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Abstract—This paper presents the implementation of a cost-

effective system to classify muscular intent. A neural network is 
used for this purpose. After skin preparation, feature extraction, 
network training and real-time testing, an average overall 
classification accuracy of 93.3% over three possible gestures was 
obtained. Ultimately, the results obtained speak to the suitability 
of an Arduino-based system for the acquisition and decoding of 
muscular intent. This result is indicative of the potential of the 
Arduino microcontroller in this application, to provide effective 
performance at a far lower price-point than its competition. 
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I. INTRODUCTION 

Damage or trauma to the human body’s neuromuscular 
system is capable of causing long-standing impairment to the 
daily functioning of an affected individual. Injuries such as 
these are widespread enough to warrant the development of 
technologies to counteract their effects. Strokes, for example, 
affect nearly 795,000 individuals per year in the US alone 
[13]. Apart from being sentenced to a vastly impaired quality 
of life, mundane tasks such as using buttons or zippers 
become painstakingly difficult. Often, the aftermath of such 
injuries involves rehabilitative measures, or, failing that, 
permanent alternatives. Mechanical support structures called 
orthoses serve to perform this function. 

However, the vast majority of modern commercially 
available orthoses are simply too expensive for most people to 
afford. The Luke Hand, developed with the backing of 
DARPA, costs upwards of $100,000 [1]. The Bebionic arm, 
another cutting-edge prosthetic limb, costs $11,000 [2]-[3]. 
Thus, the lack of readily available yet economical remedial 
options presents a serious challenge in the rehabilitation of 
affected individuals.  This paper, therefore, aims to present a 
more cost-effective approach without sacrificing ease of 
control. 

A means of operating an orthosis based on muscular intent 
would offer natural and intuitive control that the user would 
already be accustomed to, such as developed in [6]. As a 
result, the chances of the wearer actually continuing to use the 
device would increase, thereby providing faculties that may 
not have been possible without it. A real-world example of 
this was implemented by Kiguchi and Hayashi (2012), in the 
form of a robotic power-assist orthotic, using 

electromyography as the control signal [10].  It was discovered 
that myoelectric orthoses and prostheses increase cosmesis 
and reduce phantom-limb pain in the case of limb loss [12]. 

A method to classify muscular intent through the use of a 
neural network is discussed in [15], wherein four channels of 
electromyography are used to specify the movement of the 
elbow joint. Dimensionality reduction in the form of 
extracting the RMS of the signal is carried out. These four 
extracted RMS values (one per channel) are then used as 
inputs to the network, the output being an angle measure. The 
arm was actuated through the use of pneumatic muscles. 
Potentiometers located at the elbow joint were used to track 
the physical movement of the prosthesis. The success of this 
paper proves the effectiveness of the RMS of an EMG signal 
as an extracted feature, although further differentiation would 
be possible with the extraction of more features. 

A novel method for feature extraction of the 
electromyogram is discussed in [14], which uses a 16-bit 
National Instruments NI-DAQ data acquisition card. This 
paper aims to avoid the use of expensive instruments in the 
interest of being cost-effective. In addition, the NI-DAQ card 
is not particularly convenient to source in certain parts of the 
world. Thus, it was decided to investigate the suitability of an 
Arduino microcontroller for the purpose of data acquisition. 
The development of a system based on these principles, 
primarily intuitive control at a reasonable price point using the 
Arduino microcontroller, is thus the focus of this paper. This 
task could be broadly split up into two processes-signal 
acquisition and signal classification. 

A. Signal Acquisition 

This paper tackles signal acquisition through the use of an 
Arduino Mega 2560 microcontroller. The primary reasons for 
this choice are the ready availability and low cost of the 
Arduino, which puts it within the reach of the large number of 
people worldwide that require orthotic devices but cannot 
currently afford them. 

When the brain issues a command to a muscle to contract, 
it does so by sending a series of electrical impulses through 
certain neurons called ‘motor  neurons’. These motor neurons 
innervate (activate) several motor units each. Each motor unit 
is in turn made of up several muscle fibers. This is shown in 
Fig. 1. 
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Fig. 1. Diagram of the nuromuscular system. 

