
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Forming a Random Field via Stochastic Cliques:
From Random Graphs to Fully Connected Random

Fields

Mohammad Javad Shafiee
Department of

Systems Design Engineering,
University of Waterloo

Waterloo, Ontario, Canada
Email:mjshafiee@uwaterloo.ca

Alexander Wong
Department of

Systems Design Engineering,
University of Waterloo

Waterloo, Ontario, Canada
Email: a28wong@uwaterloo.ca

Paul Fieguth
Department of

Systems Design Engineering,
University of Waterloo

Waterloo, Ontario, Canada
Email: pfieguth@uwaterloo.ca

Abstract—Random fields have remained a topic of great inter-
est over past decades for the purpose of structured inference, es-
pecially for problems such as image segmentation. The local nodal
interactions commonly used in such models often suffer the short-
boundary bias problem, which are tackled primarily through the
incorporation of long-range nodal interactions. However, the issue
of computational tractability becomes a significant issue when
incorporating such long-range nodal interactions, particularly
when a large number of long-range nodal interactions (e.g., fully-
connected random fields) are modeled. In this work, we introduce
a generalized random field framework based around the concept
of stochastic cliques, which addresses the issue of computational
tractability when using fully-connected random fields by stochas-
tically forming a sparse representation of the random field. The
proposed framework allows for efficient structured inference
using fully-connected random fields without any restrictions on
the potential functions that can be utilized. Several realizations
of the proposed framework using graph cuts are presented
and evaluated, and experimental results demonstrate that the
proposed framework can provide competitive performance for
the purpose of image segmentation when compared to existing
fully-connected and principled deep random field frameworks.

Keywords—Fully connected random field; random graph;
stochastic cliques; graph cuts; Markov random fields

I. INTRODUCTION

Probabilistic graphical modeling using random fields such as
Markov random fields (MRFs) and conditional random fields
(CRFs) have become very prominent and widely used for
structured inference. A particular structured inference challenge
often tackled using random fields given the promising results
is that of image segmentation [1]–[3], where the use of random
fields facilitates for the incorporation of spatial information to
improve modeling accuracy. Conventional random field models
used to incorporate such spatial information have typically
made use of short-range, local nodal interactions. The pairwise
potential in such models is formulated with a label compatibility
function which penalizes the assignment of different labels
within small locally-connected nodal neighborhoods, leading
to the short-boundary bias problem [4] that exhibits itself in
the form of excessively smoothed segmentation results when
applied to the problem of image segmentation.

Strong evidence [5]–[7] has shown that increasing the

number of long-range interactions in the model can attenuate
the short-boundary bias problem, with the extreme case being
fully-connected nodal interactions [8] which computationally
is intractable. Motivated by this, the short-boundary bias
problem associated with conventional random field models
have been tackled in two different directions: 1) the use of
fully-connected random fields via a new data representation (i.e,
dense conditional random fields (DCRFs)) and specific potential
function restrictions to achieve computational tractability, and
2) introduction of new higher-order pairwise penalty functions
to account for elongated boundaries.

The first direction for tackling the short-boundary bias
problem (i.e., the excessive smoothness over boundaries), first
proposed by Krähenbühl and Koltun [9], involves the use of
fully-connected CRFs within an efficient structured inference
framework to account for all possible nodal interactions.
This new structured inference framework (DCRF) addressed
the computational tractability problem associated with fully-
connected random fields by restricting to specific potential
functions (i.e., mainly Gaussian) and incorporating a new
data representation (i.e, Permutohedral lattices) [10]. Further
extensions [11]–[13] to this framework were proposed to relax
certain assumptions and limitations associated with [9], but
required feature space transformations such that a pairwise
potential under a Gaussian kernel is obtained in order to take
advantage of Permutohedral lattices for efficient inference. As
such, this approach limits a major advantage of CRFs, which is
the ability to use arbitrary potential functions when modeling.

The second direction, as proposed by Jegelka and
Bilmes [14] and Kohli et al. [15] (which is known as the
principled deep random field model), involves the introduction
of new higher-order pairwise penalty functions that change the
cost of the edges that constitute a cut in the segmentation.
As such, these models penalized the number of types of
label discontinuities instead of penalizing the number of
label discontinuities (which is used in conventional CRFs). A
potential limitation of this second approach is that it does not
leverage long-range nodal interactions to the same extent as the
first approach where all possible nodal interactions are taken
into account, and as such may be more limiting compared
to the first approach when dealing with complex scenes
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where complex boundary structures with similar characteristics
manifests themselves at large distances away from each other.

