
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1085 | P a g e

RSI: A High-Efficient and Fault-Tolerant
Interconnection for Resources-Pooling in Rack Scale

Mingche Lai, Xiangxi Zou, Shi Xu, Jie Jian, Xingyun Qi, Jiaqing Xu
College of Computer

National University of Defense Technology
Changsha, China

zouxiangxi15@nudt.edu.cn

Abstract—Data centers are originally composed of servers
that deal with different services, and have been developed into
rack-mounted computers and blade server systems. At the same
time, the traffic between different servers is increasing, and the
interconnection network performance between servers has
significant influence on the overall performance of the system.
Based on the resource pools background in the development of
data center recently, this paper proposes a rack-scale
interconnection network structure named RSI. According to the
features of the interconnection structure, the routing tables are
designed with two levels, which can reduce the size of tables and
be convenient to realize adaptive routing. Then a low cost
adaptive routing called LAR with a threshold to decide the choice
of routing is proposed. We come up with a deadlock prevention
mechanism and the deadlock can be prevented in LAR with only
2 VCs. In addition, a fault tolerance algorithm is used to deal
with potential failures. Compared to current interconnection
topologies in a rack, RSI hierarchical topology can support
larger scale of nodes with comparable performance. Finally, the
evaluation results show that in extreme traffics, LAR achieves
about 6 times throughput than minimal routing which performs
well in uniform random traffic.

Keywords—Rack scale; resource pooling; interconnection;
adaptive routing; fault-tolerant

I. INTRODUCTION

With the development of cloud computing and large data
technology, the scale of the data center is growing, but the cost
of building a large-scale data center cannot be ignored. With
the expansion of the data center, the cost will grow
geometrically if the servers, storages and other equipment are
simply stacked. This type of expansion is not only costly, but
also the utilization of resources is relatively low. This is
because the equipment is isolated, forming a seat “island”. In
order to solve this problem, the concept of “resource pool” has
been proposed, such as Intel’s RSD (Rack-Scale Design) [9].
In “resource pool” design, computing, storage and network
devices are abstracted into logical resources or services with
APIs which can be invoked by the upper platform or
application and the resources can be allocated flexibly.

Nowadays some new storage technologies such as 3D
XPoint [2] and NVMe [3] are used to build the next generation
of data center. And the interconnection network among the
new type of storages should be better than current ones. The
storage medium itself has a lower data operation delay, so the
network needs to have a lower communication delay to match

the performance of the new storage medium. In addition, the
communication of storages is different from other flows such
as video traffic, which allows the data to a certain error. The
communication between storage devices requires high
reliability support, so the storage network should guarantee the
quality of communication. Most of the current data center
storage networks are based on Ethernet or FC protocol. The
versatility and low cost of Ethernet is the main reason of its
wildly usage, but also led to excessive protocols, bringing a
higher communication delay.

In this paper, a storage structure for resource pool design is
proposed, and an interconnection structure is designed to meet
the rack-scale interconnection request. The main innovations of
this paper are as follows: (1) New storage architecture in order
to build a storage pool. With new storage technologies such as
Non-Volatile Memory (NVM), the performance of storage
system grows rapidly. So we propose a new way to
interconnect storage devices with SerDes technology in an
integrated way other than current I/O subsystems with bridge
chips to match the performance of emergency NVMs. (2) A
rack scale interconnection architecture with routing and
deadlock prevention mechanisms. Rack scale design (RSD)
was proposed by Intel [9], and develops well in recent years.
We combine the new storage architecture with RSD to build a
storage pool in a rack. So we design a hierarchical inter-
connection topology to connect nodes in a rack. And we design
the routing tables with two layers to match hierarchical
topology. Then we propose a low cost adaptive routing
algorithm (LAR) to balance the load in extreme traffic in
which the evaluation result shows that LAR can realize about 6
times throughput than minimal routing algorithm. Moreover,
the deadlock can be prevented with only 2 VCs in LAR. (3) A
fault-tolerance mechanism to update the routing tables when
failures occur or recover. The mechanism will keep listening
relative packets to judge whether some links or nodes are failed
or recovered from failure. Then the routing tables will be
updated according to the algorithms of it.

