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Abstract—It is useful to simulate disaster situations by recon-
structing actual buildings in a virtual space to enable people using
the buildings to learn how to act in a disaster situation before it
occurs. Therefore, we are developing a disaster-simulation system
that simulates various disaster situations by virtually reproducing
the situation inside buildings to allow individuals to experience
disaster situations by using the latest virtual reality (VR) system.
We use a mobile robot equipped with multiple laser-range sensors
that measure the distance to objects in a building and an RGB-
depth camera to collect distance and image data while the robot
automatically travels along a route suitable for 3D measurement.
We also manually scan physical objects individually by using
a handheld 3D sensor. We then arrange the objects in a 3D
map and manipulate them. We have also developed a VR system
called “Building-Scale VR” that consists of indoor 3D maps
filled with manipulable virtual objects that we call “operation
targets” and a VR headset capable of position tracking within
the building. In this paper, we explain how to implement Building-
Scale VR and its applications to disaster simulations. It is useful
to express disaster situations by reconstructing actual buildings
into virtual space and enable users in the building to experience
such situations beforehand to learn how to properly act during
a disaster.

Keywords—Virtual reality; 3D map; autonomous mobile robot;
disaster simulation

I. INTRODUCTION

It is generally very expensive to create indoor 3D maps.
However, as most recent information needs to be reflected
on maps used for various purposes such as advertising, it
is necessary to have mechanisms in place that allow for
easy editing and updating content in accordance with the
requirements of facility administrators. Namely, a mechanism
is needed to automatically collect data necessary for automatic
3D-map generation. In this study, we collected sensor data
using a mobile robot called the “automatic room capturer
(ARC)” that can freely travel along an arbitrary route in an
environment.

The ARC is a small unmanned robot capable of au-
tonomous driving that we are currently developing in our
laboratory. The ARC generates a probabilistic occupancy-grid
map of a 2D plane (probabilities of the existence of objects
according to x-y coordinates) by traveling in the environment

beforehand. It is also possible to estimate its current position
and have it operate autonomously by using the grid map.

Methods have been proposed for 3D-map generation that
use 3D light detection and ranging [1] and camera images
[2]. However, these methods are not without fault. The former
cannot use color information, which makes it difficult to
generate a map that is easily understood by humans. The latter
has issues in that it is not possible to accurately generate a 3D
map in an environment with several dark places or few image-
feature points. A method called RGB-depth iterative closest
point (RGBD-ICP) uses an RGB-D camera and generates a
precise 3D map by superimposing a 3D point cloud based on
image-feature points [3].

However, as this method uses only the data of the RGB-
D camera when generating a 3D map, it is necessary to
calibrate the real-world positional information and 3D map
coordinates. If the real-world positional information is already
related to the virtual world via the use of a probabilistic
occupancy-grid map (probabilities of the existence of objects
according to x-y coordinates) and additionally generating a 3D
map using the same coordinate system as the existing map,
it is possible to generate a 3D map that accurately reflects
real-world information. This is why we decided to use an
RGB-D camera on the ARC and developed a mechanism
to automatically collect data by generating a data-collection
route based on the occupancy-grid map that also uses location
information at the time of data collection. We then developed
a method that extends the RGBD-ICP, which allows not only
the use of 3D point clouds and image-feature points but also
the grid map.

We are developing a disaster-simulation system that simu-
lates various disaster situations by virtually reproducing such
situations in buildings that enable people to experience them
by using the latest virtual reality (VR) systems. This system
is based on 3D-map technology.

Since it is not easy to edit and modify automatically
generated indoor 3D maps due to the huge amount of data,
we also manually scan 3D objects individually by using a
handheld 3D sensor. We then arrange them on a 3D map and
consider them as operation targets.

To properly simulate disaster situations, it is important to
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model the moving or deforming of physical objects (which
we call “operation targets”) in accordance with physical laws.
This is why we developed a VR system called “Building-Scale
VR” that consists of indoor 3D maps with operation targets and
a VR headset capable of position tracking within a building.
We use a 2D identification marker called an “ArUco code”
to automatically arrange the operation targets on 3D maps.
The ArUco code functions as a unique ID when scanned and
recognized as a 3D point cloud. It can be decoded to identify
the position and orientation of a particular operation target.

