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Abstract—In common multiclass classification problem, the 
main difficulties occur when classes are not mutually exclusive. 
In order to solve problems such as document classification, 
medical diagnosis or scene classifications we need to use robust 
and reliable tools. In this paper, we consider the problem of scene 
classification treated by hidden Markov models (HMMs) using a 
novel and intuitive classification process. We introduce a 
modeling system that scales the parameters of the HMM 
(observations and hidden states) into the variables of the scene 
classification problem (scene categories and objects belonging to 
the scene). The HMM is constructed with the support of object’s 
weight ranking functions. Inference algorithms are developed to 
extract the most suitable scene category from the generated 
discrete Markov chain. In order to approve the efficiency of the 
proposed method, we used the MIT Indoor dataset (2700 scenes 
distributed into 67 scenes categories) to evaluate the classification 
accuracy. We also compared the obtained results with the 
current state of the art’s methods. Our approach distinguishes 
itself by obtaining results going until 76% of well classified 
scenes. 

Keywords—Scene classification; object’s weight; hidden 
Markov models 

I. INTRODUCTION 

Having information about the surrounding environment is 
a major asset in achieving tasks or taking decision for any 
exciting agent (human or robot). The ability to build such an 
instantaneous concept guides the agent for a better 
accommodation and efficiency. For this purpose, the general 
problem of scene classification has received considerable 
attention in the recent past and turned out to be a major field 
in computer vision. In this paper, we consider the scene 
classification problem with objects as attributes [1] formally 
defined as the following: Given a set of finite scene categories 
𝑆𝐶 ൌ ሼSCଵ, SCଶ, … , SC୬ሽ an input scene 𝑆 containing a set of 
finite properties 𝑃 ൌ ሼPଵ, Pଶ, … , P୬ሽ; we are not going to define 
rigorously what a property is, but we can simply say that it 
contains semantic information about 𝑆, e.g. Objects, Actions, 
Size, relationships, etc. We wish to assign the most suitable 
scene category 𝑆𝐶௜ to 𝑆  knowing  𝑃 . For convenience, let us 
assume the compact notation (1). 

  μ ൌ ሺ𝑆𝐶, 𝑃ሻ   (1) 

We introduce an innovative new approach in scene 
classification problem relying on a recognized and strong 
mathematic tool of prediction and classification: The hidden 
Markov models (HMM). The first challenge consists on 
finding the right modeling of the scene classification problem 

so it can be solved by the HMMs architecture. Analogies 
between the inputs and outputs parameters of both entities 
(HMMs and scene classification) need to match. In parallel, 
properly ordered input parameters in the HMM are very 
critical to the final result accuracy which made us develop 
weight functions that assign a weight measure to each object 
of the dataset. This weight measure is first used to quantify the 
saliency and importance of an object as a single entity then to 
distinguish the most suitable object knowing the current scene 
category. Once elaborated, the process generates a discrete 
Markov chain containing the scene categories that represent 
the most the selected objects. Afterwards, an inference 
algorithm is developed to extract the most suitable scene 
category from the discrete Markov chain. This way of 
approach is not common [2], [32] for the classification using 
an HMM and is going to be explained and tested throughout 
this paper. 

The remainder of the paper is organized as follow. 
Section II will introduce the reader to an overview of existing 
approaches and methods treating the scene classification 
problem. Section III presents the formal definition of hidden 
Markov models (HMM) and the construction of the discrete 
Markov chain. Section IV introduces the proposed method and 
explains with details all the stated contributions. Finally, 
Section V experiments the proposed method showing the 
obtained accuracies while varying the different input 
parameters. A comparison with some existing method in the 
literature is also presented. We conclude by summarizing our 
results and outlining steps to improve the scene classification 
accuracy using hidden Markov models. 

