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Abstract—A promising paradigm for achieving highly efficient
deep neural networks is the idea of evolutionary deep intelligence,
which mimics biological evolution processes to progressively
synthesize more efficient networks. A crucial design factor in
evolutionary deep intelligence is the genetic encoding scheme used
to simulate heredity and determine the architectures of offspring
networks. In this study, we take a deeper look at the notion
of synaptic cluster-driven evolution of deep neural networks
which guides the evolution process towards the formation of
a highly sparse set of synaptic clusters in offspring networks.
Utilizing a synaptic cluster-driven genetic encoding, the proba-
bilistic encoding of synaptic traits considers not only individual
synaptic properties but also inter-synaptic relationships within
a deep neural network. This process results in highly sparse
offspring networks which are particularly tailored for parallel
computational devices such as GPUs and deep neural network
accelerator chips. Comprehensive experimental results using
four well-known deep neural network architectures (LeNet-5,
AlexNet, ResNet-56, and DetectNet) on two different tasks (object
categorization and object detection) demonstrate the efficiency of
the proposed method. Cluster-driven genetic encoding scheme syn-
thesizes networks that can achieve state-of-the-art performance
with significantly smaller number of synapses than that of the
original ancestor network. (∼125-fold decrease in synapses for
MNIST). Furthermore, the improved cluster efficiency in the
generated offspring networks (∼9.71-fold decrease in clusters
for MNIST and a ∼8.16-fold decrease in clusters for KITTI)
is particularly useful for accelerated performance on parallel
computing hardware architectures such as those in GPUs and
deep neural network accelerator chips.

Keywords—EvoNet; deep learning; evolution; deep neural net-
work; embedded systems

I. INTRODUCTION

One of the key factors in revitalizing deep neural net-
works [1]–[4] and their tremendous success is the significant
growth in computational power. The proliferation of massively
parallel computing devices such as graphics processing units
(GPUs) and distributed computing has revolutionized the train-
ing and inference of deep neural networks due to their highly
parallelizable nature. This incredible rise in the computational
power enables researchers to design and build increasingly
larger and deeper neural networks to boost modeling accuracy.
This on-going growth in architectural complexity, however,
has become a bottleneck in the widespread adoption of such
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deep neural networks in many operational scenarios. For
example, in many applications such as self-driving cars, smart-
phone applications, and surveillance cameras, the computational
resources are limited to low-power embedded GPUs, CPUs and
deep learning accelerator chips with strong constraints on the
memory usage. Furthermore, there are many situations where
the use of cloud computing is intractable due to transmission
cost, bandwidth issues, as well as privacy concerns.

Considering the obstacles associated with the architectural
complexity of deep neural networks, we have witnessed a
growing attention towards learning highly efficient deep neural
network architectures that are able to provide strong modeling
power for operational scenarios where limited memory and com-
putational resources are available. One of the first approaches
in this area is the optimal brain damage method [5] in which
synapses are pruned based on their strength. Gong et al. [6]
proposed a network compression framework where vector
quantization is used to shrink the storage requirements of deep
neural networks. Han et al. [7] utilized Huffman coding in
addition to pruning and vector quantization to further reduce
the memory requirements. Hashing is another related trick
employed by Chen et al. [8] for network compression. Low-
rank approximation [9]–[11] and sparsity learning [12]–[14]
are other strategies used to build smaller and more efficient
deep neural networks.

Recently, Shafiee et al. [15] introduced an evolutionary
synthesis framework to progressively learn more efficient
deep neural networks along successive generations1. The
proposed evolutionary deep intelligence approach mimics
biological evolution mechanisms such as random mutation,
natural selection, and heredity within a probabilistic graphical
modeling paradigm to successively synthesize more efficient
offspring network architectures. A crucial design factor in
evolutionary deep intelligence is the genetic encoding scheme
used to simulate heredity and affects the architectural traits
that are passed to the offspring networks in a significant way.
Therefore, a more effective genetic encoding scheme can enable
better transfer of genetic information from the ancestor network
to its offspring networks to build a more efficient yet powerful
future generation.