Although the operation targets can be arranged in arbitrary
positions on a 3D map, it is difficult to locate them appropri-
ately. Therefore, we also developed a method of automatically
determining the xyz-coordinates of operation targets on 3D
maps according to their actual positions. To automatically
arrange the operation targets on a 3D map, we use an ArUco
code.

After arranging multiple ArUco codes at various places
in an indoor environment, our automatic method creates a
3D map, and the operation targets are arranged in positions
based on their corresponding IDs encoded in the ArUco codes.
Therefore, the initial position and orientation of each operation
target are automatically adjusted and arranged on the 3D map.

In the virtual space, not only the movements of objects but
also those of people are simulated, enabling confirmation on
whether evacuation can be carried out properly.

In this paper, we explain our automatic 3D-map-generation
method, Building-Scale VR based on this method, then argue
that Building-Scale VR is useful for disaster simulations.

II. RELATED WORK

Disaster-simulation systems that use VR technology have
been developed to improve the sense of reality of disaster
experiences and for portability.

For example, Sinha et al. [4] made it possible to experience
the actual characteristics of a building and furniture during
an earthquake, which are calculated using the finite element
method, in an immersive VR environment. In such systems,
a 3D model of a room and objects are manually created.
However, it is difficult to modify the created content to adapt
it to another room. The effort required to create new content
for another room is immense.

Various methods for measuring an environment using a
camera or laser to create a 3D model have recently been de-
veloped. The simultaneous localization and mapping (SLAM)
method estimates the position and direction of a camera and
constructs a model of the sensing-target environment [5]. The
KinectFusion method creates a dense 3D model of an environ-
ment using an RGB-D camera [6], enabling the inexpensive
creation of 3D models of various environments in a short
amount of time.

Segmentation methods have also been developed to extract
individual objects from the 3D point-cloud model obtained
through measuring the entire environment [7]. In particular, Jia
et al. [8] and Zheng et al. [9] proposed such methods based
on the laws of physics.

However, these methods carry out segmentation primarily
for the purpose of robots to understand their environments
and are not aimed at realistically representing the models of
real objects. Thus, segmentation methods cannot be directly
applied to disaster-simulation systems that use VR technology
since the objects’ 3D models’ unnatural appearance negatively
affects the realism of the experience.

In our study, we developed a mechanism to automatically
generate highly realistic VR content based on a 3D point
cloud using an autonomous mobile robot and automatically
arranged 3D objects that were manually modeled individually.
This enables the generation of VR content with high reusability
without impairing the sense of reality. We also developed a
mechanism for estimating indoor position and orientation to
allow individuals to navigate through the corresponding VR
environment from an arbitrary position in a real building.
Based on the method of estimating the relative position and
direction between 3D point-cloud models [10].

III. AUTOMATIC ROOM CAPTURER (ARC)

The ARC can recognize its surroundings, collect various
types of data by exploring its environment, and use these
data to provide advanced services. The ARC can also run
autonomously and trace a generated route to sense every corner
of an environment.

The appearance of the ARC is as shown in Fig. 1. It is
configured with iRobot Create1, which has a facing two-wheel
type moving mechanism and is equipped with a PC, multiple
laser-range sensors, and an RGB-D camera.

A laser-range sensor detects the distance from it to the
object on a 2D plane. The ARC uses such sensors to generate
a probabilistic occupancy-grid map and estimate its position.

It uses Microsoft Kinect2 as the RGB-D camera. In addition
to the camera, Kinect also has a depth sensor that can measure
the distance to an object detected with the camera. Unlike
a laser-range sensor, which can measure the distance to an
obstacle on a plane, Kinect can recognize the 3D shape of an
object.

