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Abstract—Improvement in resource consumption is among 
the many important targets that smart heating systems are aimed 
at achieving. Such a system automatically manipulates a 
household’s physical artefacts (such as radiators, heating boiler, 
etc.) and changes their operational regimes to achieve this goal. 
This system can formally be represented by the parameter 
optimization problem. Although substantial research in this area 
has already been conducted, there is room for improvement on a 
collective scale. We adapted the context-aware parameter 
optimization architecture for geographically distributed 
machines to integrate multiple-peer knowledge into local 
optimization. This approach is a novel because it redefines 
knowledge mining and interpretation functionality, and it 
employs clustering and machine learning algorithms. Current 
paper is an attempt to explore sensitivity of heating system’s local 
optimization to the mined knowledge, as it indicates if the 
method is applicable at all. A computational experiment confirms 
such sensitivity and provides basis for the future research. 

Keywords—Distributed knowledge management; context 
recognition; smart heating 

I. INTRODUCTION 

A smart heating system (SHS) is an automated 
infrastructure that automatically tunes a household’s heating 
infrastructure to utilize resources efficiently. It consists of three 
major sub-systems: user interface, sensor network and heating 
flow manipulator. The user interface provides household 
members with a way to interact with the SHS controller, view 
current data, set desired room temperature and specify a time at 
which the temperature should be achieved. The sensor network 
monitors the heating system state, including water temperature, 
room temperature, outside temperature, etc. All these data are 
then used by the controller to manage heating flow 
manipulators and achieve the desired goal. 

Recently, energy conservation has been an active research 
domain (see [1]-[4]). While much has been done, we believe 
there is room for improvement on a collective scale. That is, if 
multiple households make a coordinated effort, small 
improvements in the efficiency of each household could result 
in substantial impact on the community level. When 
performing its job, an SHS monitors a set of parameters, such 
as flow restrictions within individual radiators (typically 1 to 5 

in standard household radiators), heating time, etc., and finding 
an optimal set of parameters on a household level is not a 
trivial task. Furthermore, coordinating collective parameter 
optimization is an even more challenging problem. Different 
households may have different piping, room designs and 
isolation materials, which results in the need to optimize 
divergent parameters. The goal of this study is to extract and 
mine “parameter-performance” data from multiple SHSs, 
extract knowledge from these data, and apply the knowledge in 
individual households without interrupting continuing 
operations. 

The idea for our solution is inspired by [5]-[6], where the 
authors presented the central, context-aware parameter 
optimization architecture for geographically distributed 
machines. We build on this by partially shifting the 
information mining functionality from the server to the SHS. 
We also employ the OPTICS algorithm [13] to derive context 
knowledge and the SARSA algorithm [14] to mine information 
from raw statistical data. Experimental results suggest that the 
resulting architectural solution has the potential to solve the 
SHS problem, but its applicability should be verified through 
future research. 

The rest of the paper is organized as follows. The problem 
definition is presented in Section II. Section III discusses the 
research methodology and formulates the question. Section IV 
presents a proposed solution design, while Section V 
concentrates on the experimental design and results. Finally, 
Section VI concludes the paper and provides suggestions for 
future research. 

 
Fig. 1. The desired SHS behaviour on an individual household level, where 

a) is the first run and b) is the optimized behaviour. The goal is to minimize the 
time spent maintaining higher temperature and maximize conservation time to 

decrease fuel consumption. 



Future Technologies Conference (FTC) 2017 
29-30 November 2017 | Vancouver, Canada 

135 | P a g e  
 

II. PROBLEM DEFINITION 

A. Desired System Behaviour 

Residence areas in post-soviet countries are typically 
equipped with a local heating network. It consists of an 
autonomous station that heats circulating water and pipelines 
that run through the buildings in the network. In such a system, 
determining the monetary advantage of optimized power 
consumption within individual premises is not straightforward. 
Thus, motivating landlords to actively manage heat 
consumption is a challenging task, and even if some are 
convinced, it is not enough. Although rationalized heat 
consumption of an individual household surely adds value, it is 
the coordinated collective effort that maximizes it. 

The solution to this problem is constant adoption of best 
heat conservation strategies across an entire heating network, 
such that slight improvements at the level of the individual 
household result in a considerable summative effect. The 
problem is that residents’ commitments and lack of time or 
interest can jeopardize successful execution of such an activity. 
To overcome this obstacle, one might suggest building an 
analytical system that constantly evaluates consumption 
characteristics across houses and performs automated analysis 
to support local heating parameter optimization at every house. 