Some related work is discussed in Section II. A new
storage structure and the rack scale interconnection design are
proposed in Section III. Section IV contains a low cost
adaptive routing algorithm called LAR with deadlock
prevention. Then a fault-tolerance mechanism has been
proposed in Section V. The evaluation results are illustrated in
Section VI.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1086 | P a g e

II. RELATED WORK

A. Storage Network Technologies

Storage devices are able to communicate with the processor
through the I/O expansion port provided by the bridge chip on
the motherboard, which is called direct-attached storage (DAS)
[12]. This approach has been used in personal computers, but
DAS is difficult to expend to a large scale such as in a data
center. So storage area network (SAN) [13] came up. SAN
systems often use Fiber Channel (FC) and specific FC switches
to connect storage arrays with servers. But there are only a
small number of vendors who can provide FC equipment,
which makes the cost of SAN high. Another way to support
large scale storage capacity is Network Attach Storage (NAS)
[14] and NAS can be implemented over TCP/IP networks.
Most of the existing storage networks are based on Ethernet
and require a wide range of protocols and standard
conversions, resulting in higher latency and lower efficiency.
One possible solution is a new and efficient in-rack
communication protocols that have lower overhead to improve
link bandwidth utilization, enabling high bandwidth and low
latency.

In addition, InfiniBand technology [15] is wildly used in
Data Center interconnection now. InfiniBand contains an
interconnection protocol with a flat exchange architecture but
centralized management. It is originally designed for low
latency and high bandwidth communication. The I/O
performance in Intel architecture is restricted by the speed of
PCI or PCI-X bus which is 500MBps and 1GBps, respectively.
The communication ability between servers and storage
devices is restricted much. Infiniband will be integrated
directly into the system board and interact directly with the
CPU and the memory/storage subsystem. But it is still
supported by the PCI adapter and is restricted by to PCI bus by
now. And expensive specific Infiniband switches are
necessary.

B. Noval Interconnection Technologies to Storage Systems

With the development of storage technology like some
Non-Volatile Memory (NVM) [10], [11], the performance of
storage system grows rapidly. So the traditional interconnect
technology may not be able to be well matched about the
performance of storage media performance. It has been
mentioned that the storage and network will often become a
bottleneck in some descriptions of RSD by Intel. We need to
explore some new interconnect structure.

Hewlett-Packard officially announced a new computer
prototype “The Machine” with NVM called memristors in
London on November 27, 2016. And all memories of nodes are
connected so every processor can fetch memories of any other
nodes by load/store instructions. With the interconnection in
memory level, the low cost communication can be achieved. In
the meanwhile, the interface to the storage medium also needs
to be changed to match the high performance of storage
devices. The PCIe or DDR3 interface called Dual In-line
Memory Module (DIMM) can solve this problem. But they
need more pins, and the board wiring is a great challenge. The
latest 25G SerDes technology may become a new solution to it.
Table 1 illustrates the comparison of the above three high-
speed interfaces. The high-speed SerDes doubles the

performance of DDR3, and the number of pins is about 1/12.
Compared to the latest PCIe technology, SerDes consumes 1/4
pins of the former.

Due to high degree of integration, the rack scale inter-
connection network is limited by the number of pins. In
addition, the storage network is different from the general
transmission network, requiring a certain quality assurance to
avoid the high cost of retransmission. And current storage
networks like bus or star networks are difficultly expend to
rack-scale. We propose a hierarchical network which can easily
support 512 to 1024 nodes with low latency to support rack
scale interconnection.

TABLE I. COMPARISON OF THREE TYPES OF HIGH SPEED INTERFACES

Items 4*25G[17] DDR3 PCIe3.0 16x

Maximum transfer rate 12.5GB/s 6.4GB/s 12.5GB/s

64-bit transmission delay 0.64ns 1.25ns 0.5ns

Number of pins 16 200 64

In high performance computing (HPC) [18], Blue Gene
[16] adopts 5D Torus to connect nodes which integrate routing
unit to avoid using additional switches. But the network is
larger in diameter due to the limited number of I/O pins. The
tree like structure such as Fat Tree (FT) [4] is also commonly
used now. But it does not suit for a rack because the limited
pins or degree of nodes, k. For example, the maximum number
of nodes that can be interconnected at two levels FT is 128
with k=8. If more nodes should be connected, additional
switches may be used to form an indirect network [1].

