
Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

26 | P a g e

Coinspermia: A Cryptocurrency Unchained

Tom Portegys
Ernst & Young LLP

901 104th Ave NE, Bellevue, WA, USA 98004
tom.portegys@ey.com

Abstract—The latency and throughput of blockchain-based
cyrptocurrencies is a major concern for their suitability as
mainstream currencies and as transaction processors in general.
The prevalent proof-of-work scheme, exemplified by Bitcoin, is a
deliberately laborious effort: the time and energy required to
mine blocks makes the blockchain virtually immutable and
assists in the consensus-reaching process. Coinspermia
(coin=money + spermia=seed) is a different approach:
transactions are concurrently seeded throughout a network of
peer nodes to an extent sufficient to achieve a high reliability of
essential currency operations, including the fast transfer of coins
from an owner to a recipient, and the prevention of double
spending. A number of Bitcoin features are retained in
Coinspermia, including transaction input-outputs and
cryptographic addresses and signing, but no special proof-of-
work is required to commit transactions. Instead, a client can be
assured of an operation completion when a quorum of network
nodes acknowledge the operation, which can occur before a
transaction operation finishes propagating through the network.
Simulation substantiates improved latency and throughput.

Keywords—Cryptocurrency; Bitcoin; peer-to-peer network;
distributed transactions; quorum system; blockchain

I. INTRODUCTION

To spend a Bitcoin [1], the owner is required to verify that
the coin exists and belongs to the owner. This entails producing
a pointer to a precedent transaction that pays the coin to the
owner. This coin must also not exist as the input to another
transaction, as this constitutes a double spending condition.
These transactions are to be found in the blockchain, a data
structure replicated over the Bitcoin peer-to-peer (P2P)
network nodes.

In typical blockchain-based cryptocurrencies [2],
blockchain growth is a deliberately laborious effort called
mining. The time and energy involved in mining a block is
required to make the chain virtually immutable and to assist in
reaching a consensus about the contents of the blockchain
among peer nodes. This mining effort, known as proof-of-
work, is rewarded in Bitcoin with a fee. An unfortunate
consequence of mining is the relatively slow throughput
committing transactions into the blockchain, which is in the
realm of 7 transactions per second. The transaction latency is
also reported to average over 40 minutes [3]. These speeds are
a serious drawback for a large-scale transaction processing
applications [4].

BigchainDB [5] is an effort to marry blockchain with
conventional database transaction processing with the goal of
achieving transaction throughput rates comparable to the latter
while retaining the durability of blockchain.

Iota [6] aims not only to improve throughput by harnessing
transaction originators to validate other transactions, but also to
reduce the transaction processing fees that make conventional
blockchains less attractive for micro-transactions. Micro-
transactions are expected to be a staple of the Internet of
Things (IoT). Iota does this by forgoing blockchains entirely.
Instead of using a sequential chain and separating the network
into users and validators, it uses a directed acyclic graph
architecture call a Tangle [7], which makes users and validators
one and the same.

Kadena [8] improves performance by committing
transactions through a majority vote from participating nodes,
bypassing mining altogether. Kadena is an example of a private
blockchain with a permissioned user model that many in the
blockchain community frown upon, as these blockchains are
administered by centralized agencies.

This cryptocurrency model, Coinspermia (coin=money +
spermia=seed), is based on a P2P network of nodes, as in
Bitcoin. Coinspermia’s coins are called pipcoins (Fig. 1).
Transactions are also replicated in ledgers among the nodes. A
chained transaction crypto-scheme is used that is similar to
Bitcoin. Transactions are also standalone objects in a directly
addressable space of identifiers. Transactions are “committed”
by achieving a consensus among a quorum of peer nodes.

One of the primary aims of Coinspermia is to analyze and
simulate possible transaction latency and throughput
performance improvements. It is therefore in this initial
incarnation a stripped-down system that simply serves the
purpose of transferring coins from owners to recipients.

Fig. 1. Coinspermia logo.

II. DESCRIPTION

A. Basic Method

Coinspermia is composed of a decentralized P2P network
of randomly connected nodes. The connection randomness and
density are crucial factors that will be discussed below.

Transactions record the process of transferring coins from
one owner to another. Appendix 1 presents the format of a
transaction. Similar to Bitcoin, transactions have one or more
input and output components that specify coins and addresses.