The ARC must always detect its position on the grid map to
ensure flexible autonomous driving along a designated route.
The position is defined as the posture of the moving object
in the coordinates of the map and the angle from the x-axis
at = (xt, yt, θt). Posture is a value determined by the position
x, y and orientation θ of the robot. The ARC can estimate
its position on the grid map by comparing the values of the
map with those of the laser-range sensors in real time while
autonomously operating along an arbitrary route. The ARC
can perform self-localization with an accuracy of about a 7-
cm error.

A. Occupancy Grid Map

A map of the driving environment is necessary to deter-
mine the current location and desired destination to allow
autonomous travel of the ARC. The ARC creates a 2D
occupancy-grid map from the measurements recorded with the

1iRobot Create is a trademark of iRobot Corporation.
2Microsoft Kinect is a trademark of Microsoft Corporation.
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Fig. 1. Configuration of ARC.

Fig. 2. Example of occupancy grid map.

laser-range sensors from previously traveling the environment.
The occupancy-grid map is a map represented by a random
variable located in an equidistant grid, which means that the
higher the random variable, the higher the possibility that an
area is occupied by an object.

An occupancy-grid map generated by the ARC is shown
in Fig. 2. The color intensity of each pixel of the image
represents the magnitude of the random variable of each grid
of the occupancy-grid map. Black indicates an obstacle, white
indicates no obstacle, and gray indicates an indeterminate state.

IV. AUTOMATIC GENERATION OF INDOOR 3D MAPS

The indoor-3D-map generation carried out in this study
consists of the following four steps:

1) Generation of the route for data collection.
2) Data collection.
3) Superimposition of sensor data.
4) Polygonization of planes in a 3D map.

Step (1) involves automatically generating a route on which
the ARC operates when collecting data from the probabilistic
occupancy-grid map. Step (2) involves operating the ARC
along the route generated in Step (1) and recording the data
from the RGB-D camera and positional information. Step (3)
involves generating a 3D map by superimposing the collected

data. Superimposition allows the creation of a 3D map corre-
lated with the grid map that uses corresponding points from
the 3D point cloud and image-feature points between frames
and corresponding points of the grid map.

The 3D map generated by superimposing the sensor data is
a set of a huge number of 3D points; thus, the data set is large
and very difficult to handle. We compensate for this in Step
(4) by focusing on planes, such as walls and floors, which are
the main elements that comprise the interior of a building. We
simplify the 3D map by automatically extracting the planes in
the map and polygonizing them.

A. Generation of Route for Data Collection

It is ideal to use as many image-feature points as possible
from the collected data to be used for superimposing the
sensor data. In indoor settings, the characteristic areas are
concentrated along the walls and are often not detected on the
floor. Therefore, the ARC runs along the walls and generates
a route for collecting data, such as the center of the passage.
Since there may be a region where data cannot be obtained
due to being physically obstructed by other objects along the
generated route, the ARC goes around the route in the opposite
direction after completing the first run-through to compensate
for potentially missed data.

Specifically, we create reference nodes from the grid map
and connect the nodes to create a graph structure. The data-
collection route is then generated using the generated graph
structure.

B. Generating Route Graphs

A node is generated based on the distance from a wall in
the traversable area of the environmental map to generate a
route along the wall. Fig. 3 shows how the traversable area is
color-coded based on the distance from the wall. It becomes
darker as it becomes closer to the wall and becomes light blue
as it gets farther away. We used a k-d tree [11] to calculate the
distance to the wall. We generated nodes at constant intervals
on the boundary where the color changes. The node generated
is node A and is denoted with a red dot in Fig. 3. In narrow
passages where node A is not generated, nodes are created
in the middle of these passages. If the distance to the nearest
wall (called the “nearest point”) at a point within an arbitrary
traversable region is short and the distance to the wall on the
opposite side is equidistant from the nearest point, it is then
judged that the nearest point will be the center of the passage.
The center of a narrow passage is indicated with a red line in
Fig. 3, and the node generated on the line is indicated with
a green dot as node B. Node C is generated as a connection
point between nodes A and B at a position where the distance
from the wall is determined to be the center of the passage
at a fixed distance. Node C is indicated with a yellow dot.
The generated nodes are connected to each other to generate a
graph structure. We define two types of relationships between
nodes: adjacent and reachable. Nodes generated on the same
boundary line (nodes A, B, and C) are regarded as adjacent;
these nodes and their connections are indicated in Fig. 4 with
a red line. Reachable nodes are indicated with a blue line and
represent nodes within a certain distance from a node that is
not an adjacent node with the requirement that there are no
obstacles between reachable nodes.
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Fig. 3. State of node generation.