While both directions hold significant promise, here we
investigate a different direction to addressing the short-boundary
bias problem through the use of fully-connected CRFs (thus
taking advantage of all possible nodal interactions) in a
computationally tractable manner without being restricted to
specific potential functions when modeling. This approach
proposes an efficient structured inference using fully-connected
CRFs that attempts to combine random graph theory [16] with
random field theory. More specifically, we are motivated by
fundamental work [17], [18] in graph sampling and random
graph theory where it was shown that it is possible to
extract sufficient information from dense graphs by examining
stochastic sparsified versions of such graphs. As such, here we
introduce a novel approach to probabilistic graphical modeling
where the underlying dense graph of a fully-connected CRF
is stochastically sparsified, thus addressing the computational
complexity associated with structured inference using fully-
connected CRFs without needing any additional restrictions or
assumptions that can limit modeling power.

Although the previous works [19], [20] introduced and ana-
lyzed the concept of the stochastic clique in specific situations,
here a generalized probabilistic graphical modeling framework
is introduced that unifies all previous and preliminary works
based on the concept of stochastic cliques, where a fully-
connected CRF is stochastically sparsified through the stochastic
formation of a subset of cliques within the fully connected
random field to be harnessed in the inference procedure. It will
be illustrated that such stochastically sparsified representations
will yield approximately the same behaviors as that of the
fully-connected CRF from which they came from, and as such
should provide approximately the same results when applied to
the problem of image segmentation while yielding significantly
reduced computational costs. Furthermore,

• A number of different realizations of the proposed
modeling framework is introduced based on different
f-divergences, within which the approaches proposed
in [19], [20] are limited, special cases.

• A novel abstraction strategy is introduced to im-
prove computational efficiency when computing f-
divergences in the stochastic sparsification process to
further improve computational efficiency within the
proposed realizations.

This paper is organized as follows. The proposed proba-
bilistic graphical modeling framework based on the concept
of stochastic cliques is presented and discussed in Section II.
Experimental results in the context of image segmentation are
presented and discussed in Section III. Finally, conclusions are
drawn and future work is discussed in Section IV.

II. METHODOLOGY

In this section, the theory behind the proposed probabilis-
tic graphical modeling framework based on the concept of
stochastic cliques will be explained as follows. First, CRFs and
random graph theory is explained in relation to stochastic
cliques. Second, the fundamental theory behind stochastic
cliques will be presented. The conditions satisfied by the

stochastically sparsified representation of the fully-connected
CRF produced by the proposed framework such that its behavior
is approximately the same as the fully-connected CRF from
which it came from is discussed. Third, realizations of the
proposed framework based on different f-divergences are
introduced. Fourth, the abstraction strategy used to improve
computational efficiency when computing f-divergences in the
stochastic sparsification process is presented.

A. Conditional Random Fields

In the context of CRFs, the problem of image segmentation
is typically formulated as a Maximum A Posteriori (MAP)
problem, where the probability of random field Y given obser-
vations X is factorized by potential functions considering the
Hammersley–Clifford theorem [21] and Gibbs distribution [22]:

P (Y |X) =
∏
i

Ψi(yci , X), (1)

where yci is a subset of random variables in the random
field Y defined by the clique structure ci and X is the
observations. The potential function Ψi(·) is an arbitrary non-
negative function [23] defining the relationship among random
variables yj ∈ yci based on observations X . The exponential
representation can satisfy the non-negative constraint and take
advantage of arbitrary potential function simultaneously; hence
(1) can be formulated as

P (Y |X) =
1

Z(X)
exp

(
−ψ(Y,X)

)
, (2)

where Z(X) is the partition function or normalization
constant and ψ(·) is the potential function (also referred to
as the energy function in some random fields literatures [22],
[24]).

The potential function ψ(·) is factorized based upon clique
structures as a combination of single cliques (i.e., unary
potential function) and higher-order cliques:

ψ(Y,X) =

n∑
i=1

ψu(yi, X) +
∑
ϕ∈C

ψp(yϕ, X) (3)

where ψu(·) is the unary potential function and ψp(·) is
the spatial potential function with C being the set of higher-
order clique structures. The higher-order cliques can contain
several random variables based on the neighborhood size.
However, the pairwise clique (i.e., the corresponding term
is called pairwise potential function) is a commonly-used
clique structure in literature [25]–[27]. The unary potential
encodes the likelihood model of each random variable yi and
its corresponding measurement, while the pairwise potential
represents the relationship between random variables within a
clique structure ϕ ∈ C and incorporates the spatial information
into the model. The pairwise potential ψp(·) penalizes the
assignment of different labels to random variables in a clique
based on some associated properties (e.g., in the case of
image segmentation, based on appearance cues such as color
similarity). The main problem of this approach in conventional
(local) random field models is the excessive smoothing of
object boundaries due to the use of only local, short-range
nodal interactions in the model (e.g., 4- or 8-connected local
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neighborhoods). The pairwise potential penalizes the energy
function if two neighbor nodes are assigned different labels
which causes the smoothing problem known as short-boundary
bias [4]. A promising approach for addressing this issue
is the use of long-range nodal interactions. However, long-
range nodal interactions increase computational complexity
exponentially, and as such should be utilized intelligently to
manage computational complexity.