C. Routing and Deadlock Prevention

When the network traffic is evenly distributed, the shortest
routing can maximize the use of network bandwidth. But local
link congestion may occur in some extreme cases. For
example, when many nodes send packets to the same one,
intermediate nodes will be needed to alleviate congestion. We
proposed a low cost adaptive routing mechanism where the
egress port of each hop is dynamically selected based on the
local state.

Deadlocks arise because the number of resources is finite
[1]. When a packet is holding a channel, and then it requests
another channel, so there is a dependency between those
channels. Cyclic dependencies may lead to deadlocks. Using
Virtual Channel (VC) [1] can prevent deadlocks, and the
number of VC is related to the diameter of the network [7]. In
Dragonfly with Valiant routing mechanism [5], a packet will
traverse no more than 5 hops (l-g-l-g-l, l: intra-layer routing, g:
inter-layer routing) to reach the destination. So it need 5 VCs
(VC1 to VC5) to pretend deadlocks, and the order of the VC
request must be in an ascending way. For example, the first
hop will apply for VC1 while the 5th hop will apply for VC5.
Furthermore, combined with the feature of Dragonfly and
Valiant routing, it can be seen that 1, 3, 5 hops only occur
within a layer and the 2, 4 hops only occur between two layers.
So the number of VCs can be set differently according to the
type of port to save resources. Moreover, Marina [8] proposed
a “symbol + parity” routing mechanism where there are 4 types
of channels and the request rules of them are restricted in order

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1087 | P a g e

to prevent deadlocks without external VC but more
complicated logics.

III. RACK SCALE INTERCONNECTION ARCHITECTURE

In traditional architecture (Fig. 1 right), the processor fetch
the local storage devices through bridge chips. If the processor
wants to access some storage devices in other nodes (such as
SAN storage array), PCIe and network is necessary, leading to
much delay. The NIC is integrated to the storage controller in
RSI (Fig. 1 left). With some specific protocols, high-speed
access to remote storage devices and a pooling storage will
come true. The high-speed interfaces in Table 1 can be used in
RSI, but the SerDes technology is more about to be used in the
future.

To interconnect nodes in a rack, a hierarchical topology is
proposed in Fig. 2 named RSI topology. Nodes (represented by
cycles) will be interconnected in layer 1 to form a “super node”
(represented by a matrix). The number of ports in a super node
is called “virtual radix” which depends on a) the radix (the
number of ports) of each node and b) the interconnection way
in layer 1. In layer 2, the number of links between two super
nodes ranges from 1 to more which depends on the scale of
whole network.

CPU

DRAM

To other nodes

Internal bus

CPU

Bridge
Chips

PCIe

Memory
Controller

DRAM

SCSI

Internal bus

Traditional designPooling storage design

Memory
Controller

Storage
Controller

NIC

NVMNVM

Fig. 1. RSI architecture(left) vs. traditional architecture(right).

h h h

Layer 2 interconnection

……

Layer 1

Fig. 2. Hierarchical interconnection design.

q=3

a) Hypercube b) Slimfly c) 2D Butterfly

Fig. 3. Layer 1 interconnection topology.

TABLE II. SCALE OF WHOLE NETWORK WITH DIFFERENT LAYER 1
TOPOLOGY

Layer 1 topologies
(number of nodes)

Virtual radix
of super nodes

The maximum number
of nodes in network

Full (5) 20 105

Hypercube (16) 64 1040

Slim Fly (16) 54 990

We will next compare RSI topology with Dragonfly [5]
which is also a hierarchical topology. In Dragonfly, nodes are
fully interconnected in each group and groups are fully
interconnected too. When the radix of each node equal to 8
(k=8), the maximum number of nodes can be interconnected is
105 which is much less than the number of nodes in a rack.
There are three types of layer 1 interconnection topology
illustrated in Fig. 3. They are Hypercube, Slim Fly [6] and 2D
Butterfly. We choose them to interconnect nodes in layer in
because of their scalability compared to fully interconnection
topology and comparable local performance. For example, the
communication distance in 2D Butterfly is no more than 2
hops, and the resulting super node owns 32 virtual ports which
can connect to other 32 super nodes at most. The largest
number of nodes can be interconnected in different way are
shown in Table 2, when k=8. Full means nodes are fully
interconnected, so there are 5 nodes in each super node with
virtual radix equal to 20 in Dragonfly.