Fig. 4. Graph structure connecting nodes.

C. Route Generation for 3D Capture

The route for 3D capture of a room is generated in the
following process:

Step 1 Set the first node of the route to the nearest
node (node A) from the current location.

Step 2 Generate a route R that goes around the
adjacent nodes from a specified node When
a reachable node Nm from Ri(0 ≤ i ≤ n),
which has already been searched, exists and node
Nm has not yet been searched, add Ri → Nm

to the search candidate. Also, delete the search
candidate, which becomes Nj = Ri if it exists.

Step 3 Generate a route R′ that passes through the un-
searched node and insert it into route R Choose
the node with the shortest distance between the
points in Ri → Nm from the search candidates
and use node Nm as the starting point to execute
the same operation as in Step 2 to generate route
R′. Insert route R′ in the i + 1th node of route
R. In this case, delete R′0 to generate a smoother
route if Ri−1 → R′1 is reachable.

Step 4 Repeat Step 3 until there are no search candi-
dates.

Step 5 Perform Step 6 for all C nodes on the route.
Step 6 Insert route R′′ going from node C to node B

through a narrow space and insert in route R
Generate a route R′′ going from node C to node
B. The way of inserting route R′′ into route R
depends on node R′′n, which is the end of route
R′′. There are three cases of R′′n. Each case is
explained below.

Fig. 5. Example of generated route.

1) The case in which R′′n is node B
We invert route R′′, delete the 0th and
nth nodes from it, then add it to the end
of route R′′. We then insert route R′′ into
the ith node of original route R.

2) The case in which R′′n is node C that is
unsearched
Execute Steps 2-4 with R′′n as the start-
ing point to generate route R′′′. Invert
route R′′, delete its 0th and nth nodes,
then add the inverted version to the end of
route R′′′. Delete the nth node of R′′ and
insert the deleted version at the beginning
of route R′′′. Then insert route R′′′ in the
ith node of route R.

3) The case in which R′′n is node C that has
already been found
Invert route Rij , delete the 0th and nth
nodes of route R′′, then join them. Insert
the result route at the jth position of R.
Let the route from the ith node to the jth
node of route R be route Rij in which
Rj = R′′n.

Step 7 Add inversion of route R at the end of route
R.

The route generated in Fig. 5 was created using the above
algorithm.

D. Superimposition of Sensor Data

It is possible to generate a 3D map associated with a real-
world location by superimposing the sensor data using the
correspondence relationship between the 3D point cloud and
image-feature points between the frames and grid map.

It is possible to arrange the sensor data at positions
corresponding to the grid map by using the position of the
ARC as the initial position when superimposing the sensor
data.

However, since the probabilistic occupancy-grid map is
a 2D map, a 3D superimposition cannot be carried out.
To superimpose the grid map and sensor data, 3D postures
(positions and angles) of the ARC are required when data
recording occurs. However, the posture data that the ARC can
acquire are only x, y coordinates and the horizontal direction
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(yaw θy). Since data are collected while moving, the sensors
are not always fixed horizontally. Therefore, we try to detect
the floor from the acquired sensor data, the z coordinate with
the floor coinciding with the horizontal plane, and the rotation
(pitch θp, roll θr) with respect to the vertical and traveling
directions. The 3D position of the ARC at the time of data
recording is then estimated.