II. RELATED WORKS 

In recent years, several image descriptors have been 
developed in order to increase the ability of computer vision 
system towards a higher level of interpretation. Arens and 
Ottlik [4] are one of the first to implement a scene 
classification experiment in concrete street traffic application 
retrieving textual description of videos sequences. Later on, 
their work has been improved by Dejan and Rok [5] where a 
scene interpretation based a Description Logic (DL) and a top 
down guided 3D CAD model-based vision algorithm were 
developed aiming to bring more autonomous activity to robot 
on objects and scenes. Such as [5] logical languages for scene 
classifications have been widely studied [6], [7] where 
predicates represent the different properties of the scene 
(objects, size, positions) and the inference system is used to 
identify the associated scene categories. The Description 
Logic (DL) was the most successful for representing a real 
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world state, Neumann and al [8] introduced the DL as 
knowledge reasoning and representation system for scene 
classification with temporal and special relationships. Their 
proposed approach exploits relations between objects, 
occurrences, events and episodes joining at the same time 
visual evidence and contextual information. A more specific 
contribution has been made by [9] applying the DL for road 
scenes classification and intersections geometries. The 
formalism of the DL being similar to the problem of scene 
classification, the approach shows successful and promising 
results. The complexity of scene classification increases 
relatively to the number and size of scenes. To face this issue, 
first approaches were to reduce the choice of scene categories 
to a binary perception: Indoor/outdoor scene classification 
[10], [11] and very satisfying results were obtained. 
Nevertheless, the approaches were not extendable to 
multiclass classifications. Another approach consists on 
predicting the location of salient area in the scene [12], [13]. 
In the same perspective, the classification process is isolated 
to a “Focus of attention” analogously to human vision 
activities [14]. Agnes and Sven [15] proposed an indoor scene 
classification using a 3D approach mixed with Gist scene 
features, while [16] recorded better results using Gist features 
in outdoor scene classification. We can find in the literature 
several methods of scene classification using low level 
approaches [17]-[19] even if [19] was able to get quality 
results by adopting an approach that shares discriminative 
feature between the different scene categories, however, based 
on [20], [21], [11], scene classification depending on low level 
approaches works poorly. In contrast, high level approaches of 
scene classification were developed. In this case, a scene is 
represented with high level information such as objects, 
actions, etc. [0]. Quattoni and Torbralba [3] have proposed 
model of indoor scene classification where a comparison 
between scenes is made using a set of ROI to find the right 
scene category of the given image. The main idea is the fact 
that scenes containing the same objects tend to have similar 
scene category. In the same perspective, [22], [23] proposed a 
deformable part-based models (DPM’s) using SVM’s as 
training models. The originality of [22], [23] is the 
introduction of an open-ended learning of latent structures for 
scene classification problems. [24] proposed an SVM 
classification model using maximization likelihood and 
margin, this approach is made possible by the fact that the 
optimization problem was efficiently solved. [25] introduced a 
new visual descriptor for recognizing scene categories based 
on a holistic representation and has a strong generalizability 
for category recognition. It’s mainly based on encoding the 
structural properties within an image and suppresses detailed 
textural information. Representing an image as a bag of 
objects has recently demonstrated impressive results [20], 
[26], [27], [40]. Herranz et al. [15] explored the path of scene 
classification using conventional neural networks (CNNs) 
exploring the way to combine effectively scene centric and 
object centric knowledge into a CNN architecture. Scene 
classification state of the art based on CNNs becomes very 
successful [27] principally due to the impressive obtained 
results. However CNNs are known for two main 
inconveniences: 1) the huge amount of data needed for the 
training part; 2) the high computational cost. In our case, we 

are not going to compare our results with the CNNs 
architecture due to the differences in terms of environment’s 
preparation (Amount of data and hardware prerequisites). The 
proposed method requires much less data and computational 
cost. In the same perspective of high level scene classification, 
Biederman et al. [13] assume that relations between an object 
and its environment can be reduced to five classes in order to 
characterize the organization of objects into real-world scenes. 
These classes have the ability to reduce the anomalies that can 
occur in scene classification problem. Further investigations 
have been introduced later on by [28] integrating other classes 
of relationship. Fuzzy logic has also been used widely for 
scene classification [29], [30], Baiget et al. [31] were one of 
the first who computerized the geometrical construction of 
scenes studying human behavior, the learning was done using 
a derivation of fuzzy logic called FMTHL (fuzzy metric 
temporal horn logic). In the same idea, Zitnick et al. [40] 
adopted a statistic approach to extract semantic information 
and identify the scene categories. Their approach and results 
are influenced by the assumption that abstract images can 
accurately represent world real scenes. While all the 
approaches reviewed in the literature differ in many features, 
they share the same aspect of using a learning part known as 
background knowledge to assist the identification of the scene 
category. 