Three layer 1 topologies in Fig. 3 are able to form a
network which is able to interconnect all nodes in a rack. As a
consequence, there may be only one link between every two
super nodes. And it is more likely to become a bottle neck.
There should be an appropriate routing mechanism to balance
the load and we will show that in Sector IV. Moreover, the
diameter of Hypercube is larger than another two topologies
which makes the performance degradation faster in hot spot
traffic.

IV. LOW COST ADAPTIVE ROUTING

A. Routing Table Design

Since the topology is hierarchical in RSI with two layers,
we design two routing tables: 1) a routing table for
communication within each layer; 2) a routing table of super
nodes information. The hierarchical routing tables can a)
reduce the size of whole routing table, and b) bring
convenience to design adaptive routing. For example, in a RSI
network with 3 super nodes and 16 nodes in every super node,
there need to be 47 routing entries in each node before but only
2+15 entries totally with two routing tables. Meanwhile,
adaptive routing inside layer 1 can be achieved by looking for
Table 1. According to the above, we design the format of head
and routing table in Fig. 4. Note that there may be more than
one minimal path for some nodes.

Source node
Src_L1

Source super
node
Src_L2

Destination
node
Des_L1

Destination
super node
Des_L2

Routing phase
Phase

Egress port
Po

Destination
super node
Des_L2

Egress port of
minimal routing

PA

Destination
node
Des_L1

Egress port of
minimal routing

PA

Routing table 2. Routing
information of super

nodes

Routing table 1. Routing
information within a

super node

Head format

Fig. 4. Head format and two routing tables in RSI.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1088 | P a g e

Source
1‐1

Node
1‐2

Node
1‐3

Node
2‐1

Node
2‐2

Node
2‐3

Node
3‐2

Node
3‐3

Lvc0 Lvc1

Des
3‐3

Gvc1

Lvc0 Lvc1

Gvc2
Lvc0Lvc1

Fig. 5. VC allocation in BR (L: links inside a super node, G: links between

two super nodes).

B. Low Cost Adaptive Routing with Deadlock Prevention

We define two different priority routing methods before we
discuss the adaptive routing algorithm: 1) the minimal routing
with high priority; and 2) non-minimal routing with low
priority. In non-minimal routing, packets will not be sent to the
destination super node directly but an intermediate super node.
Once a packet arrives at the intermediate super node, it will be
sent to the destination super node in minimal routing to avoid
live-lock [1]. We use routing phase tag to identify the routing
phase of a packet in Fig. 4.

A counter is set in each egress port to record the request
number of it. When a packet arrives at a node, the egress port
Po will be selected by minimal routing computing (or looking
for tables) initially. If the counter number of Po is less than a
threshold, the packet will be sent to Po and the counter will
self-increase. Otherwise, the egress port will be recalculated by
non-minimal routing. The threshold is vital in adaptive routing
and should be carefully selected. The low cost adaptive routing
algorithm named LAR is described in detail below in Table 3.

TABLE III. LOW COST ADAPTIVE ROUTING ALGORITHM

Algorithm 1. Low cost adaptive routing algorithm(LAR) of RSI

1. Input：Head of packet; Address of current node: Cur_L1, Cur_L2;
Routing tables generated by minimal routing algorithm: T1, T2;
The counter value of each egress port, Qi, i=0..n-1; The threshold
value, Th.

2. Ouput：The No of egress port Po

3.
4. Receiving FD(Region)
5. if Cur_L2 == Des_L2 then
6. if Cur_L1 == Des_L1 then
7. The packet arrive at destination
8. else
9. Get PA from T1 by Des_L1
10. end if
11. else
12. Get PA from T2 by Des_L2
13. end if
14. if Qa < Th or Phase == 1 then

//Phase == 1 means that the adaptive routing has ever been done, so
//the minimal routing must be adopted next to avoid //live-lock

15. Po = Pa
16. else
17. if Cur_L2 == Des_L2 then
18. //congestion occurs in the super node
19. Get a set of egress port no, P(exclude PA) where Qi < Th and Pi

connect to nodes in the same super node
20. else //congestion occurs between super nodes
21. Get a set of egress port no, P(exclude PA) where Qi < Th and Pi

connect to nodes in other super nodes
22. end if
23. Po is selected from P randomly
24. set Phase = 1
25. end if