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

27 | P a g e

Also as in Bitcoin, a particular source of coins must be entirely
consumed, which constitutes a “rolling” account in a
transaction chain.

Transactions are collected in a ledger (see Appendix 2
format) that is fully replicated throughout the network. To
economize memory and boost speed, only transaction outputs
that contain unspent coins are kept in fast memory (see unspent
transaction outputs). Full transactions are committed to an
archive for audit and restoral purposes.

To execute a transaction, the inputs must match to
precedent unspent transaction outputs that are found in the
ledger using universally unique identifiers (UUIDs) as keys. As
in Bitcoin, the precedent output address must validate the
signature of the input. The input and output coin quantities
must also be equal. If the transaction is valid, the matching
precedent outputs are removed from the unspent store and the
new outputs are stored.

B. Transaction Processing

A client sends a transaction to a random initial network
node. The initial node selects a quorum of other network nodes
(see, quorum selection method below), and forwards the
transaction the quorum with the expectation of discovering
either matching precedent transactions or the valid absence of
them. To achieve reliable performance, the probability of
encountering such conditions must be high. The quorum uses
an algorithm such as Raft, Paxos, or ZooKeeper to reach
consensus about the consistency of transactions.

Once the quorum is formed, transaction processing is as
follows:

1) Check for other pending transactions in the quorum
that affect the transaction. These could be a double spending
transaction or a transaction that is transferring coins to the
current transaction. In this case, suspend the transaction for a
random period before repeating the check. This will allow one
or more of the pending transactions to commit or abort.

2) When there are no conflicting pending transactions,
check if the transaction is supported by precedent committed
transactions. This will be the case when coins are properly
owned by the transaction. If this is the unanimous condition,
then commit the transaction to the entire network. If it is
unanimously unsupported, then abort the transaction. If there
is not unanimity, then record the current state of the precedent
transactions and wait a specific time for precedent transactions
to completely propagate through the network.

3) After the wait, check again for pending transactions as
in Step 1. If no pending conflict, check if the inconsistent
committed state has been resolved. If so, commit or abort the
transaction. If the state is still inconsistent, but in a different
way from the state recorded in Step 2, assume another
transaction is propagating and go to Step 2. If the previous
state is the same, then the network is not consistent. The
quorum must then decide by consensus whether the
transaction is valid or not. If valid, the transaction is
committed to the entire network, overriding conflicting
ledgers.

C. Quorum Intersection Probability

The network connection distribution must be sufficient to
guarantee that transactions propagate to all the nodes. The
network must also constitute a quorum system [9], meaning it
ensures a high probability of a quorum intersection for
dependent transactions.

Fig. 2 depicts the quorum for a “blue” transaction that
requires a match to a transaction in the nodes immediately
updated by a precedent “green” transaction. For example, a
blue client may want to spend a coin obtained from a green
client. In this case, the red node is a directly connected peer
involved in both the blue and green quorums. Once found, the
blue transaction evaluation will reflect its presence and
potentially force the blue quorum to wait for the green
transaction to propagate to the blue quorum nodes. In the case
of a double spend, the red node will not contain the precedent
transaction to support the double spending blue transaction.

Fig. 2. Intersecting transaction quorums.

Eventually, the transactions propagate through the entire
network. However, to achieve low latency, a client is notified
of a transaction completion when its quorum acknowledges the
operation. For this to work reliably, the probability of finding
an intersecting node must be very high.

Consider the probability of finding at least one of K items
in N nodes with S samples:

𝑃 ൌ 1 െ ቆ
ቀሺಿష಼ሻೄ ቁ

ቀಿೄቁ
ቇ (1)

where:

N: number of nodes

K: number of nodes containing search item (precedent
green transaction)

S: number of random samples (current blue transaction)

P: probability of finding item.

Fig. 3 shows how densely connected nodes must be in the
network to achieve 99%+ success of finding a matching
transaction. It can be seen that as the network grows, the
density of connections also grows, but at a significantly lower
rate. See Abraham and Malkhi [9] for a deeper analysis. For
this reason, the conjecture is that a network that is sufficiently
connected might support a much lower latency and higher
throughput than a Bitcoin-like network.