III. HIDDEN MARKOV MODELS (HMMS) 

A. Definition of HMMs 

The hidden Markov model is a probabilistic signal 
processing approach that aims to extract the maximum 
likelihood model from a sequence of observable events [2]. 
Robust and efficient, it has been known to mathematicians 
since a long time but has only been applied recently on 
numerous modern applications such as speech recognition, 
computational molecular biology and other areas of artificial 
intelligence and pattern recognition [2]. In theory, the HMMs 
are presented as a finite number N of states and M of 
observations symbols. Each state is assigned to a clock time t 
and possesses a measurable property. Transitions from 
different states are based upon a transition probability 
distribution that depends on the previous state (The Markovian 
property). After each transition made, an observation output 
symbol is yield based upon an emission probability specific to 
the current state. There are thus N emission probabilities for 
each observation. Formally, the HMM are defined as follow 
[2]: 

 T: Observation sequence length (total number of clock 
times t) 

 N: Number of hidden states {S1…Sn} 

 M: Number of observations symbols {o1…on} 

 A: state transition probability { aij } where  
aij = P[qt+1=Si | qt=Sj)]  j,i in [1,N] 

 B : observation emission probability { bi(ok) } where 
bi(ok)= P[ok at t[qt=Si] i in [1,N],  k in [1,M] 

 π: The initial state distribution {πi} where πi=P[q1=Si] i 
in[1,N] 
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Having the appropriate values of N, M, A, B and π an 
observation sequence O= {o1, o2, o3 …oT} is generated 
following Algorithm 1: 

Algorithm 1 
1- Choose an initial state q1 according to the initial state 

distribution π  
2- Set t=1.  
3- Choose ot according to Bi(ot) the symbol probability 

distribution in state t 
4- Choose t+1 according to ai,i+1. The state transition 

probability distribution for state t;  
5- Set t=t+1  
6- If t <T go to 3 else terminate the process 

A compact notation  is used to represent in (2) for a given 
HMM. 

=(A, B, π)     (2) 

B. Inference of Hidden Markov Model and Dynamic 
Programming 

Given a model =(A, B, π) and an observation sequence 
O={O1,O2...On} the most basic approach to estimate the 
probability of O knowing  i.e P(O|) is by computing the 
probabilities of all possible sequences of hidden states having 
a length of T ( T=Card(O) ) that are eligible to emit O. The 
probability of such a sequence can be compute as follow: We 
first start by computing the probability of a fixed set of hidden 
states I knowing a model  using (3). 

𝑃ሺ𝐼|ሻ ൌ πଵ୧ 𝑎௜ଵ௜ଶ𝑎௜ଶ௜ଷ𝑎௜ଷ௜ସ … 𝑎௜்ିଵ௜்  (3) 

Next, we compute the probability of a given observation O 
knowing the hidden states I and the model  using (4). 

𝑃ሺ𝑂|𝐼, ሻ ൌ 𝑏௜ଵሺ𝑂ଵሻ𝑏௜ଶሺ𝑂ଶሻ𝑏௜ଷሺ𝑂ଷሻ … 𝑏௜்ሺ𝑂்ሻ (4) 

The probability where O and I occur at the same time (i.e 
O is emitted by I) is simply the product of (3) and (4) as 
illustrated in (5). 

𝑃ሺ𝑂, 𝐼|𝑇ሻ ൌ 𝑃ሺ𝑂|𝐼, ሻሺ𝑃ሺ𝐼|ሻ   (5) 

Finally, the probability of O knowing  is obtain by 
summing the probability computed in (5) over all the possible 
hidden states I as represented in (6). 

𝑃ሺ𝑂|ሻ ൌ ∑ 𝑃ሺ𝑂௜|𝐼௜, ሻ ∗்
௜ୀଵ 𝑃ሺ𝐼௜|ሻ                                     ሺ6ሻ  

An explanation of (6) can be seen as the following: At 
time t=1, we are in the hidden state i1 with an initial 
probability of πi and emit the symbol o1 with the probability 
bi1(o1). At time t=2, we will make a transition to the hidden 

state i2 with the transition probability ai1i2 (note that the 
transition can be reflexive) and emitting the symbol o2 with 
probability bi2(o2) and so on until t=T. 