Then we will show how to prevent deadlock with
additional VCs in above adaptive routing. Packets will travel
an external super node in non-minimal routing, leading to 2
hops of inter-layer routing. So we set 2 VCs in egress ports
which connect to nodes in different super nodes. For those
egress ports that belong to intra-layer links, 2 VCs are enough
because there are 2 hops at most within a super node. But the
request rule of those VCs is restricted by the hop number
within the super node, which is illustrated at Fig. 5. It will need
more VCs if they are set as [7] where VCs are added according
to the total hops that a packet will travel. There are 4 local hops
and 2 global hops at most in RSI with 2D Butterfly (BR), and it
will need 4 VCs in local egress ports if we do as [7]. So we use
less VCs to prevent dead-locks but need more logics to record
the hops information of routing.

V. FAULT-TOLERANCE MECHANISM

In order to cope with the possible problems such as node or
link fault and man-made loading and unloading operations, we
propose a fault- tolerance mechanism to update the routing
information. Based on link state, the algorithm will generate
fault messages or handle messages received from other nodes
to update the routing table, and then the fault messages will be
sent out to other nodes. When the failure link recovering or
receiving recover messages from other nodes, the routing table
will be recovered and updated by the algorithm. In this way,
we can achieve the purpose of fault tolerance with little reduce
of network performance. What we assume is that each port has
a copy of two routing tables in Section IV to speed up the
process of looking for them. Note that the router component
should track and identify the availability of links, which is the
premise of the algorithm. And the information and state of
links can be obtained from some related registers of router. We
define two types of packets used to error detection and
recovery: FD (Fault discovery) and FR (Fault recovery). The
failure detection and recovery algorithms are shown in
Tables 4 and 5 below.

TABLE IV. FAILURE DETECT ALGORITHM

Algorithm 2. Failure detect algorithm
1. Inpu: FD packet because of the failure of port A; or FD packet from

port A.
2. Output: Forward FD(Region) to other nodes; Updated routing table.
3.
4. Receiving FD packet
5. if FD is generated by local then
6. Compute the region influeced by the failure
7. end if
8. for each port B do
9. for each entry C in routing table do
10. if C contains the Region then
11. if port A is not in C then
12. Pass
13. else if port A is in C then
14. Set A invalid in C
15. end if
16. if C contains Port A only then
17. Send FD(Region) out throug port B
18. end if
19. end if
20. end for
21. end for

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1089 | P a g e

TABLE V. FAILURE REVOCER ALGORITHM

Algorithm 3. Failure recovery algorithm
1. Input: Local port A recovers and FR is generated; or FD packet

from port A.
2. Output: Forward FD to other nodes;

Updated routing table.
3.
4. Status = 0
5. Receiving FD packet
6. for each port B do
7. for each entry C in routing table do
8. if port A is not in C then
9. Pass
10. else
11. Set A valid in C
12. end if
13. if C contains Port A only then
14. Set Status = 1
15. end if
16. end for
17. for each routing entry D do
18. if there is invalid port in D then
19. Set Status = 0
20. Break
21. end if
22. end for
23. if Status == 1 then//only if all entries are //recovered
24. Forward FR out through port B
25. end if
26. end for

As illustrated in Fig. 6, a node in BR network fails and the
links among the adjacent nodes and it are signed as dash lines.
Then the adjacent nodes will detect the failure and generate a
FD packet. After that, Algorithm 2 in Table 4 will be executed
first in these adjacent nodes to update their routing tables. In
line 9, the layer 2 and layer 1 routing tables illustrated in Fig. 4
will be detected respectively, which is same below in
Algorithm 3. By examining each entry C in the routing tables
of B, the algorithm checks whether the parameter Region
belongs to address space of entry C or not. Once the fault
region overlaps with the address area of entry C, the route
options of entry C will be set invalid. And if C is the only one
choice from B to A, the FD (Region) packet will be propagated
to neighbors via port B. With many times of Algorithm 3, FD
packets will then be forwarded to more and more nodes in the
network gradually. When the FD packets are spread to other
super nodes, the global links among the super nodes will be
signed dashed meaning that there is some failure occurred in
the area. Only if all nodes in a super node are failed, the
corresponding entry in routing Table 2 of nodes in adjacent
super nodes will be set invalid. Otherwise, there will be still
many paths to reach the super node with some failure in it such
as the case illustrated in Fig. 6.