Here, we explore tackling the problem of computational
complexity by constructing a sparse graph representation
stochastically from the fully-connected random field by ran-
domly sampling the most informative nodal interactions.
Inspired by random graph theory [28], active cliques are
formed stochastically in the inference step to represent the
fully-connected CRF with a sparse graph model that provides
approximately the same results as the fully-connected CRF.
By combining random graph theory with random field theory
in such a way, the resulting sparse graph retains all of the
properties of a CRF, and as such can be used in all of the same
structured inference scenarios that CRFs are used for. It will
be shown that the constructed sparse graph model should have
the same behavioral as the fully connected CRF and generates
approximately the same results.

B. Random Graphs

Here, the underlying sparse graph representation is con-
structed stochastically from the fully-connected CRF based
on distribution probabilities, and as such generates a random
graph structure. In general, a random graph can be defined
as the probability distribution over graphs [16], and there are
several approaches to generate a random graph. Gilbert [16]
represented a random graph as G(n, p) –Gn,p, such that each
edge connectivity is determined independently based on the
selection probability p. The Erdös–Rényi model [28] represents
a random graph as G(n,m) where m determines the number
of connected edges of the graph, and the selection probability
p is computed to provide the exact m edges for the graph.
The Erdös–Rényi model is an effective model for extracting
the essential behavior of various graph properties, which are
explained in this section.

The generated random graph achieves specific struc-
tures [29] based on the selection probability p. Some interesting
cases based on p include:

p = o( 1
n
):Gn,p is the disjoint union of trees.

p ∼ c
n

: Gn,p contains cycles with different sizes for 0 <
c < 1. All connected components are either trees
or unicyclic components and almost all nodes (n−
o(n)) are in components that are trees.

p < 1
n

: Gn,p is dramatically different, compared to when
p > 1

n . The largest component has size O(log n)
when p < 1

n , while most of the small components
merge to a giant component with the size O(n)
and the remaining components are of size O(log n)
when p > 1

n . It is called double jump when
p ∼ 1

n + µ
n .

p = c logn
n

: All nodes in Gn,p are almost all connected
with c ≥ 1.

p ∼ ω(n) logn
n

: All nodes in Gn,p are almost all connected

Fig. 1. Example realizations of random graphs for some interesting cases
based on the selection probability p.

and the degrees of almost all nodes are asymptoti-
cally equal when where ω(n)→∞.

Fig. 1 presents example realizations of random graph be-
havior illustrating the structural behavior of the aforementioned
cases based on different values of selection probability p. The
effect of p on the behavior of the random graph structure
such that when the graph is connected (i.e., p = c lognn ) and
when the number of connectivities are adequate to model the
fully connected graph sparsely are the interesting properties
incorporated to define the proposed stochastic clique structure
and represent the fully-connected CRF by a sparse random
graph model for using within the proposed probabilistic
graphical modeling framework.

The random graph model was generalized
by Kovalenko [30], in which the graph can be encoded
by G(n, pij) where {i, j} are two different nodes in the graph.
By this new model the connectivity of each possible nodal
pair is determined based on an individual probability pij . The
stochastic clique structure presented here is inspired by this
generalized random graph model such that a clique is formed
based on a distribution created based on the corresponding
observation on its endpoint nodes.

C. Stochastic Cliques

The stochastic clique structure presented within the pro-
posed generalized probabilistic graphical framework provides
a new approach to representing the underlying graph of a
fully-connected CRF with a sparse random graph model while
preserving the properties of the original fully-connected CRF.
First explored as in a preliminary, special-case form in [19],
the generalized, unified theory behind stochastic cliques can
be described as follows. Given a fully-connected CRF where
each node i is neighbor with all other nodes in the graph:

Ni =
{
j|j = 1 : n, j 6= i

}
(4)

where |Ni| = n− 1, n is the number of random variables
of the random field, the set of active clique structures C is
stochastically defined as
C =

{
(i,Nij)|∀i ∈ G, Nij ∈ P(Ni), 1

S
{i,Nij} = 1

}
, (5)

where i is a node in the underlying graph G of the random
field, P(Ni) is the powerset of Ni (i.e., the neighbors of node
i and Ni is an element of P(Ni)), and 1

S
{i,j} represents a

stochastic indicator function determining whether the subset of
nodes can form a clique. Here, node i is guaranteed an element
of the clique ci,Nij

= (i,Nij) ∈ C while the other nodes of
the clique ci,Nij

are stochastically selected based on the jth
element of P(Ni).
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The stochastic clique indicator function 1
S
{i,Nij} is a sparsi-

fier function which transforms the underlying fully-connected
graph of the random field to a sparsified graph such that the
informative nodal interactions are preserved for the inference
procedure. In other words, 1S{i,Nij} samples informative cliques
from the set of all cliques in a fully-connected CRF to determine
the active cliques for the inference step. The proposed indicator
function extracts a distribution probability from the observations
to decide whether the clique should be constructed and can be
formulated as

1
S
{i,nij} =

[
F (X, ci,Nij

) ≥ γ · U(0, 1)
]
, (6)

where [·] is Iverson bracket [31], γ is a sparsity factor, and
U(0, 1) is a uniform distribution over the unit interval. F (·)
is a connectivity measure among the random variables in the
clique ci,Nij

.