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

28 | P a g e

Fig. 3. 99% success: K and S as % of N.

The topology of the network is also of importance since the
existence of clusters could lower the probability of finding an
intersecting node. This might call for a distributed process to
inventory and reshuffle connections between nodes, which
could also serve to thwart network tampering.

Once the desired connectivity is determined, the density of
the network is given by the graph theory definition: |C| / (|N| *
(|N| − 1)), where C is the number of connections and N is the
number of nodes.

D. Quorum selection

Any P2P network must accommodate the presence of faulty
and dishonest nodes. And at some degree of compromise,
consensus becomes impossible in any network [10]. In addition
to the quorum intersection probability described above, the
selection of a quorum must sample the nodes sufficiently to
reduce the probability of selecting a set dominated by dishonest
or faulty nodes. This can be expressed as a confidence interval:

1 /2

(1)
a

p p
p z

n


 (2)

where:

p = probability of honest node

n = quorum size

α = desired confidence

z1- α/2 = “z value” for desired level of confidence

A simple method for selecting a quorum based on the
existence of a set of known nodes is as follows:

1) Let the node initially receiving the transaction select a
seed for a commonly accepted random number generator. This
might be from a global time source or some random process.

2) Randomly select a quorum from the set of network
nodes.

3) Send the transaction to the nodes and execute the
consensus process.

4) If the transaction is valid, propagate it and the quorum
information to the remainder of the network. Each node can
then verify whether the quorum was correctly selected.

E. Serial Transaction Delivery

By forwarding transactions serially, it is guaranteed that at
a node will be validly updated. For example, suppose node N1
has neighbors N2 and N3 who forward transactions A->B, B-
>C to it concurrently. The first A->B transaction will be
accepted, regardless of origin. The next A->B will be dropped
since it will be discovered as a duplicate. The same will occur
with the B->C, regardless of who is first, N2 or N3. The point
is that there could be many interleaving’s that are valid. When
a transaction is dropped, it also is not forwarded, preventing
transmission cycles.

III. SIMULATION

An implementation has been developed that is derived from
a file-sharing package that supports broadcasting files into a
P2P network [11]. Its GUI can be seen in Fig. 4 and the code is
available at https://bitbucket.org/portnoid/coinspermia.

Simulation data was collected using a network of 100
nodes each randomly connected to 20 other nodes. Care was
taken to ensure the network was fully connected. The total
number of connections was thus 2000 and the probability of
intersecting immediate transactions was over 99%.

The simulated times to transmit a transaction to a connected
node and to process a transaction within a node were set to 1.
This was chosen to approximate a millisecond unit of time. The
quantity of clients and the mean transaction origination time
were independently varied. Specific transaction originations
were drawn from a random distribution centered on the mean.

Coins were minted and deposited in client wallets and node
ledgers to allow money transfer transactions. A transaction
consisted of transferring a single coin from one client to
another. When a client originated a transaction, a random
recipient client and originating node were selected.
Transactions were serially executed, meaning a client waited
for an active transaction to complete before originating a new
one.

The total number of transactions, mean transaction latency,
and mean node transaction queue length were measured. A
client was informed of a transaction’s completion when the
transaction’s originating node and its immediate peers updated
their ledgers. This defined the latency time. The transaction
continued asynchronously to propagate to all the other nodes in
the network. No attempt was made to model fraudulent
transactions in this simulation, as only performance was of
interest at this time.

Each setting of the independent variables was run 10 times
under different random initial conditions. Each simulation run
was for 900,000 time steps, or 15 simulated minutes. Tables 1,
2, and 3 show the results for 500, 1000, and 1500 clients,
respectively. Overall, the latency remains less than a simulated
second. However, overloading the network retards throughput
significantly due to the work backlog in the nodes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1

S=
%
N

K=%N

N=100

N=1000

N=10000

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

29 | P a g e

Fig. 4. Coinspermia GUI.