Due to a mechanism called the sodium-potassium pump, 
the relative concentrations of sodium and potassium ions 
causes  the inside of each muscle cell to rest at a slightly 
negative potential. Each time a motor neuron delivers an 
electrical impulse to the motor unit, the ionic balance of each 
muscle cell in the motor unit is disturbed. This disturbance 
temporarily causes a positive potential inside the cell at the 
instant of muscular recruitment. After a certain period of time, 
the sodium-potassium pump reactivates, returning the cell to 
its resting potential. This process is shown in Fig. 2. 

 
Fig. 2. Action potential graph (Acquired from [4]). 

Fig. 2 shows the arrival of the electrical impulse as 
stimulus, and the resulting spike in muscular potential. This is 
followed by a return to the resting potential, during which 
time muscular activation is not possible for that particular cell. 
This time period during which the cell is unresponsive to 
recruitment is called the Absolute Refractory Period. 

A summation of these individual action potentials over a 
motor unit yields the Motor Unit Action Potential (MUAP). 
The summation of several MUAPs over a muscular region 
yields the electromyogram, shown in Fig. 3. 

 
Fig. 3. Decomposition of electromyogram (EMG) into MUAPTs (Acquired 

from [5]). 

The nature of the signal, as shown in Fig. 3, requires it to 
be processed to a form acceptable by the Arduino 
microcontroller. The input voltage range for the analog pins of 
the Arduino microcontroller is 0-5 Volts. Therefore, the raw 
EMG signal must be amplified, owing to its natural amplitude 
of a few microvolts to a few millivolts [3], rectified, due to its 
ability to take both positive and negative values [11], and 
band-pass filtered, due to unnecessary signal components that 
obfuscate those of interest, such as ECG artifacts. 

The signal is acquired through the use of a third party 
signal conditioning circuit, the MyoWare Muscle Sensor, used 
in conjunction with gelled electrodes. These electrodes are 
reusable and employ a conductive gel to boost signal transfer 
between the user’s skin and the AgCl detection surface on the 
electrode. Each channel of EMG signal acquired this way 
required three electrodes- two to pick up the differential EMG 
signal over the muscle under investigation, and one to offer a 
ground reference. This ground reference is attached over a part 
of the arm with little to no musculature beneath it, such as the 
elbow. 

B. Signal Classification 

The process of acquiring muscular intent is called 
‘Electromyography’. The signal obtained through the process 
of electromyography, called the Electromyogram, is a measure 
of muscular recruitment. During the initial activation, this 
electromyogram is roughly equivalent to the muscular force 
desired by the individual. Therefore, if these electromyogram 
signals can be detected and the muscular intent deciphered, 
they can be used to provide intuitive control over an orthotic 
or prosthetic device. 

The task of signal classification is tackled through the use 
of a neural network. Neural networks are a perfect fit for this 
decoding of muscular intent due to their ability to approximate 
unknown functions. Given the random nature of the 
electromyogram, the necessity of a robust tool of this nature 
becomes apparent. 

The popularity of neural networks rose during the 1950’s, 
and represented a significant step in mankind’s development 
of systems that were able to reason more along the lines of 
human beings. 
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There are two primary uses of neural networks, regression 
and pattern recognition. 

a) Regression: The prediction of future data points/ 
trends based on previous data points. 

b) Pattern Recognition/Classification: Training the 
network correctly classify novel inputs it has not encountered 
before. 

The scope of this project was seen to be a perfect fit for the 
pattern recognition ability of neural networks. Based on the 
work done in [7], the results obtained from able-bodied 
individuals are applicable to those with amputations as well. 
This conclusion validates the tests performed and results 
presented within this paper as being relevant despite involving 
only able-bodied users. 

II. METHODOLOGY 

A. Electrode Placement 

Electrodes were placed upon the flexor carpi radialis, 
shown in Fig. 4, and the flexor digitorum superficialis, shown 
in Fig. 6. 

Fig. 4 shows the location of the flexor carpi radialis (in 
blue). Electrode placement was therefore as shown in Fig. 5. 

 
Fig. 4. Location of flexor carpi radialis. 

 
Fig. 5. Electrode placement upon the flexor carpi radialis. 