1) Condition Satisfaction: In this work, the inference
framework is implemented in a graph cuts framework (i.e.,
s-t minimum cut) [32]. Due to the randomness involved
in representing the underlying graph of the fully-connected
CRF with a sparse graph representation via the concept of
stochastic cliques, it is important to show that the sparse
graph representation is at least connected (Connectedness)
to satisfy the Gibbs distribution [22]. It is also important
to show that the nodes in the sparse graph representation
of the fully-connected CRF obtained via the aforementioned
stochastic clique formation process can be partitioned into
approximately the same sets of nodes as the original fully-
connected graph of the fully-connected CRF by the use of
s-t minimum cut approach with a limited variation range on
the min cuts values (Minimum Cut), since the goal of the
proposed framework is to address the computational complexity
associated with structured inference using fully connected CRFs
without impeding performance.

• Connectedness. It was asserted by Kovalenko [30]
that the connectedness of the graph G(n, pij) is satis-
fied if all probabilities pij are at least as large as logn

n .
It is worth noting that the value of pij is very small if
the random field is constructed for tackling problems
where the number of random variables is large, such
as the problem of image segmentation. As an example,
for an image that is n = 400× 300, pij only needs to
be greater than logn

n = 9.7460× 10−5 to satisfy the
connectedness condition which corresponds to having
12 neighbours per pixel. As such, the connectedness
condition is easily satisfied for the purpose of image
segmentation.

• Minimum Cut. Karger [17], BenczuÌĄr and
Karger [18] proposed random sampling techniques for
approximating problems that involve cuts and flows
in graphs. They proved that given dense graph H and
an error parameter ε ≤ 1, there is a sparse graph G
which has O(n logn

ε2 ) edges and the value of each cut
in G is within (1± ε) times the value of corresponding
cut in H.
As such, this theorem asserts that the upper bound
of the sampling probability should be p ≈ n logn

n2ε2

to obtain a sparse graph with a bounded minimum
cut error of ε. This theorem introduces a trade-off

between the computational complexity of the graph
and the minimum cut error, ε. Therefore, it is possible
to sparsify a fully connected graph, by specifying
a fixed error rate for the cut accuracy. Using the
previous example of an image that is n = 400× 300,
to represent a fully connected random field as a sparse
representation via stochastic sparsification with an
error parameter of ε = 0.1, the number of edges
in the underlying sparse graph should be less than
or equal to n logn

ε2 ≈ 1.4034× 108 (or alternatively a
random graph generated with a selection probability
of p ≤ 0.0097) to satisfy the minimum condition. The
implications of said theorem leads us to the interesting
idea that a random field with an underlying sparse
graph randomly sampled from a fully-connected CRF
can result in the same s-t minimum cut partitioning as
the original fully-connected CRF.

The two aforementioned conditions determine the lower
(connectedness condition logn

n ) and upper (minimum cut
condition n logn

n2ε2 ) bounds of the probability p considering a
limited error for the result; within which the resulting sparse
graph representation obtained via stochastic clique formation is
a good approximation of the fully-connected CRF with a limited
error bound. It is noted that there is an adjustment between
the accuracy and computational complexity of the sparse graph
which should be optimized based on the application.

2) Graph Representation : Let us now mathematically
define the sparse graphical representation of the fully-connected
CRF obtained via stochastic clique formation. Graph H(V,F)
is the realization of the original underlying graph of the fully-
connected CRF, where V is the set of nodes in the graph
which represent the states yi ∈ Y , F is the set of edges of the
graph with |F| = n(n+1)

2 , and n is the number of nodes. Each
node vi ∈ V in the graph H(·) represents a random variable
yi associated with an observation xi ∈ X . Corresponding to
graph H(V,F), there is a graph G(V, E) with the same set
of nodes V and the set of edges E , |E| ≤ |F| constructed via
stochastic clique formation. G(·) is the realization of a random
graph [16] based on the underlying behavior of the stochastic
clique indicator [19].

