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Abstract—The latency and throughput of blockchain-based 
cyrptocurrencies is a major concern for their suitability as 
mainstream currencies and as transaction processors in general. 
The prevalent proof-of-work scheme, exemplified by Bitcoin, is a 
deliberately laborious effort: the time and energy required to 
mine blocks makes the blockchain virtually immutable and 
assists in the consensus-reaching process. Coinspermia 
(coin=money + spermia=seed) is a different approach: 
transactions are concurrently seeded throughout a network of 
peer nodes to an extent sufficient to achieve a high reliability of 
essential currency operations, including the fast transfer of coins 
from an owner to a recipient, and the prevention of double 
spending. A number of Bitcoin features are retained in 
Coinspermia, including transaction input-outputs and 
cryptographic addresses and signing, but no special proof-of-
work is required to commit transactions. Instead, a client can be 
assured of an operation completion when a quorum of network 
nodes acknowledge the operation, which can occur before a 
transaction operation finishes propagating through the network. 
Simulation substantiates improved latency and throughput. 
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I. INTRODUCTION 

To spend a Bitcoin [1], the owner is required to verify that 
the coin exists and belongs to the owner. This entails producing 
a pointer to a precedent transaction that pays the coin to the 
owner. This coin must also not exist as the input to another 
transaction, as this constitutes a double spending condition. 
These transactions are to be found in the blockchain, a data 
structure replicated over the Bitcoin peer-to-peer (P2P) 
network nodes. 

In typical blockchain-based cryptocurrencies [2], 
blockchain growth is a deliberately laborious effort called 
mining. The time and energy involved in mining a block is 
required to make the chain virtually immutable and to assist in 
reaching a consensus about the contents of the blockchain 
among peer nodes. This mining effort, known as proof-of-
work, is rewarded in Bitcoin with a fee. An unfortunate 
consequence of mining is the relatively slow throughput 
committing transactions into the blockchain, which is in the 
realm of 7 transactions per second. The transaction latency is 
also reported to average over 40 minutes [3]. These speeds are 
a serious drawback for a large-scale transaction processing 
applications [4]. 

BigchainDB [5] is an effort to marry blockchain with 
conventional database transaction processing with the goal of 
achieving transaction throughput rates comparable to the latter 
while retaining the durability of blockchain. 

Iota [6] aims not only to improve throughput by harnessing 
transaction originators to validate other transactions, but also to 
reduce the transaction processing fees that make conventional 
blockchains less attractive for micro-transactions. Micro-
transactions are expected to be a staple of the Internet of 
Things (IoT). Iota does this by forgoing blockchains entirely. 
Instead of using a sequential chain and separating the network 
into users and validators, it uses a directed acyclic graph 
architecture call a Tangle [7], which makes users and validators 
one and the same. 

Kadena [8] improves performance by committing 
transactions through a majority vote from participating nodes, 
bypassing mining altogether. Kadena is an example of a private 
blockchain with a permissioned user model that many in the 
blockchain community frown upon, as these blockchains are 
administered by centralized agencies. 

This cryptocurrency model, Coinspermia (coin=money + 
spermia=seed), is based on a P2P network of nodes, as in 
Bitcoin. Coinspermia’s coins are called pipcoins (Fig. 1). 
Transactions are also replicated in ledgers among the nodes. A 
chained transaction crypto-scheme is used that is similar to 
Bitcoin. Transactions are also standalone objects in a directly 
addressable space of identifiers. Transactions are “committed” 
by achieving a consensus among a quorum of peer nodes. 

One of the primary aims of Coinspermia is to analyze and 
simulate possible transaction latency and throughput 
performance improvements. It is therefore in this initial 
incarnation a stripped-down system that simply serves the 
purpose of transferring coins from owners to recipients. 

 
Fig. 1. Coinspermia logo. 

II. DESCRIPTION 

A. Basic Method 

Coinspermia is composed of a decentralized P2P network 
of randomly connected nodes. The connection randomness and 
density are crucial factors that will be discussed below. 

Transactions record the process of transferring coins from 
one owner to another. Appendix 1 presents the format of a 
transaction. Similar to Bitcoin, transactions have one or more 
input and output components that specify coins and addresses. 
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Also as in Bitcoin, a particular source of coins must be entirely 
consumed, which constitutes a “rolling” account in a 
transaction chain. 

Transactions are collected in a ledger (see Appendix 2 
format) that is fully replicated throughout the network. To 
economize memory and boost speed, only transaction outputs 
that contain unspent coins are kept in fast memory (see unspent 
transaction outputs). Full transactions are committed to an 
archive for audit and restoral purposes. 

To execute a transaction, the inputs must match to 
precedent unspent transaction outputs that are found in the 
ledger using universally unique identifiers (UUIDs) as keys. As 
in Bitcoin, the precedent output address must validate the 
signature of the input. The input and output coin quantities 
must also be equal. If the transaction is valid, the matching 
precedent outputs are removed from the unspent store and the 
new outputs are stored. 