The reader can easily notice that computing the probability 
(6) requires a lot of computation time, exactly up to ሺ2𝑇 െ
1ሻ𝑁் multiplications and 𝑁் െ 1 additions. Another approach 
is proposed with dynamic programming. 

In our case, we are more interested in finding the 
most likely sequence of hidden states that can emit a sequence 
of given observations. A dynamic programming algorithm for 
finding such a sequence is widely known as the Viterbi 
algorithm [2]. The key idea of the Viterbi Algorithm is to keep 
only the max probability path of the hidden states -not all the 
paths- that can emit the current sequence of observation. 

Given a model =(A,B,π) a set of observation O={o1, 
o2..oT} The Viterbi algorithm, presented in algorithm 2, 
introduces the dynamic programing method [2]. 

Algorithm 2 : Viterbi (,O) return BEST_PATH 
1- Creates a path probability matrix VITEBI[N+2,T] 
2- For each state I do 
3- VITERBI[S,1]:=pi1*bi(O1) 
4- BackPointer[s,1]:=0  
5- End for  
6- For each time step t from 2 to T do  
7- For each state I  
8- Viterbi[S,t]:=MAX{s’=1:N} viterbi[s’,t-1]*as’s*bi(Ot) 
9- Backbpointer[s,t] :=argmax{s’=1,N} viterbi[s’,t-

1]*as’,s 
10- End for 
11- End for  
12- ZT= argmax{s’=1,N} viterbi[s’,T]*as’,s 

The complexity of the Viterbi algorithm is on the order of 
o(MN) where M Number of observations symbols and N 
number of hidden states [2]. This complexity is significantly 
better than the previous method. The obtained result 
“BEST_PATH” is generally named as “Discrete Markov 
Chain”. 

IV. PROPOSED METHOD 

In this section, we’re going to explain the different 
contributions made in this paper. We describe the weight 
functions which calculate the saliency of a given object. Then, 
we explain the investigation made to solve the scene 
classification problem using an HMM architecture. The aim is 
to ensure a perfect analogy between their formal definitions. 
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Fig. 1. Workflow of the proposed classification process based on hidden Markov model.

Finally, an inference algorithm is presented in order to 
extract the most suitable scene category from the discrete 
Markov chain. To illustrate the given contributions, Fig. 1 
summarizes the complete workflow of the proposed method. 
First, The Dataset [3] is divided into a learning dataset (80%) 
and test dataset (20%) as recommended by [3]. The learning 
dataset is used to construct the necessary entities to the 
proposed classification process composed of initial 
probabilities distribution, transition and emission probabilities 
computation. This part of the workflow is called the “learning 
part”. The test dataset is used to certify the reliability of the 
proposed method’s classification. A ranking function selects 
the most salient objects to represent the input scene. The next 
step consists on going through the selected object while 
constructing the discrete Markov chain. Finally, an inference 
algorithm is developed in order to extract the most suitable 
scene category from the discrete Markov chain. Each of these 
steps will be deeply explained in the upcoming subsections. 

A. Object’s Weight Measure and Scene Similarities 

In this subsection we’re going to present the weight 
measures developed to quantify the saliency of given objects. 
After that the similarity measure between two different scene 
categories is introduced. 

1) Object’s Weight Measure Computation 

In order to determine if an object has an impact on the 
scene category classification process, we need to develop a 
weight function to quantify its saliency. 

We introduce the following definitions to clarify the 
content of equations. 

Let, 

 FO(SCi, Oi) : A function that returns the frequency of 
appearance (all the occurrences) of object Oi in all the 
different scenes that are labeled as scene category SCi 

 NO(SCi, Oi)  : A function that returns the number of 
times (without counting doubles) object Oi appears in 
all scenes labeled in current scene category SCi  

 FOall(Oi) : A function that returns the frequency of 
appearance (all the occurrences) of object Oi in all the 
dataset 

 NOall (Oi): A function that returns the number of times 
(without counting doubles) object Oi appears in all the 
dataset. 