As demonstrated in Fig. 2, each node in the graph is con-
nected to all other nodes while the active cliques participating
in the inference procedure are determined based on probability
distributions. The probability of two nodes forming a clique is
different for each pair of nodes. For example, two nodes with
higher values of F (·) (recall that F (·) is a connectivity measure
between two nodes) have a higher probability to construct an
active clique in the inference step than two nodes with lower
values of F (·). However, there is still a possibility for two
nodes i and k with lower F (·) to form a clique, as illustrated
in Fig. 2.

D. Realizations

While the proposed framework is a general approach that
can be applied to a large number of structured inference
problems, here we examine a realization of the framework
for the purpose of image segmentation.

For tackling the image segmentation problem, assume that
ci,Nij

is a combination of pairwise cliques in the random field;
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Fig. 2. An illustration of the sparse graphical representation of the
fully-connected CRF obtained via stochastic clique formation. The clique
connectivities for node i are stochastically formed based on the connectivity
measures (i.e., F (·)) between node i and all other nodes in the graph. For
example according to (6), two nodes with high values of F (·) (e.g., node i
and j, F (xi, xj)�) have a higher probability of connectedness than that for
two nodes i and k, which have a lower value of F (·) (F (xi, xj) �). For
a better visualization, only the potential connectivities for the center node i
are only shown. The blue dashed lines show the fully-connected nature of the
random field while the the solid black lines indicate the pairwise active cliques
in the inference step.

therefore, each Nij consists of only one random variable j 6= i
of the random field. Let each node i be characterized based
on the observations of the spatially surrounding neighbors of
node i, as encoded by a distribution function. Based on these
assumptions, (6) can be reformulated as

1
S
{i,nij} =

[
D(Si, Sj) ≥ γ · U(0, 1)

]
(7)

where Si and Sj are the encoded neighborhood statistics
for two nodes i and j in the pairwise clique ci,Nij , respectively.
Since the utilized observation is the statistical information,
F (·) in (6) can be a f-divergence measure D(·) between
two distributions Si and Sj . This approach is useful for the
problem of image segmentation as it enables the stochastic
clique indicator function to sample informative cliques as active
cliques based on their encoded neighborhood statistics, which
in the case of images can characterize textural information, in
the inference step.

Changing the connectivity measure F (·) in the stochastic
clique indicator 1

S
{i,nij} can change the behavior of the

stochastic clique indicator. Here, we present three different
realizations of the proposed generalized probabilistic framework
based on different f-divergence measures.

1) Bregman Divergence: For the first realization, a Bregman
divergence [33] is utilized to formulate D(·) in (7) such that

Dφ(Si, Sj) = φ(Si)− φ(Sj)− 〈Si − Sj ,5φ(Sj)〉 (8)

where φ(·) is a continuously-differentiable real-valued and
strictly convex function.

A limited, special case of this realization of the proposed
framework was first explored in [19], where φ(v) = ‖v‖2 and
Si is encoded by a Dirac delta distribution:

Si = δ[i] (9)

with δ[i] returning the measurement corresponding to node i.
This derivation guides the computation to a Euclidean distance
between two nodes (pixels) in the random field [19]. This
similarity measure is the popular one utilized in random field
approaches [9], [15].

2) Kullback-Leibler Divergence : For the second realization,
a Kullback-Leibler divergence is utilized to formulate D(·)
in (7) such that

DKL(Si, Sj) =

∫
Sj ln

(Si
Sj

)
. (10)

The nodes surrounded by similar structures should have
higher probability to be connected in the underlying graph.
Therefore, each node can be affected by other nodes with
similar structure and pixel intensity properties. The similarity
can be encoded by statistics extracted from neighbor nodes.

In several situations the underlying neighborhood statistics
may not be well characterized using a parametric distribution
model. Therefore, in this realization, we assume that the
neighborhood statistics follow a non-parametric distribution
(e.g., histogram) which characterize the surrounding appearance
of the pixel (node). We introduce the second realization based
on a non-parametric variant of the Kullback-Leibler divergence,
where Si and Sj are represented using discrete histograms:

DKL(Si, Sj) =

K∑
l=1

si,l ln
si,l
sj,l

(11)

where K is the number of histogram bins and si,l and sj,l
are lth discrete bins of histograms Si and Sj .

3) Hellinger Distance : The Kullback-Leibler divergence
is a f-divergence, when f(v) = v ln(v):

D(P ‖ Q) =

∫
f
(P
Q

)
dQ. (12)

To show the impact of different functions f(v) on the results,
as the last realization, F (·) is modeled within a f-divergence
framework such that f(v) = (

√
v− 1)2. The new function f(·)

turns the f-divergence to a Hellinger distance which, where
Si and Sj are represented using discrete histograms, can be
formulated as:

DH(Si, Sj) =
1√
2

K∑
l=1

(
√
sj,l −

√
si,l)

2 (13)

where K is the number of histogram bins and si,l and sj,l
are lth discrete bins of histograms Si and Sj .