E. Detection of Floor Plane

Detection of the floor enables us to assume the RGB-D
camera levelness in comparison to the floor to some extent. The
floor surface can be represented by the plane equation ax+by+
cz− 1 = 0. We use the random sample consensus (RANSAC)
algorithm [12] to obtain the most floating parameters a, b, c.
We select three points randomly from all the data and obtain
a, b, c from those three points. At this point, if the surface,
including the three points, is not horizontal to some extent, it
is regarded as not being the floor. We calculate the error from
the observed data by applying all the data to the obtained
parameters and give rewards to the parameters if the error was
within the allowable range. We repeat this process to extract
data for the parameter with the largest amount of rewards and
obtain another parameter from the extracted data to detect the
most likely surface. In the event that the floor is not detected
correctly due to the floor area not being included in the data,
the data are not used for 3D superimposition. In this study,
1000 points sampled from sensor data were used as all the data,
and the RANSAC algorithm was applied for 1000 iterations.

The 3D position is calculated using rotation matrix R and
translation matrix T that converts a point p on the floor to
point p′ on the horizontal plane p′ = R · p + T. The R and
T are obtained from three corresponding points between the
horizontal plane and detected floor.

F. Method for Superimposition

To carry out superimposition, it is necessary to obtain the
rigid body transformation matrix A, which carries out rotation
and translation. The A can be calculated from the position of
the ARC by the following equation. Let Rx,Ry,Rz be the
rotation matrix for each of the x, y, z axes, respectively.

A = T ·Rz(θy)Rx(θp)Ry(θr)

Since the position of the ARC was corrected so that the
floor would be horizontal in this study, the z coordinate, pitch
θp, and roll θr did not need to be modified. Therefore, only
the x, y coordinates of the ARC and the left/right direction θy
were corrected by superimposition.

Superimposition of 3D data is carried out with the follow-
ing process:

Step 1 Selection of Image-Feature Points The image-
feature points Fs, points Ms used for matching
with the grid map, and points Ps to be super-
imposed are extracted from the point cloud of
the input frame. Points Fs are extracted based on
the local features of the RGB image calculated
using speeded up robust features (SURF) [13].

If a point corresponding to the extracted feature
point in Fs does not exist in the point cloud, we
ignore that point. For Ms, we select the points
where the transformed z coordinates of the points
are around the height of the ARCs laser-range
sensors. Points Ps are obtained by sampling from
the point cloud. In this study, a quarter of the
original point cloud was uniformly sampled in
consideration of processing time and matching
accuracy.

Step 2 Selection of Frames for Matching Of the several
frames immediately before the input frame, the
frames in which most Fs in the input frame
matched are taken as the target frames for super-
imposition. When there is no matching frame, the
frame just before the input frame is set as the
target frame.

Step 3 Matching and Weighting We then find points
corresponding to Fs, Ms, and Ps selected in Step
1, and let Sf , Sm, Sp be a set of each point.
Set Sf is obtained by calculating the matching
between the Fs of the input and target frames. If
point ft corresponding to point fs does not exist,
we delete fs from Fs.
The converted coordinates can be obtained with
A·p, where p is on the sensor data. For Sm, points
mt are selected if they are closest to points A·ms,
which are the points on the grid map converted to
3D coordinates.
For Sp, points pt are selected if they are closest
to points A · ps extracted from the target frames.

Step 4 Removal of Outliers Since outliers adversely
affect minimizing the error, we remove outliers
from Sf , Sm, and Sp. In Sf , acceptable data
are calculated using the RANSAC algorithm, and
points not included in such data are removed as
outliers. For Sm and Sp, we remove points that
are more than a certain distance as outliers. Also,
in Sp, if there are no data in the pixel adjacent to
pt on the depth image, we remove that point as
the boundary of the 3D model.

Step 5 Estimation of Errors and their Minimization

Steps 3-5 are repeated until the amount of error is suffi-
ciently small or the number of repetitions exceeds a predeter-
mined limit.