Fig. 6 shows the location of the flexor digitorum 
superficialis, and its insertions at the central phalanx on each 
finger. This muscle is responsible for the flexion of the 
phalanges. Electrodes were placed upon it as shown in Fig. 7. 

Fig. 7 shows the placement of three electrodes per channel 
upon the arm. The MyoWare Muscle Sensors were clipped 
onto the electrodes and wired up to the Arduino 
microcontroller through braided cables as shown in Fig. 8. 

 
Fig. 6. Flexor digitorum superficialis. 

 
Fig. 7. Placement of electrodes upon the flexor digitorum superficialis. 
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Fig. 8. Braided cables. 

The cables shown in Fig. 8 were braided in order to reduce 
cable noise. 

Three output classes, in this case hand gestures, were 
selected based on usefulness and ubiquity. These were: 

a) Class 1- Hand closed/ grip, shown in Fig. 9. 

 
Fig. 9. Gesture 1- Closed fist. 

b) Class 2- Point index finger, shown in Fig. 10. 

 
Fig. 10. Gesture 2- Point index finger. 

c) Class 3- Natural resting position, shown in Fig 11. 

 
Fig. 11. Gesture 3- Natural rest position. 

 
Fig. 12. Signal acquisition process per channel. 

These gestures were chosen to be the output classes of the 
neural network. 

The processed EMG signal was sampled by the Arduino 
microcontroller and thus made available for recording within 
the MATLAB environment. The neural network was built 
within the MATLAB r2015a environment. 

Code was written to record values at the analog input pins 
to a one-dimensional vector of length 10 cells. Pauses and 
messages were provided to the user for the sake of orientation, 
ensuring only the desired signal was recorded. A block 
diagram of this process is shown in Fig. 12. 

Fig. 12 shows the population of the initial matrix for a 
single channel through the process of serially reading the 
analog voltages at the pins of the Arduino. Features were then 
extracted from the raw signal matrix, in order to reduce the 
dimensionality of the problem. The need for dimensionality 
reduction arises from the fact that classification accuracy is 
sometimes improved in a reduced feature space [8]. The high-
dimension nature of the EMG signal qualified the use of 
dimensionality reduction in this paper. 

B. Feature Extraction 

Four time-domain features were selected and programmed, 
namely Mean Absolute Value (MAV), Root Mean Square 
(RMS), Variance (VAR) and Integrated EMG (iEMG). 

Mean Absolute Value is defined as the average of the 
absolute value of the raw electromyogram signal. MAV is 
given by (1). 

𝑀𝐴𝑉 ൌ  
ଵ

ே
∑ |𝑥|ேିଵ

ୀ                          (1) 

Where, N denotes the length of the signal being recorded 
and 𝑥 is the value of the signal. 

Root Mean Square can be expressed as in (2). 

𝑅𝑀𝑆 ൌ ටଵ

ே
∑ 𝑥

ଶேିଵ
ୀ                         (2) 
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Variance of a variable is defined as the mean value of the 
squared deviation from the mean. The mean of the 
electromyogram, however, is very nearly zero, and thus 
Variance is given by (3). 

𝑉𝐴𝑅 ൌ
ଵ

ே
∑ 𝑥

ଶேିଵ
ୀ                           (3) 

The integrated EMG of a signal is defined as the area 
under the curve of the absolute value of the electromyogram. 
This quantity is given by (4). 

𝑖𝐸𝑀𝐺 ൌ ∑ |𝑥|ேିଵ
ୀ                          (4) 

The functions written to calculate these features accepted 
the raw signal matrix formed in Fig. 12, and performed 
calculations upon it in order to each yield an individual 
feature. The individual features thus calculated were then 
appended together to form a single feature vector, as shown in 
Fig. 13. 

 
Fig. 13. Formation of feature vector from initial signal matrix. 

This Feature Extraction occurred for each repetition per 
channel, per gesture. Appending the resultant feature vectors 
together resulted in the formation of the Input Matrix. Thus, 
the size of the input matrix was set according to (5). 