Note: The FO ( and FOall ) returns all the occurrences of 
appearance of the object Oi in current scene, conversely, the  
NO ( and NOall) returns the number of time an object Oi exists 
in the current scene. The correlation between FO (respectively 
FOall ) and NO (respectively NOall) is defined in (7) 

Let Oall  be the set of all objects in the dataset 

∀ 𝑜௜ ∈ 𝑂௔௟௟, 𝐹𝑂ሺ𝑜௜ሻ ൒ 𝑁𝑂ሺ𝑜௜ሻ   (7) 

First, we take into consideration the fact that an object oi 
belongs to a particular scene category SCi. (8) demonstrates 
how the weight measure 𝑊ሖ  is calculated. 

𝑊ሖ ሺ𝑆𝐶௜, 𝑜௜ሻ ൌ ൞

   0 if  NOሺSC୧, o୧ሻ ൌ 0 
 

൬
୒୓ሺୗେ౟,୭౟ሻూో൫౏ి౟,౥౟൯

୒୓౗ౢౢሺ୭౟ሻ∗୊୓౗ౢౢሺ୭౟ሻ
൰    𝑒𝑙𝑠𝑒 

  (8) 

We generalized (8) to get an equation independent of any 
scene category as presented in (9). 

Nevertheless, in order to generate appropriate calculations 
processes, a normalized version of (9) is elaborated in (10) to 
ensure that the weight values of objects oi are held between 0 
and 1. 

Since (10) has no upper bound, its value expends as the 
occurrences of the object raises, we associate the value of the 
variable “MaxValue” according to the current dataset. 
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𝑊ሺ𝑜௜ሻ ൌ  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

0 if max𝑆𝐶𝑖
ሺNOሺSCi, oiሻሻ ൌ 0                                       

  
 

ౣ౗౮ቀಿೀ൫ೄ಴೔,೚೔൯ቁ
൭

ౣ౗౮ቀಷೀ൫ೄ಴೔,೚೔൯ቁ
ೄ಴೔                           

൱

    ೄ಴೔                                                                               

ಿ೚ೌ೗೗൫ೄ಴೔,೚೔൯∗ಷೀೌ೗೗൫ೄ಴೔,೚೔൯
   else           ሺ9ሻ

 
 

       FOሺSCi, oiሻ SCi ൌ SC1, … , SCN

  and NOሺSCi, oiሻ SCi ൌ SC1, … , SCN   

  

𝑊෩ ሺ𝑂𝑖ሻ

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0 if maxௌ஼೔
ሺNOሺSC୧, o୧ሻሻ ൌ 0                                       

  
 

maxቀ𝑁𝑂൫𝑆𝐶𝑖,𝑜𝑖൯ቁ
൭

maxቀ𝐹𝑂൫𝑆𝐶𝑖,𝑜𝑖൯ቁ

𝑆𝐶𝑖                           
൱

    𝑆𝐶𝑖                                                                               

𝑁𝑜𝑎𝑙𝑙൫𝑆𝐶𝑖,𝑜𝑖൯∗𝐹𝑂𝑎𝑙𝑙൫𝑆𝐶𝑖,𝑜𝑖൯
%MaxValue   else

 
 

       FOሺSC୧, o୧ሻ SC୧ ൌ SCଵ, … , SC୒

  and NOሺSC୧, o୧ሻ SC୧ ൌ SCଵ, … , SC୒   

    ሺ10ሻ  

Experimentation made us assume that the weight functions 
Wሖ  and 𝑊෩  represent more faithfully the saliency of a given 
object oi than simple probability measures. Nevertheless, the 
results are biased by the experimented dataset. 

2) Scene Categories Similarities Computation 

The aim of quantifying the similarity measure between two 
scenes categories SCi and SCj is to grant the classification 
process the possibility to switch to the most suitable scene 
category in a given clock time “t”. (11) shows how to 
calculate the similarity measure α between two scene 
categories SCi and SCj ( i can be equal to j ). 