E. Connectivity Computation via Abstraction

To construct the sparse graph representation of the fully-
connected CRF based on the stochastic clique structure within
the proposed framework, the one-to-one connectivity measure
F (·) must be computed for all nodes in the fully-connected
CRF. The computational complexity of this procedure increases
exponentially based on the number of random variables (e.g.,
number of pixels in the case of image modeling). However
some of these similarity evaluations are redundant since there
can be many similar nodes in the random field which they
have the same one-to-one similarity value with other nodes
in the random field. To significantly reduce the computational
complexity of computing connectivity measures, we are inspired
by the work of Nagamochi and Ibaraki [34], [35], where it was
shown that if an edge in the graph is not in the minimum cut,
then its corresponding nodes must be on the same side of the
minimum cut result. Fig. 3 demonstrates the aforementioned
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Fig. 3. Nagamochi and Ibaraki theorem [34], [35]; if an edge in the graph is
not in the minimum cut, then its corresponding nodes must be on the same
side of the minimum cut result. It is assumed that the red dashed line is the
minimum cut of the graph. In our example, the edge e is not crossed by the
cut; therefore, two blue nodes corresponding to edge e are in the same side of
the cut. As such, the connectivity measures between a node l and connected
nodes that are similar to each other on the opposite side of the cut can be
approximated as the same such that the resulting graph has the same minimum
cut value as the original graph. The proposed abstraction strategy approximates
the connectivity measure F between node l and node i as seen in left graph
by the expected value of F between node l and the set of nodes Xc = {i, j}
(denoted by E

[
F (xl, Xc)

]
) in the right graph. In this example after applying

the abstraction strategy, F1(·) and F3(·) in the left graph are replaced by
F̂1(·) in the right graph.

theorem visually. As such, the connectivity measures between a
node l and connected nodes that are similar to each other on the
opposite side of the cut can be approximated as the same such
that the resulting graph has the same minimum cut value as the
original graph. Motivated by this, we propose an abstraction
strategy where we approximate the one-to-one connectivity
measures at significantly reduced computational complexity
when compared to directly computing all connectivity measures.

Instead of computing the one-to-one connectivity measure
F (·) between a node and all other nodes, the abstraction strategy
computes the expected value of F (·) of the node and a group
of nodes that are similar to each other:

F (xl, xi)|xi∈Xc
' E

[
F (xl, Xc)

]
(14)

F (xl, Xc) =
{
F (xl, xi)|xi ∈ Xc

}
(15)

where Xc is the set of nodes in the graph, xi ∈ Xc is a
particular node in the group of similar nodes Xc, and E[·]
encodes the expectation function. The value of E

[
F (xl, Xc)

]
is approximately equal to the actual value of F (xl, xi) since
the Xc is the combination of nodes that are similar to each
other. Furthermore, even if this approximation does deviate
from the actual value of F (xl, xi), the nodes that are similar to
each other are on the same side of the cut with high probability
since they are grouped together as Xc and have zero value
of F (·) between each other while have larger values (greater
than zero or zero for exactly similar ones) of F (·) with outside
nodes of Xc. As such computing the expected value instead
of the actual value does not change the relationship amongst
the nodes inside the set Xc and the outside nodes; therefore,
the individual final cut edges are not changed based on the
aforementioned theorem. It is worth noting that the intra-edges
in the group of similar nodes have very large connectivity
measures such that their corresponding edges have very low
probability to be a cut edge. Therefore, the proposed abstraction
strategy has a very low probability of changing the actual cut
edges of the problem.

As shown in the right graph of Fig. 3, instead of computing
the connectivity measure

{
F1(·), F3(·)

}
between node l and

nodes i and j respectively, the abstraction strategy approximates
these functions as F̂1(·), the expected value based on a set of
the nodes Xc which consists nodes i and j. Using this strategy,
only one computation is done to approximate the connectivity
measure between node l and all nodes in the set Xc = {i, j}.

III. RESULTS & DISCUSSION

The performance of the proposed probabilistic graphical
modeling framework was compared with that of different state-
of-the-art random field inference frameworks for the problem of
interactive image segmentation. The three different realizations
of the proposed framework as discussed in Section II-D were
evaluated to investigate the tradeoff between the use of different
f-divergence measures. Natural images from the complex
scene saliency dataset (CSSD) [36], the Microsoft research
interactive dataset (MRIS) [37], and the fine structures dataset
(MSRA-FS) [20] were used in this evaluation. The CSSD,
MRIS and MSRA-FS datasets contain 200, 50 and 30 images
respectively. The segmentation procedure is conducted based
on user-specified areas as seed points corresponding to the
object of interest and the background.