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 ൌ
ሺ𝑛𝑜. 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠ሻ 𝑥ሺ 𝑛𝑜. 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ∗

𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝑛𝑜. 𝑜𝑓 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠ሻ                      (5) 

Equation 5 therefore gave the size of the input matrix to be 
equal to 4 features x (2 channels *10 repetitions per channel 
per gesture* 3 gestures). This implied the size of the input 
matrix to be equal to 4x60, i.e. the input matrix contained 4 
features, one per row, and 60 instances of gestures, one per 
column. 

C. Type of Neural Network 

The type of neural network employed was a 3-layer feed-
forward neural network. This implied the existence of a single 
hidden layer between an input and output layer. The input 
layer was required to have four nodes, one for each feature 
extracted from the EMG signal. The number of hidden layers 
selected was 10, and the number of output nodes had to 
correspond with the number of output classes, i.e., 3. 

The optimization algorithm used was the Levenberg-
Marquardt algorithm. The input matrix was divided into 
training: cross-validation: testing sets randomly in a 70:15:15 
ratio. This division of training data was implemented in order 

to prevent a phenomenon called ‘Over-fitting’, wherein the 
network fails to generalize during real-time operation despite 
good theoretical performance [9]. This configuration was 
repeatedly trained until the best possible classification 
accuracy was obtained. 

D. Real-time Testing Methodology 

During real-time testing, the program constantly recorded 
input matrices of length 10 values from the Arduino’s analog 
input pins, immediately extracting features and passing these 
as input to the neural network. The neural network then 
classified the current input and displayed a picture of the 
classified gesture for easy viewing. This process was seen to 
occur once every second, resulting in a reasonable tradeoff 
between classification accuracy and response time. 

Four independent test sessions were held in order to 
ascertain system effectiveness. Electrode placement was 
attempted to be recreated faithfully between successive test 
sessions. Each test session involved several instances of the 
three target gestures. A success was defined as the accurate 
classification of the gesture made by the user, and failure was 
defined as a misclassification by the system. In total, each 
gesture was tested 60 times, and the results were tallied. 
Percentages of accurate classifications were calculated and 
used in order to gauge overall system efficacy. 

III. RESULTS 

Training of the network yielded results in the form of a 
confusion matrix as well as a Receiver Operating 
Characteristic plot. 

A. Network Training Performance 

Network training results are shown in Fig. 14. 

 
Fig. 14. Confusion matrix. 

Fig. 14 shows the confusion matrix for the classification 
accuracy obtained amongst the various datasets used. It was 
seen that the overall classification accuracy obtained was 
93.3%. Fig. 15 shows the Receiver Operating Characteristic 
plot. 
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Fig. 15. Receiver operating characteristic plot. 

Fig. 15 shows a visual representation of the classification 
accuracy attained. Based on the areas under the curves of the  
individual class traces, it was judged that the network 
correctly classified novel inputs with reasonable accuracy. 

B. Real-time Test Results 

Real-time classification accuracies were as is shown in 
Table 1. 

TABLE I. CLASSIFICATION ACCURACY PER CLASS 

Test 
Session Class 1 Class 2 Class 3 Total 

1 61.1% 86.66% 80.95% 76.23%
2 61.90% 91.30% 100% 84.4%
3 73.68% 93.33% 85% 84%
4 60% 95.65% 100% 85.21%

Table 1 shows the classification accuracies obtained by 
observing the number of correctly classified gestures divided 
by the total number of trials for each class over four 
independent real-time testing sessions. It was observed based 
on this data that the average classification accuracy during 
real-time testing was 82.46%. Class-wise average 
classification accuracies were calculated and seen to be:  

Class 1- 64.17% 
Class 2- 91.72% 
Class 3- 91.48% 

IV. CONCLUSIONS 

The neural network obtained a classification accuracy of 
93.3%, as shown in Table 1, resulting in a classification 
accuracy of 82.46% during real-time testing. 

This result indicated the potential for a truly economical 
and robust device using an Arduino microcontroller as a data 
acquisition module. The inclusion of additional points of 
EMG signal acquisition and/or a greater number of extracted 

features would serve to further increase the efficacy of the 
system, at the tradeoff of increased system cost. 