TABLE I. 500 CLIENTS

Origination mean Transactions Latency Queue length
300000/5 minutes 1291 5.2 0

180000/3 minutes 2236 5.3 0
60000/1 minute 6918 6.1 0

TABLE II. 1000 CLIENTS

Origination mean Transactions Latency Queue length
300000/5 minutes 2596 5.4 0
180000/3 minutes 4582 5.7 0

60000/1 minute 4584 150 7527

TABLE III. 1500 CLIENTS

Origination mean Transactions Latency Queue length
300000/5 minutes 3909 5.6 2
180000/3 minutes 6827 6 18

60000/1 minute 5186 68 24475

IV. CONCLUSION

This design is streamlined for space and speed. It foregoes
blockchains as a means of validation and completely relies on
quorum consensus. It would conceivably be more suitable for
the more numerous small transactions such as are executed
during the normal course of living: buying food, paying bills,
etc. If the transaction is for a large sum, the quorum size could
be a function of the transaction size. There could be hybrid
schemes as well for additional security that involves mining
immutable blocks for large transaction amounts, for example,
the purchase of a house or an exchange of funds for a large
business contract.

REFERENCES

[1] Nakamoto, S. “Bitcoin: A Peer-to-Peer Electronic Cash System”. 2008.

[2] Coursera. “Bitcoin and Cryptocurrency Technologies”.
https://www.coursera.org/learn/cryptocurrency 2014.

[3] Gilbert, D. “Bitcoin’s Big Problem: Transaction Delays Renew
Blockchain Debate”. http://www.ibtimes.com/bitcoins-big-problem-
transaction-delays-renew-blockchain-debate-2330143. 2016.

[4] Young, J. “R3 Appears to Admit Defeat, Stops Blockchain
Development”. https://themerkle-
com.cdn.ampproject.org/c/s/themerkle.com/r3-admits-defeat-stops-
blockchain-development/amp/. 2017.

[5] McConaghy, T., Marques, R., Müller, A., De Jonghe, D., McConaghy,
T., McMullen, G., Henderson, R., Bellemare, S., Granzotto, A.
“BigchainDB: A Scalable Blockchain Database”.
https://www.bigchaindb.com/whitepaper/. 2016.

[6] Varshney, N. “The Internet of Things, Blockchain-less Token IOTA
Launched: Interview with Co-Founder”.
https://cointelegraph.com/news/the-internet-of-things-blockchain-less-
token-iota-launched-interview-with-co-founder. 2017.

[7] Popov, S. “The tangle: some aspects of a blockchainless
cryptocurrency”. https://www.docdroid.net/xdARu5z/tangle-paper-
rev.pdf.html. 2016.

[8] Samman, G. “Evolution of Kadena, the First Real Private Blockchain”.
http://www.coindesk.com/evolution-kadena-first-real-private-
blockchain/. 2016.

[9] Abraham I., Malkhi D. “Probabilistic Quorums for Dynamic Systems”.
In: Fich F.E. (eds) Distributed Computing. DISC 2003. Lecture Notes in
Computer Science, vol 2848. Springer, Berlin, Heidelberg. 2003.

[10] Lamport, L. “Byzantizing paxos by refinement”. In Proceedings of the
25th international conference on Distributed computing (DISC'11),
David Peleg (Ed.). Springer-Verlag, Berlin, Heidelberg, 211-224. 2011.

[11] Portegys, T. E. Spores: a Push and Pull Peer-to-Peer File Sharing
Approach. The 2004 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA'04)
http://tom.portegys.com/research.html#spores. 2004.

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

30 | P a g e

APPENDIX 1 – TRANSACTION FORMAT

Transaction:
{
 # List of precedent transaction inputs.
 Inputs:
 [
 Input:
 {
 # ID of precedent transaction output.
 # This is used to access the ledger.
 Precedent transaction output ID: UUID
 # Signature of ID.
 ID signature: Signature
 }
 ...
]
 # List of transaction outputs.
 Outputs:
 [
 Output:
 {
 # Output address.
 Output address: Address
 # Quantity of coins to output.
 Quantity: Coin
 # Transaction output ID.
 Transaction output ID: ID
 }
 ...
]
}

APPENDIX 2 – LEDGER FORMAT

Ledger:
{
 # Unpaid transaction outputs.
 Unpaid transaction outputs:
 [
 Output:
 {
 (Same as Transaction Output).
 }
 ...
]
 # Transaction archive.
 Transaction archive
 [
 Transaction:
 {
 (Same as Transaction)
 }
 ...
]
}