B. Transaction Processing 

A client sends a transaction to a random initial network 
node. The initial node selects a quorum of other network nodes 
(see, quorum selection method below), and forwards the 
transaction the quorum with the expectation of discovering 
either matching precedent transactions or the valid absence of 
them. To achieve reliable performance, the probability of 
encountering such conditions must be high. The quorum uses 
an algorithm such as Raft, Paxos, or ZooKeeper to reach 
consensus about the consistency of transactions. 

Once the quorum is formed, transaction processing is as 
follows: 

1) Check for other pending transactions in the quorum 
that affect the transaction. These could be a double spending 
transaction or a transaction that is transferring coins to the 
current transaction. In this case, suspend the transaction for a 
random period before repeating the check. This will allow one 
or more of the pending transactions to commit or abort. 

2) When there are no conflicting pending transactions, 
check if the transaction is supported by precedent committed 
transactions. This will be the case when coins are properly 
owned by the transaction. If this is the unanimous condition, 
then commit the transaction to the entire network. If it is 
unanimously unsupported, then abort the transaction. If there 
is not unanimity, then record the current state of the precedent 
transactions and wait a specific time for precedent transactions 
to completely propagate through the network. 

3) After the wait, check again for pending transactions as 
in Step 1. If no pending conflict, check if the inconsistent 
committed state has been resolved. If so, commit or abort the 
transaction. If the state is still inconsistent, but in a different 
way from the state recorded in Step 2, assume another 
transaction is propagating and go to Step 2. If the previous 
state is the same, then the network is not consistent. The 
quorum must then decide by consensus whether the 
transaction is valid or not. If valid, the transaction is 
committed to the entire network, overriding conflicting 
ledgers. 

C. Quorum Intersection Probability 

The network connection distribution must be sufficient to 
guarantee that transactions propagate to all the nodes. The 
network must also constitute a quorum system [9], meaning it 
ensures a high probability of a quorum intersection for 
dependent transactions. 

Fig. 2 depicts the quorum for a “blue” transaction that 
requires a match to a transaction in the nodes immediately 
updated by a precedent “green” transaction. For example, a 
blue client may want to spend a coin obtained from a green 
client.  In this case, the red node is a directly connected peer 
involved in both the blue and green quorums. Once found, the 
blue transaction evaluation will reflect its presence and 
potentially force the blue quorum to wait for the green 
transaction to propagate to the blue quorum nodes. In the case 
of a double spend, the red node will not contain the precedent 
transaction to support the double spending blue transaction. 

 
Fig. 2. Intersecting transaction quorums. 

Eventually, the transactions propagate through the entire 
network. However, to achieve low latency, a client is notified 
of a transaction completion when its quorum acknowledges the 
operation. For this to work reliably, the probability of finding 
an intersecting node must be very high. 

Consider the probability of finding at least one of K items 
in N nodes with S samples: 

𝑃 ൌ 1 െ ቆ
ቀሺಿష಼ሻೄ ቁ

ቀಿೄቁ
ቇ                            (1) 

where: 

N: number of nodes 

K: number of nodes containing search item (precedent 
green transaction) 

S: number of random samples (current blue transaction) 

P: probability of finding item. 

Fig. 3 shows how densely connected nodes must be in the 
network to achieve 99%+ success of finding a matching 
transaction. It can be seen that as the network grows, the 
density of connections also grows, but at a significantly lower 
rate. See Abraham and Malkhi [9] for a deeper analysis. For 
this reason, the conjecture is that a network that is sufficiently 
connected might support a much lower latency and higher 
throughput than a Bitcoin-like network. 
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Fig. 3. 99% success: K and S as % of N. 

The topology of the network is also of importance since the 
existence of clusters could lower the probability of finding an 
intersecting node. This might call for a distributed process to 
inventory and reshuffle connections between nodes, which 
could also serve to thwart network tampering. 

Once the desired connectivity is determined, the density of 
the network is given by the graph theory definition: |C| / (|N| * 
(|N| − 1)), where C is the number of connections and N is the 
number of nodes. 

D. Quorum selection 

Any P2P network must accommodate the presence of faulty 
and dishonest nodes. And at some degree of compromise, 
consensus becomes impossible in any network [10]. In addition 
to the quorum intersection probability described above, the 
selection of a quorum must sample the nodes sufficiently to 
reduce the probability of selecting a set dominated by dishonest 
or faulty nodes. This can be expressed as a confidence interval: 

1 /2

(1 )
a

p p
p z

n


     (2) 

where: 

p = probability of honest node 

n = quorum size 

α = desired confidence 

z1- α/2 = “z value” for desired level of confidence 

A simple method for selecting a quorum based on the 
existence of a set of known nodes is as follows: 

1) Let the node initially receiving the transaction select a 
seed for a commonly accepted random number generator. This 
might be from a global time source or some random process. 

2) Randomly select a quorum from the set of network 
nodes. 

3) Send the transaction to the nodes and execute the 
consensus process. 