Fig. 1 illustrates desired system behaviour on the level of a 
single SHS. The SHS here starts by heating the space in an 
inefficient way, as shown in Fig. 1(a). However, it learns how 
to meet user specifications (i.e., heat the room to the target 
temperature by the specified time) and maximize energy 
conservation time by utilizing knowledge, as shown in 
Fig. 1(b). Note that this example is illustrative rather than 
descriptive and does not provide any insight into the 
implementation details. Instead, it presents an end-user 
perspective on the design goals of the system. 

B. Knowledge Management Requirements 

In [7], Vayrynen et al. advocate data-driven performance 
analysis of industrial machines and experimentally justify the 
benefit of knowledge utilization in parameter tuning. 
Unfortunately, such knowledge is not universal and should be 
interpreted with the context of the specific application in mind. 

Kannisto et al. attempt to solve this problem by designing a 
centralized, context-aware local optimization architecture [5], 
which collects feedback on operational parameters from a fleet 
of wood cutting machinery, calculates optimal values and 
distributes them across the entire fleet. Then, it is up to the 
machine to adjust the calculated values to its environment. 
Given a high number of physical machines, this process 
constantly forces parameters to the point of optimality, even if 
contexts evolve over time. 

 
Fig. 2. Abstraction levels, which lay down the conceptual background for the 
knowledge mining approach, of the proposed SHS model. At the level of the 

individual SHS, we suggest retrieving all Information but only some 
Knowledge to mitigate context complexity. 

In our case, unlike in the current literature, the heating 
system context consists of both fixed factors (radiator type, 
serviced household area, etc.) and changing factors (additional 
sources of heat, temperature outside, etc.). Hence, there is an 
additional complexity of not being able to compute a 
guaranteed optimal solution even for households with identical 
fixed factors. Thus, in addition to adopting the core idea, we 
must also determine how the system should mitigate additional 
complexity when mining knowledge. 

First, let us refer to the “knowledge pyramid” [8], 
illustrated in Fig. 2. In Kannisto et al., physical machinery 
obtains parameters and generates feedback (corresponding to 
the data layer and part of the information layer in the pyramid), 
which is then analytically processed at the central server to 
derive knowledge (information and knowledge levels). 

One intuitive solution to the mitigation problem is to let an 
individual machine seek its own sub-optimal parameter and let 
it choose between it and global optimum on a case by case 
basis. For instance, let us assume that the user wants a room 
warmed up by +20 degrees Celsius within some specified time, 
and the optimum (global) radiator temperature for that is +50 
degrees. The individual SHS applies this value and achieves 
the result within target time +10 minutes. Thus, next time, the 
SHS uses +55 degrees, meets the targeted time and reports 
feedback to the server. The system might not necessarily 
update the global optimum due to statistical insignificance of 
the reported difference. However, the SHS does not override its 
local sub-optimum on the next run unless the new global 
optimum deviates significantly. Fig. 3 presents a schematic 
view of this concept. 

Data in this case include both current sensor readings and 
local sub-optimal values. Aggregated context values represent 
knowledge from the cloud analyser and are used by the local 
context engine to determine which set of values to use and to 
provide input for utilized operational values. 
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Fig. 3. Illustration of how context is utilized in generation of parameter 

values. Updated values on the diagram represent the idea that the SHS can pick 
values to learn that differ from both current sub- and global optima. This 
corresponds to changing the radiator temperature from +50 to +55 in the 

example. 

The general idea here is that every SHS sticks to its own 
experience (best practice) unless there is a high potential 
benefit to changing, as promised by aggregated knowledge. 
The reason for this approach is that global optima do not 
necessarily better suit the unique context of an individual SHS 
but instead carry the risk of misbalancing the carefully tuned 
system. Fig. 4 illustrates the flow of information and resulting 
knowledge for this approach. 

III. RESEARCH CONTEXT 

A. Research Methodology 

To carry out this project we employ the constructive design 
science research methodology, as described in [16]. The core 
idea is to break necessary work down into iterations. Each 
iteration takes an input hypothesis and tests it by implementing 
and evaluating a software artefact. The hypothesis is being 
proven or disproven results in novel knowledge, which is then 
used to formulate a new hypothesis, triggering the next 
iteration. This process continues until the overall research 
objective is met. 

B. Research Question 

The current paper presents experimental results of the 
iterative process that investigates the following hypothesis: 
“Globally optimized SHS context parameters have significant 
impact on local optimization but do not overrule local optima if 
the potential benefit is lower than the locally known result.” 

This is of key importance because the validity of the entire 
proposed architecture depends on how sensitive parameter 
optimization is to the change in knowledge. Hence, at this 
stage we must answer the following research questions: 

1) How does the system learn, represent and store 
knowledge? 