The MSRA-FS images were chosen as the validation set to
find the optimal parameters through a grid search procedure.
The same parameters are used for different realizations of the
proposed framework for the purpose of comparison to maintain
consistency. To investigate the performance of the proposed
framework compared to existing state-of-the-art random field
inference frameworks, we also tested the principled deep
random field (PD) framework [15], which utilizes higher-order
pairwise penalty functions, and the dense CRF (DCRF) [25],
which utilizes fully-connected CRFs via Permutohedral lattices.
The implementations of these two frameworks are provided
by the corresponding authors via the source code their authors
had provided publicly. The reported optimal parameters of the
PD framework were consistent with the optimal solution of the
tested datasets. However, the reported optimal parameters of
DCRF had not produced the best result for the tested datasets
and so the parameters were selected based on a grid search
procedure to find the optimal solution.

For the proposed framework, we utilize the following
pairwise potential function ψp(yi, yj , X):

ψp(yi, yj , X) = θ(xi, xj) · |yi − yj | (16)

where θ(xi, xj) is defined as follows for 4-connected
cliques:

θ(xi, xj) = 0.05 +
0.95 exp(−0.5 |xi − xj |2)

σ
(17)

where σ is a controlling parameter, and θ(xi, xj) is defined
as follows for long-range cliques:

θ(xi, xj) =
1

1 + exp(−β |xi − xj |)
(18)

where the β is the controlling parameter. The use of such a
potential function illustrates the ability of the proposed frame-
work to utilize arbitrary potential functions without limitations
to specific potential functions (e.g., Gaussian potentials).
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The neighborhood statistics of each node in the image was
computed based on a neighborhood size of 5×5 centered by the
interested node in all realizations of the proposed framework.

The reported results in section III-A were conducted based
on the configuration of the proposed framework where the
expected number of connectivities per node is 30 cliques. It is
worth noting that this number of cliques per node satisfies the
conditions discussed in section II-C1.

As described in Section II-E it is necessary to determine
the set of Xc (Ω) for approximating connectivity measures
using the abstraction strategy. Here, for the problem of image
segmentation and for the sake of computational efficiency, a
set of sets (denoted by Ω = {Xc|1 ≤ c ≤ q}) is determined
by finding the optimal q sets of nodes such that the L2-norm
between the encoded statistics and relative positions of the
nodes within the sets and their corresponding set means is
minimized

Ω = argmin

q∑
c=1

∑
j∈Xc

(‖Sj − µS,c‖2 + ‖pj − µp,c‖2) (19)

where Sj and pj are the encoded statistics and relative
position corresponding to node j, respectively, and µS,c and
µp,c denote the means of the encoded statistics and relative
positions of the nodes within the set Xc, respectively. Based
on empirical testing, q = 500 sets was found to provide strong
segmentation performance.

All methods are examined and compared quantitatively
using three different performance metrics: 1) Region F1-
Score, 2) Boundary F1-score, and 3) Intersection over union
(IOU) [38]. The F1-score is formulated as

F =
2 · TP

2 · TP + FN + FP
(20)

where TP , FN and FP are the number of true positives,
false negatives, and false positives, respectively. Note that the
boundary F1-score [39] is evaluated based on a 2-pixel tolerance.
IOU is the intersection of the estimated segmentation result
per class and the ground truth, divided by the union:

IOU =
TP

TP + FP + FN
. (21)

All realizations of the proposed framework were imple-
mented in a graph cuts framework. The connectivity measure
is computed by use of the proposed abstraction approach
(Section II-E) for all realizations of the proposed framework
with the exception of the Bregman Divergence realization,
which is realized based on that presented in [19] as a baseline
reference. From this point on, BD, HD, and KLD will denote the
Bregman Divergence, Hellinger Distance, and KL-Divergence
realizations of the proposed framework.

A. Experimental Results

Tables I and II show quantitative comparisons of the tested
methods in terms of the region F1-score and the boundary
F1-score. As seen, the different realizations of the proposed
framework achieve competitive performance when compared
to the tested state-of-the-art PD and DCRF frameworks, and
even outperforms them in certain datasets. As illustrated in

TABLE I. REGION F1-SCORE RESULTS. THE PERFORMANCE OF THE
COMPARISON METHODS ARE DEMONSTRATED BY THREE DIFFERENT

DATASETS INCLUDING CSSD [36] AND MRIS [37] AND MSRA-FS [20].
THE TIME COMPLEXITY IS REPORTED BY AVERAGING THE RUNNING TIME
(IN SECONDS) OF THE METHODS. “BD”, “HD” AND “KLD” DEMONSTRATE
BREGMAN DIVERGENCE, HELLINGER DISTANCE, AND KL-DIVERGENCE
REALIZATIONS OF THE PROPOSED FRAMEWORK, RESPECTIVELY. “M+M”