In turn, if the failure node is recovered, FR packets will be
generated adjacent nodes will receive FR to update the state of
tables by Algorithm 3 in Table 5. In Algorithm 3, the variable
Status is used to distinguish whether all the routing entries of
current port are valid. If none route option is valid, the Status
will be set 0 in line 19. And the recovery procedure about the
relative fault Region will be terminated at current node. Only if
all nodes are recovered in a super node, the corresponding
routing tables will be updated as valid if the entry was set
invalid before. Note that only when all entries are recovered
and become valid, the FR will be forwarded to other nodes.

VI. EVALUATION

We use OMNETPP [20] to model and simulate the
networks in which each node contains a router module and a
processor module used to generate and consume packets. There
are input queues, a routing component, an arbiter with
maximum match logic and a crossbar in router module. We set
the length of input queues large enough in order to simplify
design. And the threshold in adaptive routing are implemented
as a percentage of the length of queues. We model Dragonfly
and three types of RSI with different layer 1 topologies in
Fig. 3 layer 1 interconnection topology. First of all, we set the
number of groups or super nodes to the same which is 8 and
there is only one link between every two groups or super
nodes. So there are 40, 128, 144 and 128 nodes in Dragonfly
(DF), RSI with Hypercube (HR), RSI with Slim Fly (SR) and
RSI with 2D Butterfly (BR), respectively.

……

Global links

Super node

Fig. 6. Failure occurs and will be resolved by fault-tolerance mechanism.

The latency and throughput performance of four networks
in uniform random traffic are shown in Fig. 7. We evaluate
four networks with different injection rate (the horizontal axis)
and minimal routing algorithm. It can be seen in Fig. 7 left that
four networks have good delay performance at low level of
load (injection rate below 0.3) but HR performs worse than the
other three. Moreover, the saturation throughput of DF has
reached 0.8 which is better than RSI networks because the
average distance of nodes is lower than RSIs. We count the
average number of hops from all the packets in the four
networks from the source node to the destination node, and
they are 2.5, 4.6, 4.0 and 3.7 in DF, HR, SR and BR
respectively. And packets will travel 9 hops at most in HR
which can explain the worse performance of HR.

What we mentioned before is that there could be more than
one links between two super nodes when the network is small.
Then we construct two types of BR networks with 3 super
nodes: 1) only one link between every two super nodes;
2) there are 16 links between every two super nodes. And the
comparison of two BR networks is illustrated in Fig. 8 from
which we see that BF-2 outperforms BF-1 too much.

In addition, the network work load can be optimized by
scheduling more traffic to be in the same super node to reduce
the communication between super nodes. Fig. 9 illustrates the
performance of four networks when traffics are distributed in
the same super node called local performance. We see that DF
performs best because nodes are fully interconnected in super
nodes. And HR is going to be saturated first because there will
be 4 hops at most between two nodes in Hypercube.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1090 | P a g e

In fact, some congestion may occur in network. For
example, when a virtual machine is going to be migrated from
one node to another, data will continuously be transmitted in
the link between two nodes. So it is necessary to balance the
load between two nodes by using more links to share the
traffic. In other words, the adaptive routing mechanism is vital
in this pattern of traffic. And we evaluate the low cost adaptive
routing algorithm in BR with hot spot traffic where nodes in a
super node send packets to other nodes in another super node.
There is only one link between these two super nodes so the
network soon reaches saturation with minimal routing in
Fig. 10. We find that the network outperforms much more in
LAR with threshold at 0.6 than in minimal routing. The
adaptive routing mechanism will improve the performance of
the network in extreme traffics.

Fig. 7. Latency (left) and throughput (right) of four types of networks in

Uniform Random traffic.

Fig. 8. Latency (left) and throughput (right) with two types of global

interconnection ways in BR.

Fig. 9. Latency (left) and throughput (right) when traffics are distributed in

the same super node.

Fig. 10. Latency(left) and throughput (right) with minimal routing and LAR.