2) How does an individual SHS interpret and utilize the 
knowledge? 

IV. SOLUTION DESIGN 

A. Context Recognition and Representation 

The notion of context (also called environment) has been 
extensively studied in the setting of smart home systems [9]-
[12]. It has been modelled using a range of methods from 
formal to heuristic. In our case, building a formal model would 
require knowledge of each household’s physical environment 
or at least its significant objects and their properties (such as 
materials used, area, etc.). Unfortunately, this is infeasible 
because major factors differ from house to house and 
estimating their influence would not be reasonable or 
straightforward. 

Instead, we approach the problem by treating the context as 
a set of optimized parameters with relevant metadata. To 
determine these values, we consider system inputs and their 
resulting outputs. Under this definition, the main function of 
context is to serve as the aggregated experience of multiple 
lower level optimizations. The best way to conceptualize this is 
to imagine several people performing a repetitive task. Each 
person learns how to perform it best based on their experience 
and skills. However, if you compare their efficiency, you 
would likely discover that some people perform faster because 
they came up with a less costly method than the others. Then, 
sharing better practices with others brings the average 
execution time down for the entire population. Equation (1) 
presents a formal definition of the context. 

Context = {tout, tf, Τµ, Ψµ} (1)

Here, tout is the outside temperature, tf is the flow 
temperature, Τµ = {τ0 .. τµ}, µ = 0...N is the set of heating 
speeds under flow restrictions µ, and Ψµ = {ψ0 .. ψµ}, ψ = 0...N 
is the set of fuel consumption values under flow restrictions µ. 
Each τµ is stored as a tuple: 

τµ = (µ, φµ) (2)

Where, µ is the restriction value, and φµ is the heating speed 
under the following restriction: 

φµ = Δtµ
 / time (3)

 
Fig. 4. Unlike in the literature, each single SHS also computes sub-optimal 
parameters and can choose which version to use. Parameter data here, if used, 

is feedback on global, optimized parameters. Information is a set of sub-
optimal parameter values. 
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Fig. 5. Parameter feedback generation flow within a single SHS. 

Here, Δtµ denotes the temperature change over the 
considered time span. Each ψµ is also a tuple, which stores µ 
and the associated fuel consumption cµ: 

ψµ = (µ, cµ)

Context recognition occurs in two steps. First, when the 
system is initiated for the first time, a cloud based analytics tool 
receives credentials and {tout, tf, Τµ, Ψµ} parameters for each 
SHS. Then, the system runs an OPTICS algorithm [13] to 
identify clusters and their corresponding cluster centres. In this 
way, approximation values are derived based on heat and fuel 
consumption characteristics rather than the construction 
specifics of each individual household. 

Second, a context recognition tool accepts SHS feedback to 
global parameters, and if more than 15% of cluster objects are 
flagged as different, it re-computes them using new sub-
optimal values that come from each SHS. 

B. Feedback Generation and SHS Learning 

The feedback generation flow is illustrated in Fig. 5. First, 
the machine retrieves the context from the cloud knowledge 
engine. To do so, it reports current environmental 
characteristics, classifies the context according to known 
clusters, and returns values for the closest context. 

The SHS computes expected heating time and cost using 
updated knowledge and then decides whether to use its local 
sub-optimal parameters or adjust to context parameters. Here, α 
is the learning coefficient, which determines willingness of the 
system to experiment with parameters. When α→0, the system 
is reluctant to learn, but as α→1, it becomes increasingly 
willing to experiment. All feedback, generated as shown in the 
diagram, is sent to the cloud to adjust the existing context class 
structure as described above. The idea here is that 
experimenting with local sub-optima will eventually cause 
feedback disruption that is large enough to identify new classes 

of contexts, and thus, the system will evolve. This phenomenon 
forces the analyser to reconsider and even abandon context 
classes if enough of the SHSs report them to be inefficient. In 
this way, the overall system tends to forget about the existence 
of classes which do not add value to the system. 

To learn local sub-optima, however, SHS employs a 
modification of the SARSA algorithm [14] as follows: 

Initialize Q(s, τµ); 
for each episode do 

Read s; 
If connection then 
 retrieve context; 
 compute expected benefit; 
 if benefit << last benefit then 
  adapt context; 
 else 
  use local optima; 
 end 
else 
 use local optima;  
end 

Choose a using s and Q(s, τµ); 
while s is not terminated do 

 
if performance << expected then 
Qt+1(s,τµ) <- Qt(s,τµ) + αhigh(rt+1 + γQt(st+1, 

τµ t+1) - Qt(s,τµ))et(s,τµ); 
else 
Qt+1(s,τµ) <- Qt(s,τµ) + αlow(rt+1 + γQt(st+1, 

τµ t+1) - Qt(s,τµ))et(s,τµ); 
end 
τµ <- τµ’; 
end 

end 

Where, s denotes the environment state (sensor data), and 
Q(s, τµ) is a Q-values table, which stores mappings between 
known environment states and τµ. a denotes an action (SHS 
manipulator regimes, which implement τµ), α is the learning 
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coefficient, and γ is the discount factor; r denotes a reward, 
and the weighted sum of error gradients is e(s, τµ). 