STANDS FOR MATLAB WITH MEX IMPLEMENTATION

DCRF [9] PD [15] BD [19] HD KLD
CSSD 0.8551 0.8286 0.8268 0.8625 0.8624
MRIS 0.8717 0.9032 0.8756 0.8862 0.8861
MSRA-FS 0.8764 0.8592 0.8618 0.8702 0.8707
Average 0.8677 0.8636 0.8547 0.8729 0.8730
Implement. C++ M+M M+M M+M M+M
Time (s) 0.48 17.512 5.275 2.431 2.494

TABLE II. BOUNDARY F1-SCORE RESULTS. THE PERFORMANCE OF
THE TESTED FRAMEWORKS ARE DEMONSTRATED IN THE CASE WHERE

2-PIXEL TOLERANCE DISTANCE IS CONSIDERED TRUE POSITIVE

DCRF [9] PD [15] BD [19] HD KLD
CSSD 0.5212 0.5349 0.5235 0.5659 0.5655
MRIS 0.5452 0.6389 0.6175 0.6133 0.6121
MSRA-FS 0.5991 0.5413 0.5371 0.5731 0.5746
Average 0.5551 0.5715 0.5593 0.5841 0.5840

Table II, the different realizations of the proposed framework
was able to preserve boundaries as well as the regions of interest
with good accuracy when compared to the other frameworks.
From Table III, it can be seen that the reported results of
the intersection over union (IOU) show a similar trend as the
region F1-score results of Table I. The average score rows
in Tables I, II and III illustrate that the proposed framework
provides strong overall performance when compared to other
compared state-of-the-art approaches based on the different
quantitative performance metrics.

Table I reports the computational run-time of the compared
frameworks. By comparing the computational complexity of the
BD realization and two other realizations, it can be concluded
that utilizing the abstraction strategy helps to capture more
informative cliques while also decreasing the computational
complexity of the graph cuts procedure. It can be observed
that all realizations of the proposed framework achieved lower
running times when compared to the PD framework which
is implemented using a combination of MATLAB with MEX
as with the proposed framework. It can be concluded that the
proposed framework is efficient and reasonably fast enough
according to its implementation.

Example segmentation results produced by the tested
frameworks for the different datasets are shown in Fig. 4. It can
be seen that the PD framework has difficulties in preserving
boundaries in the test cases shown, with either the background
being merged with the object or parts of the object being
classified as background (particularly in the “Tree” image
(sixth row) and the “Reclining Girl” image (second row).
DCRF was able to preserve boundaries better than PD for both
the “Standing girl” (fifth row) and “Reclining girl” images;
however, the results produced by DCRF exhibited additional
segmentation artifacts seen in “Monk” image (third row) and
the ”Man with hat” image (fourth row). It can be observed
that the proposed framework is capable of preserving narrow
and elongated boundaries, as evident by the preservation of the
tree stem in the “Tree” image by the KLD and HD realizations
and the dog’s eye and nose in the “Dog” image (first row)
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(a) Image (b) Ground Truth (c) DCRF (d) PD (e) BD (g) KLD (h) HD

Fig. 4. Example segmentation results for the different tested frameworks by three datasets. It can be observed that stochastic clique structure is able to capture
informative cliques from a fully-connected random field leading to strong segmentation performance of the propose framework when compared to existing
state-of-the-art frameworks. “BD”, “HD” and “KLD” stand as Bregman divergence, Hellinger distance and KL-divergence realizations of the proposed framework,
respectively.

TABLE III. INTERSECTION OVER UNION (IOU) RESULTS. TO ENSURE
THAT THE REPORTED PERFORMANCES OF F1- SCORES ARE CONSISTENT,

ALL FRAMEWORKS ARE COMPARED BASED ON IOU QUANTITATIVE
MEASURE

DCRF [9] PD [15] BD [19] HD KLD
CSSD 0.7626 0.7306 0.7328 0.7740 0.7739
MRIS 0.7912 0.8320 0.8057 0.8091 0.8092
MSRA-FS 0.7953 0.7287 0.7737 0.7846 0.7852
Average 0.7830 0.7637 0.7707 0.7892 0.7894

by all realizations of the proposed framework. Furthermore,
it can be observed that the proposed framework is capable of
dealing with scenarios characterized by complex and cluttered
backgrounds, as evident by “Tree” and “Man with hat” images.

IV. CONCLUSION

In this work, a generalized probabilistic modeling frame-
work based on the concept of stochastic cliques was proposed
to facilitate for the use of fully-connected CRFs for structured
inference in a computationally tractable manner without addi-
tional restrictions or limitations on potential functions being
imposed. It is illustrated that the proposed framework provides
competitive performance for the purpose of image segmentation
when compared to existing fully-connected random field

frameworks and the principled deep random field framework,
which are considered to be state-of-the-art in the random field
frameworks for image segmentation. Although the reported
results are based on the use of the standard graph cuts inference
approach, the proposed framework can be utilized within
different inference approaches, which is a worthy direction
for future investigations.
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