ACKNOWLEDGMENT 

I would like to thank my project supervisor, Dr. Senthil, 
without whose support and faith in me this project could not 
have been realized in its current form. I would like to thank 
my parents for their patience and understanding. I would also 
like to thank my friends and colleagues for their camaraderie, 
and providing support in the face of seemingly insurmountable 
problems the way only friends can. 

REFERENCES 

[1] "DARPA's 'Luke Skywalker' Prosthetic Arm Could Soon Have Sense Of 
Touch, But It Will Cost $100k", International Business Times, 2017. 
[Online]. Available: http://www.ibtimes.com/darpas-luke-skywalker-
prosthetic-arm-could-soon-have-sense-touch-it-will-cost-100k-2001214. 
[Accessed: 17- Mar- 2017].  

[2] "Life changing myoelectric hand packed with the latest technology - 
bebionic", Bebionic.com, 2017. [Online]. Available: 
http://bebionic.com/the_hand. [Accessed: 17- Mar- 2017]. 

[3] “”How much is the newest advanced artificial hand"", 
singularityhub.com, 2017. [Online]. 
Available:https://singularityhub.com/2010/06/30/how-much-is-the-
newest-advanced-artificial-hand-11000-usd-video/. [Accessed: 17- Mar- 
2017]. 

[4] "Action Potentials", Hyperphysics.phy-astr.gsu.edu, 2017. [Online]. 
Available: http://hyperphysics.phy-
astr.gsu.edu/hbase/Biology/actpot.html. [Accessed: 18- Mar- 2017]. 

[5] C. De Luca, "Decomposition of Surface EMG Signals", 2017. 

[6] M. Kimura, H. Pham, M. Kawanishi and T. Narikiyo, "EMG-force-
sensorless power assist system control based on Multi-Class Support 
Vector Machine", in 11th IEEE International Conference on Control & 
Automation (ICCA), 2014. 

[7] S. Muceli, Multi-channel surface electromyography for simultaneous 
and proportional control of prostheses, 1st ed. River Publishers, 2013.  

[8] "Dimensionality reduction", En.wikipedia.org, 2017. [Online]. 
Available: https://en.wikipedia.org/wiki/Dimensionality_reduction. 
[Accessed: 24- Mar- 2017]. 

[9] i. whats is the difference between train, "whats is the difference between 
train, validation and test set, in neural networks?", Stackoverflow.com, 
2017. [Online]. Available: 
http://stackoverflow.com/questions/2976452/whats-is-the-difference-
between-train-validation-and-test-set-in-neural-networ. [Accessed: 20- 
Mar- 2017]. 

[10] K. Kiguchi and Y. Hayashi, "An EMG-Based Control for an Upper-
Limb Power-Assist Exoskeleton Robot", IEEE Transactions on Systems, 
Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, pp. 1064-
1071, 2012. 

[11] A. Suberbiola, E. Zulueta, J. Lopez-Guede, I. Etxeberria-Agiriano and 
B. Van Caesbroeck, "Arm Orthosis/Prosthesis Control Based on Surface 
EMG Signal Extraction", 2017. . 

[12] S. L. Carey PhD., D. J. Lura PhD. and M. J. Highsmith. Differences in 
myoelectric and body-powered upper-limb prostheses: Systematic 
literature review. Journal of Rehabilitation Research and Development 
52(3), pp. 247-262. 2015. Available: https://search-proquest-
com.ezproxy1.hw.ac.uk/docview/1696888717?accountid=16064. 

[13] “Rehabilitation Therapy after a Stroke", Stroke.org, 2017. [Online]. 
Available: http://www.stroke.org/we-can-help/stroke-survivors/just-
experienced-stroke/rehab. [Accessed: 08- Jul- 2017]. 

[14] 2017.[Online].Available:https://arxiv.org/ftp/arxiv/papers/0912/0912.39
73.pdf.[Accessed:18-Mar-2017]. 

[15] Z. Tang, K. Zhang, S. Sun, Z. Gao, L. Zhang, and Z. Yang, “An Upper-
Limb Power-Assist Exoskeleton Using Proportional Myoelectric 
Control,” Sensors, vol. 14, no. 4, pp. 6677–6694,Apr.2014. 

 