Let SCi and SCj be two scene categories from the given 
dataset and SCiOi={oi1,oi2..oik} be the set of objects belonging 
to all the scenes in the dataset labeled as SCi and 
SCjOj={oj1,oj2..ojk'} be the set of objects belonging to all the 
scenes in the dataset labeled as SCj. 

We introduce the function α (SCi_Oi,SCj_Oj) which returns 
the similarity of  SCi toward SCj as in (11). 

 

α൫𝑆𝐶௜𝑂௜, 𝑆𝐶௝𝑂௝൯ ൌ
஼௔௥ௗሺௌ஼೔ை೔⋂ௌ஼ೕைೕሻ

஼௔௥ௗሺௌ஼೔ை೔ሻ
                     ሺ11ሻ  

The similarity function is non-commutative 
 α൫𝑆𝐶௜𝑜௜, 𝑆𝐶௝𝑜௝൯ ് α൫𝑆𝐶௜𝑜௜, 𝑆𝐶௝𝑜௝൯. 

B. Object’s Ranking Function 

The first step consists on providing a ranking function 
which sorts the set of objects oi before their submission to the 
hidden Markov chain construction. It is very important and 
crucial to have the most significant and finest ranking function 
since the promoted scene categories depends deeply on it. 
Additionally, a truncation of insignificant (less salient) objects 
is made in order to reduce the length of the hidden Markov 
chain and thus the combinatory computation and also to 
protect the classification process to get lost. The ranking 
function relies exclusively on the weight measure as presented 

in (10). Fig. 2 shows how an input scene containing a set of 
objects will be ranked and truncated to a smaller and more 
salient set. 

 
Fig. 2. Example of ranked and trancated objects from a given input scene. 

From Fig. 2 we can see that some objects of the input 
scene in state (A) were deleted in state (B) ex: “Towel”, “Pot”, 
“Jar” …etc. while the most salient objects according to the 
weight measure calculated in (10) are ordered as presented in 
state (B). This ranking method will, in most of the time, 
directly guide the hidden Markov chain construction toward 
the most suitable scene category. 

C. Analogy Between the Scene Classification Problem and 
the HMMs Architecture 

In this subsection, we are going to demonstrate how the 
high level scene classification problem μ can be represented 
using an HMM  model. Based on the definition given in 
Section III let be  = (A, B, π) and on the definition given in 
the introduction, let be μ ൌ ሺ𝑆𝐶, 𝑃ሻ.  In order to achieve the 
analogy, each component of μ will get its correspondent in . 
Table 1 shows the different correspondences. 

TABLE I. ANALOGY BETWEEN THE HIGH LEVEL SCENE CLASSIFICATION 
PROBLEM AND THE HIDDEN MARKOV MODEL FORMAL DEFINITIONS 

Hidden Markov model 
 

High level scene classification 
problem 
μ 

T: Observation sequence length ( total 
number of clock times t) 

T’ : Cardinality of the set of 
properties P in a given the input 
scene S 

N: set of hidden states {S1, S2 …Sn} 
SC : Set of scene categories { SC1, 
SC2, … SCn}   

M: set of observation symbols {o1, 
o2,…on} 

P: Set of properties {p1, p2 …pn} 

Transition probabilities 
Similarity between two SC as in 
(11) 

Emission probabilities   Weight measure  𝑊ሖ   based on a 
given Scene category SCi as in (8) 

Initial probabilities distribution π 
Absolute weight measure W෩  
independent from any scene 
category SCi as in (10) 

Based on the comparison made in Table 1, we can easily 
see that the analogy between   and μ is conceivable and 
indeed the scene classification problem μ can be represented 
by an HMM architecture . The same steps and algorithm as 
defined in Section III will be used to construct the hidden 
Markov model but in this case, for the purpose of scene 



Future Technologies Conference (FTC) 2017 
29-30 November 2017 | Vancouver, Canada 

324 | P a g e  
 

classification problem. Fig. 3 presents a theoretical example of 
an HMM while Table 3 shows the corresponding hidden 
Markov chain for observations generated in Table 2. 

Let S be an input scene represented by an unsorted set of 
objects O as follow: 

O = {Toothbrush, Phone, Bed, Book, TV} 

Given a theoretical HMM  containing just two scene 
categories: “Bedroom” and “Bathroom” are presented in 
Fig. 3. 

