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Abstract—Alzheimer disease (AD) is one of the most common
form of dementia. Accurate detection of AD and its initial stage
i.e., mild cognitive impairment (MCI) is a challenging task. In this
study, a computer-aided diagnosis (CAD) system is implemented
on clinical and diagnostic imaging data from OASIS database.
Amygdala and hippocampus are the regions that are most af-
fected by Alzheimer and are located inside the grey matter region
of brain. Features used for classification are calculated using
grey level co-occurrence matrix (GLCM) such as entropy, energy,
homogeneity, and correlation. The ratios of the grey matter and
white matter volume to the cerebrospinal fluid volume are also
used. Clinical features are also used improving the classification
accuracy achieving 94.6% for binary classification. The proposed
algorithm is also used for multi-class classification where three
classes, namely, normal (N), Alzheimer disease (AD), and mild
cognitive impairment (MCI) are considered. An accuracy of
79.8% on these classes is achieved that is significant since the
classes considered are highly similar. We have achieved improved
results in comparison to state-of-the-art techniques for binary
classification and have also performed multi-class classification.
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I. INTRODUCTION

Dementia is a general term used to describe progressive
degeneration in brain function including memory, concentra-
tion, and reasoning. Its most well-known cause is Alzheimer
disease (AD) and generally it is found in people of mature age.
It is a dynamic, neuro-degenerative disease defined by serious
disintegration in cognitive function, particularly memory loss.
It is the foremost public health problem where about 44
million individuals around the world are currently suffering
from Alzheimer’s or associated dementia [1]. These figures are
expected to increase exponentially over time [2]. An increasing
occurrence of AD requires efficient biomarkers and early
detection techniques for proper diagnosis and treatment [2],
[3].

For early diagnosis, study of the symptomatic pre-dementia
phase of disease, also known as mild cognitive impairment
(MCI) is necessary [4]. Episodic and spatial memory resides
in hippocampus, which serves as mean of communication
between the brain and body. The first area to be effected in
brain in response to AD is the hippocampus region. Cere-
bral imaging techniques, such as magnetic resonance imaging
(MRI) is used for detection and diagnosis of AD. Recently,
national institute on Aging-Alzheimers Association (NIA-AA)
recommended inclusion of some advanced features measured

using neuroimaging techniques for AD detection including: 1)
volume of cerebrospinal fluid (CSF); 2) amyloid and tau; 3)
neurogenetic- testing measurements; and 4) neuronal injury.
In particular, despite being a non-invasive technique, MRI
has been able to detect cerebral atrophic regions even before
dementia is apparent [4]. However, subjective assessment of
AD by observing changes in morphology of MR images is
an extremely troublesome and tedious clinical practice. Nu-
merous brain image features e.g., cortical thickness, volume,
white matter, cerebrospinal liquid and hippocampus have been
utilized for classification of AD in subjects [5].

An automated computer-aided diagnosis (CAD) system
extracted features using structural magnetic resonance imaging
(sMRI) data [6]. Classification error estimation has been used
for feature selection from grey matter (GM) atrophy clusters
of volumes of interests (VOIs) that are determined using a
voxel-based morphometry (VBM) analysis. Another approach
is based on image-derived biomarkers and multiple kernel
learning. Visual features are extracted in this method from
structural MRI and diffusion tensor imaging (DTI) along with
mean diffusivity (MD) maps and combined in multiple kernel
learning to discriminate between AD and MCI subjects [7].
Partial least square (PLS) and principle component analysis
(PCA) have been combined for feature extraction from brain
tissues for AD detection and diagnosis [8]. Two classifiers
based on SVM using linear and RBF kernel, have been used
to test PLS and PCA. Key slices in 3D volumetric data
has been determined by using maximum inter-class variance
(ICV) [9]. The most important eigenbrain (MIE) has been
obtained from these slices using Welch’s t-test (WTT), and
classification is performed in final step using SVM [10]. In
[11], the work on eigenbrain has been extended to 3D (3D-EB),
where classification is performed using deep learning. Three
feature selection measures i.e WTT, Students t-test (STT)and
Bhattacharyya distance (BD) have been used in [12] to classify
AD subjects. AD detection has been done via an automatic
3D caudate nucleus (CN) segmentation by means of combined
dictionary learning with a level set design [13].

Various anatomical MRI measures are consolidated to
enhance classification and diagnosis of AD subjects, such
as 1) cortex density; 2) cortex area; 3) curvature; 4) grey
matter volume; 5) sub-cortical volumes; and 6) hippocampal
shape using net logistic regression [14]. Despite rich literature,
research on classifying Alzheimer’s disease is still ongoing and
a bright prospect in modern age.