V. EXPERIMENT DESIGN AND RESULTS 

A. Infrastructure and Settings 

To test the designed system, the following infrastructure 
was set up: 

1) The sensor network collects the room temperature and 
the temperature of water flowing through the heating radiators 
separately for every room. Sensor devices are connected to the 
Arduino Nano microcontroller, which constitutes a sensor 
node and transmits data over Bluetooth connection to the 
Raspberry Pi 2 data node. The sensor network was 
implemented using architectural and technological solutions 
from [15]. 

2) Every radiator is equipped with an automatic valve that 
can reduce or restore water flow on command from Raspberry 
Pi 2 via Bluetooth connection. Control of these valves realizes 
the automatic manipulation system. 

The SARSA algorithm is implemented using the Python 3 
programming platform, run under the Raspberry Pi comparable 
Linux distribution. The cloud analyser software is implemented 
using Java and run on a PC connected to LAN with a data 
transfer speed of 10 Gb/sec. 

It is important to note limitations of the experiment. First, 
software implementation is basic; a more sophisticated 
implementation is a subject for future work. At this stage, most 
controllers use “naive” logic and basic sketches (scripts), most 
of which were borrowed from multiple coding forums and open 
resources. The same applies to the analyser implementation. 
Second, data is collected from only two sensor networks, which 
may not cause enough context class divisions to make certain 
conclusions about overall system behaviour. 

Nonetheless, at this stage, we are seeking to investigate if 
the system exhibits expected behaviour and whether the work 
being done maintains an appropriate perspective or not. 

B. Results and Discussion 

First, we test the prototype by taking readings from both 
sensor networks as is; then, we introduce a random multiplier, 
which takes values between 0.1 and 1 but only takes effect after 
initial the Q(s, τµ) is computed, to test how sensitive the system 
is to context changes. Table 1 presents the statistics acquired 
over 97 days. 

From the presented data, one might conclude that the 
system is sensitive to context changes, as it requires a many 
more optimization runs if cluster members generate a 
significant difference. For instance, when both sensor networks 
showed close results, collectively, they required 37 iterations to 
keep sub-optima values close to each other. Of these 37, 23 
constituted initial learning, that is, cases with high α when both 
networks independently try new combinations and combine 
learned values into the knowledge base. The remaining 14 are 
corrective iterations that occur when the outside temperature 
changes, and only 6 of these used context as input due to 
expected additional benefit. In this case, when we used a 
random multiplier and re-ran the algorithm (after the system 

learned), the system required almost three times as many 
corrective iterations to adjust values and used context data 10 
times more often.  

 TABLE I. EXPERIMENT RESULTS 

Test item 
Sensor readings 

Real 
With 
multiplier 

Number of times context was used to compute 
optimal solution  

29 68 

Number of iterations required to learn local 
optima at the start 

23 23 

Number of iterations spent to adjust values 37 94 

While the current result is promising, it should be 
reinforced with experiments on wider fleets of SHS. Moreover, 
when properly advanced, the current simplistic implementation 
of the tested prototype might add additional corrections to the 
influence of the context on local performance. Nonetheless, if 
the properties discovered here hold after accounting for these 
corrections, the derived architecture promises to deliver 
features that are targeted by current research. 

VI. CONCLUSION 

In this article, we propose an enhanced distributed context-
aware parameter optimization architecture to first mine and 
then integrate knowledge into local parameter optimization for 
an SHS. 

Practical novelty here comes from a redefinition of 
knowledge mining and interpretation functionality, which in 
turn redefines the corresponding architecture level design and 
algorithmic implementation. The core algorithms used are 
conventional OPTICS and modified SARSA. 

The computational experiment suggests a high sensitivity of 
local parameter optimization to the change in mined 
knowledge, but this may be arguable due to the simplicity of 
the experiment. Thus, comprehensive conclusions would 
demand data from experiments that incorporate more complex 
measurements and parameters, such as fuel consumption. 

As a result, future project efforts will be dedicated to 
enhancing the architecture, advancing its prototype 
implementation, and obtaining performance data that 
realistically reflect its operational characteristics in real 
settings. 
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