 
Fig. 3. Example of a hidden Markov model that contains 2 hidden states : 
“Bedroom” and “Bathroom” and 5 observations : “Toothbrush”, “Phone”, 

“Bed”, “Book”, “TV”. 

The object’s ranking based on the absolute weight measure 
𝑊෩  calculated in (10) of the set O is presented in Table 2. 

TABLE II. EXAMPLE OF ABSOLUTE WEIGHT MEASURE DISTRIBUTION 
EQUIVALENT TO INITIAL PROBABILITIES DISTRIBUTION 

N° Object Absolute weight measure 
O1 Toothbrush 0.6 
O2 Bed 0.4 
O3 Book 0.3 
O4 TV 0.2 
O5 Phone 0.095 

In this example, we took only 3 objects (in green) from the 
set O to represent the input scene S. Thus, the objects O4 and 
O5 (in orange) won’t be taken under consideration when 
constructing the discrete Markov chain. 

In the second step, we construct the discrete Markov chain. 
It consists on applying the Viterbi algorithm presented in 
Section III (Algorithm 2) based on  and following the top 3 
ranked object in Table 2. 

TABLE III. EXAMPLE OF DISCRETE MARKOV CHAIN 

Observation 
(Objects) 

O1 O2 O3 

Bathroom .6 .6*.7*.05=.021 .072*.2*.1=.00144 
Bedroom .05 .6*.3*.4=.072 .072*.7*.3=.01512 

To the hidden Markov chain to be constructed, the process 
chooses the most suitable hidden state (scene category) based 
on the upcoming and the current observation. The next hidden 
state can either stay the same or switch to another more salient 

(as describe in the Viterbi algorithm). At the end of the 
process, the hidden Markov chain can contain as much hidden 
states as existing observations (worst case scenario) or only 
one hidden state (best case scenario).  From Table 3 we can 
see that the extracted hidden states are: “Bathroom”, 
“Bedroom”. In practice, to avoid useless calculations, we only 
go thought the max path (green in Table 3) omitting the other 
paths (orange in Table 3). In the following, the final inference 
step is presented which extracts the most suitable scene 
category from the discrete Markov chain. 

D. Inference Algorithm 

The common way to handle multiclass classification 
problems using hidden Markov models is by adopting the 
“one Vs all” approach [32]. In this paper we introduce a novel 
approach of multiclass classification that models the scene 
classification problem represented by the hidden Markov 
models such as only one HMM is used to classify all the 
classes represented by the different scene categories SCi. 

The inference process is developed to select the most 
suitable hidden state from the set generated by the hidden 
Markov chain. The method used to extract the most suitable 
scene category is simply by counting their frequency of 
appearance in the hidden Markov chain. If two scene 
categories get the same frequency of appearance, the priority 
goes to the scene category appearing first in the hidden 
Markov chain since the object are initially ordered by weight 
measure.  Algorithm 3 will show how the process is executed. 

Algorithm 3 
Input : Discrete Markov chain DMC 
Output : Chosen scene category : S 
1- Extract the priorities between scene categories existing in 

the DMC. (first to appear gets the highest priority) . 
2- Count the number of occurrences of each scene category 

mentioned in the DMC. 
3- If Tow ( or more ) scene categories get the same number 

of  occurrence in the DMC, split the conflict with the 
priority calculated in Step 1. 

Algorithm 3 outputs the most suitable hidden state having 
as an input a constructed hidden Markov chain. 

V. TEST AND RESULTS 

In this section, we perform experiments of scene 
classification over the CVPR09 dataset [3]. First, we evaluate 
the accuracy of the proposed method varying its own input 
parameters, then, a comparison with the existing state of art’s 
methods, which uses the same dataset for the scene 
classification problem, is provided. 

A. Variying the objects taken 

To avoid combinatory explanation, and to have a hidden 
Markov chain relatively small and exploitable, we varied the 
amount of objects taken into consideration in each input scene 
from 3, 5, 7 and 9 objects for all scenes categories. The 
truncation of chosen objects is made based on the weight 
measure 𝑊෩  as calculated in (10). Fig. 4 shows the different 
obtained results. 
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Fig. 4. Proposed method accuracy calculation variying the number of 

objects taken into consideration. 

