput performance of four networks 
in uniform random traffic are shown in Fig. 7. We evaluate 
four networks with different injection rate (the horizontal axis) 
and minimal routing algorithm. It can be seen in Fig. 7 left that 
four networks have good delay performance at low level of 
load (injection rate below 0.3) but HR performs worse than the 
other three. Moreover, the saturation throughput of DF has 
reached 0.8 which is better than RSI networks because the 
average distance of nodes is lower than RSIs. We count the 
average number of hops from all the packets in the four 
networks from the source node to the destination node, and 
they are 2.5, 4.6, 4.0 and 3.7 in DF, HR, SR and BR 
respectively. And packets will travel 9 hops at most in HR 
which can explain the worse performance of HR. 

What we mentioned before is that there could be more than 
one links between two super nodes when the network is small. 
Then we construct two types of BR networks with 3 super 
nodes: 1) only one link between every two super nodes; 
2) there are 16 links between every two super nodes. And the 
comparison of two BR networks is illustrated in Fig. 8 from 
which we see that BF-2 outperforms BF-1 too much. 

In addition, the network work load can be optimized by 
scheduling more traffic to be in the same super node to reduce 
the communication between super nodes. Fig. 9 illustrates the 
performance of four networks when traffics are distributed in 
the same super node called local performance. We see that DF 
performs best because nodes are fully interconnected in super 
nodes. And HR is going to be saturated first because there will 
be 4 hops at most between two nodes in Hypercube. 
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In fact, some congestion may occur in network. For 
example, when a virtual machine is going to be migrated from 
one node to another, data will continuously be transmitted in 
the link between two nodes. So it is necessary to balance the 
load between two nodes by using more links to share the 
traffic. In other words, the adaptive routing mechanism is vital 
in this pattern of traffic. And we evaluate the low cost adaptive 
routing algorithm in BR with hot spot traffic where nodes in a 
super node send packets to other nodes in another super node. 
There is only one link between these two super nodes so the 
network soon reaches saturation with minimal routing in 
Fig. 10. We find that the network outperforms much more in 
LAR with threshold at 0.6 than in minimal routing. The 
adaptive routing mechanism will improve the performance of 
the network in extreme traffics. 

 
Fig. 7. Latency (left) and throughput (right) of four types of networks in 

Uniform Random traffic. 

 
Fig. 8. Latency (left) and throughput (right) with two types of global 

interconnection ways in BR. 

 
Fig. 9. Latency (left) and throughput (right) when traffics are distributed in 

the same super node. 

 
Fig. 10. Latency(left) and throughput (right) with minimal routing and LAR. 

VII. CONCLUSION 

We propose a new architecture for rack-scale design and a 
new type of interconnection network with limited number of 
pins. Current solutions such as bus and stars structures are 
difficult to interconnect all the nodes in a rack with high 
performance. And Dragonfly is hard to extend to larger scale 
with limited number of pins, although it performs well. RSI is 
hierarchical topology which can easily connect 512 to 1024 
nodes in a rack. And we discuss different types of layer 1 
topologies to form a super node. Then we propose a low cost 
adaptive routing algorithm with dead-lock free mechanism to 
solve extreme traffics. The fault-tolerance mechanism is 
proposed to deal with some practical situation but it need to be 
evaluated in the future. At last, we evaluate the networks in 
OMNETPP simulator to verify the performance of our 
propositions. 
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