In this study, the proposed methodology classifies AD into
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Fig. 1. Block diagram shows different stages in method.The input consists of a 3D NIFTI data which is skull stripped, Atlas registered, motion corrected and
thresholded in the pre-processing step.This is followed by feature extraction which is then classified using different classifiers.

binary as well as multiclass classification. MR images are
skull stripped, atlas registered and motion corrected. Hybrid
feature extraction is performed to get distinguishing features
for Alzheimer then these features are given as input to multiple
classifiers. Most of the existing techniques have implemented
binary classification whereas the proposed methodology has
also been validated for multi-class classification with promis-
ing results.

II. PROPOSED METHODOLOGY

The proposed system has three main modules namely pre-
processing, feature extraction, and disease classification. The
input images consist of 3D NIFTI data that is skull stripped,
atlas registered, motion corrected and thresholded in the pre-
processing step followed by feature extraction and classifica-
tion using different classifiers. The proposed methodology is
shown in Fig. 1 and discussed in the following subsections.

A. Preprocessing

The dataset is minimally preprocessed to make it coher-
ent for feature extraction task. Images in dataset are three-
dimensional consisting of sagittal, coronal, and transversal
views. The OASIS dataset images are segmented into three
classes, namely white matter (WM), grey matter (GM) and
cerebrospinal fluid (CSF) by using FAST tool. This step makes
it easy to extract volumetric features. Each scanning session for
individual patients incorporate 3-4 images averaged together to
increase signal to noise ratio (SNR) making images noise free.
Images are also motion-corrected and finally brain masked
with atlas space of Talairach and Tournoux [15]. The locations
of brain structures are mapped using this atlas space regardless
of difference from individual in the overall shape and size of
brain.

B. Feature Extraction

The pixels labelled as 1, 2 and 3 are extracted from the
whole brain to calculate WM, GM and CSF volume ratios
that are used as features for selected classifiers.The features
computed in this study are discussed in detail in following
sections.

1) Grey Level Co-occurrence Matrix (GLCM) Features:
Grey-level co-occurrence matrix (GLCM) is a statistical
method [16] used for examining texture while keeping in view
the spatial resolution of pixels. GLCM calculates occurrences
of pixel pairs with specified values that are in a relationship

with each other to determine texture of image. These occur-
rences are then used to compute statistical information from
GLCM matrix. Co-occurrence matrix has been used to extract
contrast, correlation, homogeneity, and entropy. These features
have high distinguishing power and are calculated as,

Contrast =
∑
x,y

|x− y|2 logPr,θ(x, y) (1)

Correlation =
∑
x,y

(x− µ1)(y − µ2)Pr,θ(x, y)

σ1σ2
(2)

Homogeneity =
∑
x,y

Pr,θ(x, y)

1 + |x− y|2
(3)

Entropy = −
∑
x,y

Pr,θPr,θ(x, y) (4)

where co-occurrence matrix Pr,θ is a two-dimensional
array of size m×m, where, ‘m’ is the number of grey levels
in an image and µ is the mean value. The (x,y) element of
Pr,θ is the probability of transition from a pixel with intensity
x to a pixel with intensity y lying at distance r with a given
orientation θ in the slice.

2) Grey Matter Proportion: The size of brain structures
like GM and CSF change with the intensity of disease. Hence,
grey matter volume (GMV) and the volume of the CSF are
used as features. The pixels labeled as 2 are used to obtain
GMV from the segmented GM. To remove the anomaly arising
due to different brain sizes in different human beings, the
GM volume is normalized and used to calculate the ratio
by dividing with CSF volume calculated by the following
equation:

V olumeGM = −
n∑

slice=1

x∑
a=1

y∑
b=1

f(a, b) == 2 (5)

V olumeCSF = −
n∑

slice=1

x∑
a=1

y∑
b=1

f(a, b) == 3 (6)

where (a,b) represents location of each pixel in the seg-
mented image.
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TABLE I. CLASSIFIER ACCURACY WITH IMAGE BASED FEATURES

Classifier AD vs N MCI vs N AD vs MCI AD vs MCI
vs N

SVM 82.1 75 67.9 60

Ensemble 75 71.4 80.4 60.7

KNN 73.2 69.6 67.9 57.1

Decision Tree 78.6 76.8 71.4 60.7

TABLE II. CLASSIFIER ACCURACY WITH HYBRID FEATURES

Classifier AD vs N MCI vs N AD vs MCI AD vs MCI
vs N

SVM 92.9 83.9 87.5 79.8

Ensemble 94.6 85.7 80.4 73.8

KNN 92.9 80.4 80.4 72.6

Decision Tree 91.1 85.7 76.8 77.4

3) White Matter Volume to Cerebrospinal Volume Ratio:
The volume of white matter is used as a feature since its size
decreases with progression of AD. Label 1 is used for WM
in the segmented images. WM volume is divided by the CSF
volume which increases as the disease spreads out. The white
matter volume to the cerebrospinal volume ratio is calculated
as,