G. Matching of 3D Map with Occupancy Grid Map

In addition to the correspondence of the 3D point cloud and
Fs using the correspondence with the occupancy-grid map,
superimposition of sensor data is used to generate a 3D map
corresponding to the grid map. An example of a generated 3D
map is shown in Fig. 6. To demonstrate the accuracy of the
3D map, we show the map of the data around the height of
the ARC’s laser-range sensors on a 3D map and 2D grid map
in Fig. 7.

The red points indicate that the points on the 3D map
matched those on the grid map. The generated 3D map was
accurately associated with the grid map and the real-world
location.
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Fig. 6. Example of generated 3D map.

Fig. 7. Relating generated 3D map with its base grid map.

V. OPERATION TARGETS AND THEIR ARRANGEMENT

Since 3D maps are represented as 3D point clouds, it is
difficult to edit and modify them. Therefore, objects, such as
movable furniture in a room, are individually scanned. A 3D
model is then created and placed on a 3D map. We consider
these 3D-modeled object as the “operation targets”.

When creating a 3D map, we use a panoramic image cap-
tured using a 360-degree spherical imaging camera installed
at the top of the ARC for coloring the 3D point cloud data.
At the time of 3D data capture of a room, a 2D identification
code is placed instead of an operation target. At the time of
arrangement of each code, the orientation of the code is made
to correspond to that of the operation target. As a result, a
panoramic image including multiple 2D codes is created. By
using this panorama image, the 2D codes are decoded and
the placement position of the operation target is automatically
determined.

A. ArUco Codes

From the created panorama image, the 3D map generation
algorithm searches for the placed 2D codes. For this search,
a marker-detection library, which is an OpenCV module of
the image-processing library called ArUco, is used. Two-
dimensional code that can be recognized with this library is
called ArUco code. Examples are shown in Fig. 8. In ArUco,
ArUco code is detected using a predefined dictionary, and
its position and orientation are estimated from those of the
camera, whereby the ID of the corresponding ArUco code and
the 2D coordinates of the position in the image (Code pos)
[mm] and direction (Code rot) are output. By transforming the

Fig. 8. Examples of ArUco codes.

Fig. 9. 3D models of chair and table.

panoramic image into a sphere represented by 3D coordinates
whose origin is the position of the camera, Code pos and
Code rot are 2D coordinates converted into Code pos 3D
[mm] and Code rot 3D of 3D coordinates.

Specific examples of ArUco codes are shown in Fig. 8.

B. Positioning of Operation Targets Based on ArUco Codes

To position the moveable/deformable objects (i.e., opera-
tion targets) in a 3D map as VR content, we must do the
following first. We first generate 3D models by individually
scanning the operation targets to be placed in the map by using
a handheld 3D sensor. Example models are shown in Fig. 9.

Then, we associate the ID in the program of the operation
target with that of the corresponding ArUco code. We use
Unity for the programming environment of 3D graphics and
animation.

After objects considered as operation targets are removed
from the room and their corresponding ArUco codes are placed
at each position, we then create a 3D map of the room. For
example, in Fig. 10, one can see ArUco codes that have been
placed in positions previously occupied by tables and chairs.
A 3D map is subsequently created.

Three-dimensional models are placed on the 3D map based
on the correspondence between the ArUco codes and operation
targets. Fig. 11 shows a state in which the corresponding
3D models are automatically positioned at the location of the
ArUco codes on the 3D map shown in Fig. 10.

For each panorama image, the 3D coordinates (Arc pos)
[mm] and orientation (Arc rot) of the position of the ARC
reference point, when the camera is shooting with the data-
measurement starting point as the origin, are recorded. As
a result, the position and orientation of the ArUco code are
converted into coordinate axes with the data-measurement
starting point as the origin. In addition, the 3D coordinates
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Fig. 10. ArUco codes in the room.

Fig. 11. Replacement of ArUco codes with 3D models.

(Camera pos) [mm] and orientation (Camera rot) of the cam-
era position with respect to the reference point of the ARC
are also recorded. Camera pos and Camera rot are constants
and used to correct the deviation between the ARC reference
point and camera position. This makes it possible to calculate
the position and orientation of the ArUco code in the room.