VII. CONCLUSION

We propose a new architecture for rack-scale design and a
new type of interconnection network with limited number of
pins. Current solutions such as bus and stars structures are
difficult to interconnect all the nodes in a rack with high
performance. And Dragonfly is hard to extend to larger scale
with limited number of pins, although it performs well. RSI is
hierarchical topology which can easily connect 512 to 1024
nodes in a rack. And we discuss different types of layer 1
topologies to form a super node. Then we propose a low cost
adaptive routing algorithm with dead-lock free mechanism to
solve extreme traffics. The fault-tolerance mechanism is
proposed to deal with some practical situation but it need to be
evaluated in the future. At last, we evaluate the networks in
OMNETPP simulator to verify the performance of our
propositions.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for the feedback and revision suggestions. Then, we would
thank National key research and development projects
(2016YFB0200203) and NSFC (61572509) for providing the
assistance to make this research possible.

REFERENCES

[1] Dally, W., & Towles, B., “Principles and Practices of Interconnection
Networks,” Morgan Kaufmann Publishers Inc, 2003.

[2] Sokolov, D. A., “IDF 2015: intel zeigt virtuelle touchdisplays und
flottere ssds mit 3d-xpoint-technik”, online.

[3] Kim, H. J., Lee, Y. S., & Kim, J. S, “NVMeDirect: a user-space I/O
framework for application-specific optimization on NVMe SSDs,” In
8th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), June. 2016.

[4] Hring, S. R., Ibel, M., Das, S. K., & Kumar, M. J., “On generalized fat
trees,” IEEE Computer Society, Vol.15, pp.37, 1995.

[5] Kim, J., Dally, W. J., Scott, S., & Abts, D, “Technology-driven, highly-
scalable dragonfly topology,” IEEE. Computer Society, Vol. 36, No. 3,
pp. 77-88, June. 2008.

[6] Besta, M., & Hoefler, T, “Slim Fly: A cost effective low-diameter
network topology,” In High Performance Computing, Networking,
Storage and Analysis, SC14: International Conference, IEEE, pp. 348-
359, November. 2014.

[7] Gunther, K., “Prevention of deadlocks in packet-switched data transport
systems,” IEEE Transactions on Communications, vol. 4, pp. 512-524,
1981.

[8] García, M., Vallejo, E., Beivide, R., Odriozola, M., & Valero, M.,
“Efficient routing mechanisms for dragonfly networks,” IEEE. In
Parallel Processing (ICPP), 2013 42nd International Conference, pp.
582-592, October. 2013.

[9] “Intel Rack Scale Design,” in
http://www.intel.com/content/www/us/en/architecture-and-
technology/rack-scale-design-overview.html, online.

[10] Lam, C. (2008, April), “Cell design considerations for phase change
memory as a universal memory,” IEEE. In VLSI Technology, Systems
and Applications, pp. 132-133, April. 2008.

[11] Sun, G., Dong, X., Xie, Y., Li, J., & Chen, Y., “A novel architecture of
the 3D stacked MRAM L2 cache for CMPs,” IEEE. In High
Performance Computer Architecture, pp. 239-249, February. 2009.

[12] Morris, R. J., & Truskowski, B. J., “The evolution of storage systems,”
IBM systems Journal, vol. 2, pp. 205-217, 2003.

[13] Glider, J. S., Fuente, C. F., & Scales, W. J., “The software architecture
of a san storage control system,” IBM Systems Journal, vol. 2, pp. 232-
249, 2003.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1091 | P a g e

[14] Gibson, G. A., & Van Meter, R., “Network attached storage
architecture,” Communications of the ACM, vol. 11, pp. 37-45, 2000.

[15] InfiniBand Trade Association, “InfiniBand Architecture Specification:
Release 1.0,” 2000.

[16] Adiga, N. R., Blumrich, M. A., Chen, D., Coteus, P., Gara, A.,
Giampapa, M. E., ... & Tsao, M., “Blue Gene/L torus interconnection
network,”. IBM Journal of Research and Development, vol. 3, pp. 265-
276, 2005.

[17] Lee G, “Cloud Networking: Understanding Cloud-based Data Center
Networks,” Morgan Kaufmann Publishers Inc, 2014, pp. 191–203.

[18] Zhou, Wenhao, et al. “Detailed and clock-driven simulation for HPC
interconnection network.” Frontiers of Computer Science
10.5(2016):797-811.

[19] Zhengbin, et al. “The TH Express high performance interconnect
networks.” Frontiers of Computer Science 8.3(2014):357-366.

[20] “Omnetpp”, refer to https://omnetpp.org/, online.