V olumeWM = −
n∑

slice=1

x∑
a=1

y∑
b=1

f(a, b) == 1 (7)

C. Classification

The selected classifiers including SVM, ensemble, K near-
est neighbor (KNN), and decision tree, are trained to classify
data into normal (N), mild cognitive impairment (MCI) and
Alzheimer disease (AD) class using supervised learning. The
classes are divided into three binary groups, namely, AD/N,
AD/MCI, MCI/N, and a multi-class group i.e., AD/MCI/N.
The purpose of this categorization of output classes is to
obtain binary class classification, because most texture based
classifiers provide good results on binary classification e.g.,
SVM, decision trees, and ensemble etc. The training data
is divided into 80:20 training validation ratios. Models are
trained using cross validation to get effective classification
performance.

III. EXPERIMENTAL SETUP

A. Dataset

The MRI data from database of Open Access Series of
Imaging Studies (OASIS) [17] is used. It consists of longitu-
dinal and cross sectional MR images of 416 patients with age
ranging between 18 to 90 years.

The T1 weighted images consists of all classes of data,
with AD,MCI and cognitive normal (CN) people i.e. people
without the disease or any kind of dementia. The dataset
also contains information about age, sex, and handedness of
patients. Clinical data has also been provided for example
mini-mental state examination (MMSE), a brief questionnaire
test with 30-point through which cognitive impairment and de-
mentia are screened [18]. Crucial data has also been provided
like the estimated total intra-cranial volume (eTIV), clinical
dementia ratio, normalized whole brain volume (nWBV) and
atlas scaling factor (ASF). The ratings of CDR varies from

0 to 2, where 0 represents normal, 0.5 is for mild cognitive
impairment, 1 is for Alzheimer’s disease.

B. Results and Discussion

In training, CDR is used as the output label. CDR is used
for evaluating the severity of symptoms of dementia [19]. For
subjects whose CDR is 0 are labelled as normal (N), CDR
of 0.5 is labelled as MCI and CDR of 1 is labelled as AD.
Different cross validation folds are used to assess the perfor-
mance of selected classifiers. One-fold is used as test and the
remaining k-1 folds are used as training data. In particular, 2,
5 and 10-fold cross validation is performed and best results are
achieved with 5-fold cross validation. One subset of features
extracted from segmented images excluding clinical features,
consist of 6-dimensional vector (Grey level co-occurrence
matrix, grey matter, and white matter volume to CSF volume
ratio). Classification accuracy achieved using these features
over binary classification is shown in Table I. The complete
feature space is a thirteen-dimensional vector that is a hybrid
of volumetric features, extracted from segmented MR images,
and clinical features. Clinical features include, total Intra-
cranial volume, normalized whole brain volume, atlas scaling
factor, and MMSE. Classification accuracy achieved using
these hybrid features is shown in Table II.

Classification results for different binary classes show
high feature similarity in MCI and normal classes. AD vs.
normal category gives the best classification, results portraying
high dissimilarity in these classes. Models are trained for 10
iterations and average accuracy is reported in this study.The
results show, all classifiers performing equally well for binary
categories. Multi-class classification results are also reported
where both ensemble and decision trees performed best when
only volumetric features were used but SVM outperformed
other algorithms when complete feature space is used. Fig. 2
and Fig. 3 show the sensitivity and specificity values achieved
using texture features only and complete feature space respec-
tively. A comparison of the proposed method with state-of-the-
art techniques is presented in Table III. It can be seen from the
table that the proposed methodology achieved better accuracy

Fig. 2. Sensitivity (SE) and Specificity (SP) of classifiers for image based
feature.

Fig. 3. Sensitivity (SE) and Specificity (SP) of classifiers for hybrid feature.
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TABLE III. COMPARISON OF DIFFERENT STATE-OF-THE-ART
TECHNIQUES FOR BINARY CLASSIFICATION

Author Technique Accuracy

Zhang et.al [10] Eigen brain + WTT + SVM 93.36%

Yudong Zhang et.al [11] 3D-EB + Pol-SVM 92.81%

Shuihua Wanga et.al [12] 3D-DF+WTT+TSVM 93.05%

Wang et. al. [20] WE + MLP + BBO 92.4%

Proposed Methodology 94.6 %

than state-of-the-art techniques, while also being applicable in
multi-class classification.

IV. CONCLUSION

A classification algorithm for different Alzheimer’s stages
using a hybrid of texture and clinical features is presented.
In the proposed approach, GLCM, grey matter proportion and
white matter volume to cerebrospinal volume ratio along with
clinical features are used for classification. The results indicate
that using clinical features alongside texture based features can
boost classification accuracy significantly. Multiclass classifi-
cation for AD, N and MCI is also addressed although it is very
challenging due to similarity between AD and MCI subjects.
The proposed method achieves improved accuracy for binary
classes and significant accuracy for multi-class classification.
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