3D position of ArUco code in the room = Arc pos + Cam-
era pos + Code pos3D
3D orientation of ArUco code in the room = Arc rot +
Camera rot + Code rot3D

The 3D coordinates whose origin is the position of the
panoramic camera and the 2D coordinates on the image plane
have the following relationship.

s

[
u
v
1

]
=

[
fx 0 cx
0 fy cy
0 0 1

][
x
y
z

]

where, (x, y, z) are the 3D coordinates whose origin is
the camera position, (u, v) represents 2D coordinates on the
image plane, A is a camera matrix, (cx, cy) represents the
principal point, and (fx, fy) represents the focal length. Us-
ing this relational expression, 2D coordinates of the ArUco
code on the image plane are converted into 3D coordinates
whose origin is the camera position. In the actual camera,
using the distortion coefficient represented by the vector
(k1, k2, p1, p2[, k3[, k4, k5, k6]]), it is calculated as follows.

Fig. 12. User wearing HMD.

x′ = x/z

y′ = y/z

x′′ = x′
(1 + k1r

2 + k2r
4 + k3r

6)

(1 + k4r2 + k5r4 + k6r6)
+ 2p1x

′y′ + p2(r
2 + 2x′2)

y′′ = y′
(1 + k1r

2 + k2r
4 + k3r

6)

(1 + k4r2 + k5r4 + k6r6)
+ p1(r

2 + 2y′2) + 2p2x
′y′

r2 = x′2 + y′2

u = fx × x′′ + cx
v = fy × y′′ + cy

VI. BUILDING SCALE VR FOR DISASTER SIMULATION

A. VR Headset Capable of Position Tracking

It is necessary to determine the position on a 3D map
from the current position in the building for Building-Scale
VR. For outdoor use, GPS and electronic compasses are often
used, but they do not work indoors. Therefore, we attach a
compact RGB-D camera (for example, Google’s Tango [14]) to
a head-mounted display (HMD) and calculate the head position
and orientation. This is achieved via a method called RGB-D
SLAM [15] and not by the self-location-estimation method
used by the ARC with laser-range sensors. This is due to
the fact that the sensor attached to the human head moves
in three dimensions, unlike those installed on mobile robots.
It is possible to accurately estimate position and direction by
matching the point cloud obtained from the 3D map and the
head-mounted sensor.

Fig. 12 shows a user wearing an HMD with an RGB-D
camera.

In this figure, the user has controllers in both hands.
The controllers’ postures are calculated based on the relative
position from the RGB-D camera mounted on the HMD.

B. Disaster Simulation

It is generally difficult to carry out a preliminary exercise,
such as an evacuation drill in a real building, to examine
in detail the functional problems that can occur during a
disaster and to plan a solution. This is why we decided to
reproduce buildings in a detailed virtual world using a 3D map
to simulate disasters, so that disaster-countermeasure planning
would be more intuitive. Simulations are best carried out
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Fig. 13. Simulated people walking on 3D map.

assuming various cases. However, there are limits to predicting
in advance the types of disasters that can actually occur.

Therefore, we examined a disaster situation more inten-
sively by placing objects, such as furniture, that move accord-
ing to the laws of physics on an indoor 3D map. We also
developed a method for intuitively reconfiguring a disaster
situation based on a simple script applied to movable objects
(i.e., operation targets) on the 3D map.

We implemented a disaster-simulation system that can
easily enable the creation of effective disaster countermeasures
for large-scale indoor facilities as an example application of
Building-Scale VR.

1) Automatic Generation of VR Content Based on In-
door 3D Maps.

2) Simulation of Disaster Situations.
3) Collection of Human-Behavior Data.
4) Behavior-Learning and Disaster-Countermeasure

Support.