Fig. 4 shows a rise of accuracy in the classification process 
when objects are added (from 3 to 7 objects). In this part, the 
classification process is gaining practical information going 
until 76.28% of accuracy for 7 objects. Above 7 objects, the 
accuracy drops down. The classification process is misled for 
getting useless information. 

B. Variying the number of results 

Illustrated in Fig. 5 is the rate of well-classified input 
scenes when 1, 2 then 3 scene categories are suggested by the 
classifier. 

We notice from Fig. 5 that the accuracy increases when the 
suggested scene categories increase. This result claims that the 
hidden Markov chain holds, for most of the time, the right 
scene category but the inference algorithm fails to extract it. 
This discordance is sanctioned with a gap of 17%. 
Nevertheless, this gap is contained in the 3 scene categories 
and proves that ranking made by the inference algorithm is 
reliable. 

C. Summary of Proposed Method’s Results 

Table 4 presents all the results obtained by the proposed 
method while varying the different parameters: “Number of 
objects taken” and “Number of scene categories suggested”. 
The minimum result is obtained when 9 objects are taken and 
1 suggested scene category is made getting only 54.94%, 
while the best result obtained is when 7 objects are taken and 
3 scene categories are suggested getting 76.28 %. 

 
Fig. 5. Accuracy of the proposed method variying the number of scene 

category suggested. 

TABLE IV. PRESENTATION OF ALL THE RESULTS OBTAINED BY THE 
PROPOSED METHOD VARIYING ALL THE PARAMETERS 

Number of objects 
taken

Number of scene 
categories suggested 

Obtained results 

3 

1 57.90 %

2 68.57 %

3 73.91 %

5 

1 59.09%

2 70.75 %

3 75.09 %

7 

1 58.69 %

2 69.56 %

3 76.28%

9 

1 54.94 %

2 68.97 %

3 75.69 %

TABLE V. PRESENTATION OF A COMPARISION BETWEEN THE PROPOSED 
METHOD’S BEST RESULTS AND EXHISTING METHODS IN THE LITERATURE 

Methods  Accuracy  
ROI+GIST [3] 26.50 % 
MM-SCENE [24] 28.00 % 
DPM [23] 30.40 % 
CENTRIST [25] 36.90 % 
Object Bank [17] 37.60 % 
DPM+GIST-Color [23] 39.00 % 
DPM+SP [23] 40.50 % 
DPM+SP+GIST-Color [23] 43.10 % 
Singh et al. [33] 49.40 % 
Zuo et al. [19] 52.24 % 
Method in [34] 59.50 % 
Juneja et al. [35] 63.18 % 
Doersch et al. [36] 66.87 % 
Method in [37] 68.20 % 
Fc8-FV [38] 72.86 % 
MPP[ 39] 75.67 % 
Proposed method  76.28 %

D. Comparaison to the State of the Art 

In this subsection we are going to compare the proposed 
method’s best result with the existing methods in the literature 
that uses the same dataset (CVPR09 [3]). Table 5 summarizes 
the comparison results. 

From Table 5 we can see that the proposed method 
performs better in terms of scene classification accuracy 
compared to the other methods getting a rate of 76.28 % of 
accuracy. 

VI. CONCLUSION AND PERSPECTIVES 

In this paper was introduced a novel approach of 
classification using the hidden Markov model applied on the 
scene classification problem. After going through the learning 
process which computes all the entities of the hidden Markov 
model (HMM), the classification process starts by ranking the 
input objects called observations putting the most salient 
ahead. The construction of the discrete Markov chain starts by 
generating scene categories (hidden states) while examine the 
ranked objects one by one. At the end, the discrete Markov 
chain contains a set of scene categories. The final step consists 
on extracting the most suitable scene category from the 
discrete Markov chain. The obtained results are very 
satisfying - 76% of well classified scene categories - while 
some improvements are still possible by changing the ranking 
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function and make it dynamic to the current hidden state or 
providing parallelism in the construction of the hidden 
Markov chain (more than one chain is constructed in the same 
time). 
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