4) If the transaction is valid, propagate it and the quorum 
information to the remainder of the network. Each node can 
then verify whether the quorum was correctly selected. 

E. Serial Transaction Delivery 

By forwarding transactions serially, it is guaranteed that at 
a node will be validly updated. For example, suppose node N1 
has neighbors N2 and N3 who forward transactions A->B, B-
>C to it concurrently. The first A->B transaction will be 
accepted, regardless of origin. The next A->B will be dropped 
since it will be discovered as a duplicate. The same will occur 
with the B->C, regardless of who is first, N2 or N3. The point 
is that there could be many interleaving’s that are valid. When 
a transaction is dropped, it also is not forwarded, preventing 
transmission cycles. 

III. SIMULATION 

An implementation has been developed that is derived from 
a file-sharing package that supports broadcasting files into a 
P2P network [11]. Its GUI can be seen in Fig. 4 and the code is 
available at https://bitbucket.org/portnoid/coinspermia. 

Simulation data was collected using a network of 100 
nodes each randomly connected to 20 other nodes. Care was 
taken to ensure the network was fully connected. The total 
number of connections was thus 2000 and the probability of 
intersecting immediate transactions was over 99%. 

The simulated times to transmit a transaction to a connected 
node and to process a transaction within a node were set to 1. 
This was chosen to approximate a millisecond unit of time. The 
quantity of clients and the mean transaction origination time 
were independently varied. Specific transaction originations 
were drawn from a random distribution centered on the mean. 

Coins were minted and deposited in client wallets and node 
ledgers to allow money transfer transactions. A transaction 
consisted of transferring a single coin from one client to 
another. When a client originated a transaction, a random 
recipient client and originating node were selected. 
Transactions were serially executed, meaning a client waited 
for an active transaction to complete before originating a new 
one. 

The total number of transactions, mean transaction latency, 
and mean node transaction queue length were measured. A 
client was informed of a transaction’s completion when the 
transaction’s originating node and its immediate peers updated 
their ledgers. This defined the latency time. The transaction 
continued asynchronously to propagate to all the other nodes in 
the network. No attempt was made to model fraudulent 
transactions in this simulation, as only performance was of 
interest at this time. 

Each setting of the independent variables was run 10 times 
under different random initial conditions. Each simulation run 
was for 900,000 time steps, or 15 simulated minutes. Tables 1, 
2, and 3 show the results for 500, 1000, and 1500 clients, 
respectively. Overall, the latency remains less than a simulated 
second. However, overloading the network retards throughput 
significantly due to the work backlog in the nodes. 
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Fig. 4. Coinspermia GUI. 

TABLE I. 500 CLIENTS 

Origination mean Transactions Latency Queue length 
300000/5 minutes 1291 5.2 0 

180000/3 minutes 2236 5.3 0 
60000/1 minute 6918 6.1 0 

TABLE II. 1000 CLIENTS 

Origination mean Transactions Latency Queue length 
300000/5 minutes 2596 5.4 0 
180000/3 minutes 4582 5.7 0 

60000/1 minute 4584 150 7527 

TABLE III. 1500 CLIENTS 

Origination mean Transactions Latency Queue length 
300000/5 minutes 3909 5.6 2 
180000/3 minutes 6827 6 18 

60000/1 minute 5186 68 24475 

IV. CONCLUSION 

This design is streamlined for space and speed. It foregoes 
blockchains as a means of validation and completely relies on 
quorum consensus. It would conceivably be more suitable for 
the more numerous small transactions such as are executed 
during the normal course of living: buying food, paying bills, 
etc. If the transaction is for a large sum, the quorum size could 
be a function of the transaction size. There could be hybrid 
schemes as well for additional security that involves mining 
immutable blocks for large transaction amounts, for example, 
the purchase of a house or an exchange of funds for a large 
business contract. 
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APPENDIX 1 – TRANSACTION FORMAT 

Transaction: 
{ 
  # List of precedent transaction inputs. 
  Inputs: 
  [ 
    Input: 
    { 
      # ID of precedent transaction output. 
      # This is used to access the ledger. 
      Precedent transaction output ID: UUID 
      # Signature of ID. 
      ID signature: Signature 
    } 
    ... 
  ] 
  # List of transaction outputs. 
  Outputs: 
  [ 
    Output: 
    { 
      # Output address. 
      Output address: Address 
      # Quantity of coins to output. 
      Quantity: Coin 
      # Transaction output ID. 
      Transaction output ID: ID 
    } 
    ... 
  ] 
} 

APPENDIX 2 – LEDGER FORMAT 

Ledger: 
{ 
  # Unpaid transaction outputs. 
  Unpaid transaction outputs: 
  [ 
    Output: 
    { 
      (Same as Transaction Output). 
    } 
    ... 
  ] 
  # Transaction archive. 
  Transaction archive 
  [ 
    Transaction: 
    { 
      (Same as Transaction) 
    } 
    ... 
  ] 
} 

 