Automatic Generation of VR Content Based on Indoor
3D Maps

As described above, using the automatic 3D-map-
generation method with an autonomous mobile robot, a de-
tailed map of a building is created. Furthermore, 3D maps can
be converted to VR content, and 3D objects that are separately
scanned can be automatically placed at appropriate positions.
It is also possible to wander freely within a 3D map by wearing
an HMD that can estimate the current position and orientation
in real time.

Simulation of Disaster Situations

By using an indoor 3D map of a large-scale facility as a
stage of multiplayer participation VR, as shown in Fig. 13, a
3D graphic object of a person walks around in the 3D map by
using a behavior script (program of movement-pattern rules).
Behavior scripts that can be easily created, modified, and
applied to human 3D models generate animation of multiple
human motions.

As shown in Fig. 14, we also developed a mechanism
capable of generating a fire at an arbitrary place in a building
represented by a 3D map and moving and deforming the
objects in the building.

Fig. 14. Installing siren and signboard.

With this simulation system, it is possible to acquire as
much information as possible before installing actual facilities
for a disaster in a building. As shown in Fig. 14, for example,
by installing a siren or a signboard at an appropriate place in a
3D map and devising methods to notify people in the facility
of disaster information, we can evaluate how these methods
can enable efficient evacuation.

Therefore, it is possible to arrange various objects on an
indoor 3D map and define human-behavior patterns by using
scripts. By creating scripts on how humans behave and react,
it is possible to take measures against evacuation guidance
by taking into account how sirens and signboards affect
humans. We can incorporate various evacuation procedures and
allow users to experience and evaluate them. Various types
of disasters are conceivable, and structural problems during a
disaster in real facilities can be clarified.

Collection of Human-Behavior Data

The system can record a user’s behavior (such as how
he/she moved) in the simulation of a disaster situation, and
save it for each user. This is used not only for evaluating the
reproducibility of the simulation but also for measuring the
effect of additional virtual equipment described below.

Behavior-Learning and Disaster-Countermeasure Sup-
port

As described above, an indoor simulation system of a large-
scale facility virtualizing a real building is made available to an
unspecified number of users. This is to allow the administrator
of the actual facility to disclose the system to these users
so that it can be used at arbitrary times. A user can learn
not only about the virtual disaster situations indoors but also
how to act in such a situation in the real world. The facility
administrator should add various tricks to the environment side,
encourage users to voluntarily move and evacuate safely, and
appropriately design the equipment.

VII. FUTURE PLAN

We will verify the effectiveness of Building-Scale VR by
carrying out a demonstration experiment using the disaster-
simulation system we are developing. Specifically, we will
create a 3D map of the entire floor of a building (e.g. library) at
Nagoya University and automatically arrange 3D objects that
can be moved and deformed using ArUco codes. Next, using
the disaster-simulation system, we will have virtual people
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walk around on a 3D map by using behavior scripts. We
will attempt to give an unspecified number of users a virtual
experience of disaster evacuation and collect their action log
data. By analyzing the log data, it will be possible to obtain
information concerning evacuation guidance and building-
interior redesign.

VIII. CONCLUDING REMARKS

We developed Building-Scale VR that consists of indoor
3D maps with operation targets and a VR headset capable
of position tracking in a building. We developed a method
for automatically measuring the inside of large facilities to
generate 3D indoor maps. This is accomplished using an
autonomous mobile robot that collects 3D data throughout a
building, allowing the data to be accumulated and integrated.
Building-Scale VR allows users to move within a 3D map by
walking around a real building and at the same time making it
possible to be immersed in a virtual version of the real world.
We installed an RGB-D camera onto a regular VR headset
allowing sensor data to be matched with map data to enable
position tracking.

As Building-Scale VR allows virtual manipulation of ob-
jects in an actual building, it is suitable for simulating situa-
tions such as disasters. Our disaster-simulation system based
on Building-Scale VR enables users to virtually experience
disaster situations and provides feedback on actual evacuation
behavior. This makes it possible to carry out complicated large-
scale simulations and training, which have been very difficult.

Our disaster-simulation system has not yet been subjec-
tively evaluated, but we believe it will be useful in disaster-
countermeasure planning.
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