1This framework is fundamentally different from the past attempts for
utilizing evolutionary methods in training neural networks where genetic
algorithm has been used to create neural networks [16]–[21] with high modeling
capabilities in a direct but highly computationally expensive manner.
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Fig. 1. Overview of the evolutionary deep intelligence framework. The architectural traits of ancestor networks are encoded via probabilistic ‘DNA’ sequences.
A new offspring network is synthesized in each generation based on the probabilistic ‘DNA’ sequences (heredity), environmental factors (natural selection), and
random mutation. The synthesized offspring deep neural network is then trained using data. The evolutionary process is repeated over successive generations to
synthesize progressively more efficient deep neural networks.

The introduced genetic encoding scheme in [15] merely
considers the individual synaptic properties in the sense that
the probability of synthesizing each synapse within the network
is independent of the rest of the synapses and thus it ignores
the dependence between different synapses. However, there
are neurobiological evidences that support the increasing
probability of co-activation for correlated synapses which
encode similar information and locate close to each other on
the same dendrite—synaptic clustering [22]–[26]. Inspired by
this observation, incorporating synaptic clustering in the genetic
encoding scheme of evolutionary deep models is potentially
a fruitful direction to investigate. Moreover, synthesizing the
offspring networks based on synaptic clusters (instead of basing
it purely on individual synapses) can increase the efficiency
of the offspring deep neural networks running on parallel
computing devices such as GPUs and deep neural network
accelerator chips.

In this study, we take a deeper look at the notion of
synaptic cluster-driven evolution of deep neural networks which
guides the evolution process towards the formation of a highly
sparse set of synaptic clusters in the offspring networks. This
process results in highly sparse offspring networks which are
particularly tailored for parallel computing devices such as
GPUs and deep neural network accelerator chips. We introduce
a multi-factor genetic encoding scheme in which the synaptic
probability considers both the probability of synthesis for the
cluster of synapses that includes a particular synapse and the
probability of synthesis for that particular synapse within the
cluster. This genetic encoding scheme effectively promotes
the formation of synaptic clusters over successive generations
during the evolution process while supporting the formation of
highly efficient deep neural networks.

II. METHODOLOGY

Inspired by the neurobiological evidences, we propose a
synaptic cluster-driven evolution framework for deep neural
networks in which the ancestor network is guided towards the
formation of a highly sparse set of synaptic clusters in the
offspring networks. The key idea here is to design a genetic
encoding scheme that considers the inter-synaptic relationships
as well as the individual properties of each synapse. More
formally, the synthesis probability distribution for each synapse
is a product of the formation likelihood of the corresponding
synaptic cluster and the synthesis probability of that particular
synapse within that cluster.

A. Evolutionary Deep Intelligence

Prior to describing the notion of synaptic cluster-driven
evolutionary synthesis and the correspondingly proposed ge-
netic encoding scheme, let us first provide an overview
of the evolutionary deep intelligence framework introduced
by Shafiee et al. [15] for synthesizing progressively more
efficient deep neural networks over successive generations
within a probabilistic graphical modeling paradigm. In the
evolutionary deep intelligence framework as shown in Fig. 1,
the architectural traits of ancestor deep neural networks are
encoded via probabilistic ‘DNA’ sequences. New offspring
networks possessing diverse network architectures are then
synthesized stochastically based on the ‘DNA’ from the ancestor
networks and probabilistic computational environmental factor
models, thus mimicking random mutation, heredity, and natural
selection. These offspring networks are then trained, much
like one would train a newborn, and have more efficient,
more diverse network architectures while achieving powerful
modeling capabilities. A crucial design factor in evolutionary
deep intelligence is the genetic encoding scheme used to mimic
heredity, which can have a significant impact on the architecture
of the evolved offspring networks. In this study, we aim at
exploring more effective genetic encoding schemes to guide
the synthesis process so that the modeling capabilities of the
ancestor network are faithfully captured by the more efficient
offspring networks along successive generations.

B. Cluster-driven Genetic Encoding

Let the network architecture of a deep neural network be
expressed by H(N,S), with N denoting the set of possible
neurons and S is the set of possible synapses in the network.
Each neuron ni ∈ N is connected via a set of synapses s̄ ⊂ S
to neuron nj ∈ N such that the synaptic connectivity si ∈ S
is associated with a wi ∈W denoting its strength. Given the
network architecture at the previous generation, i.e., Hg−1, the
architectural traits of a deep neural network in generation g,
is encoded by the conditional probability P (Hg|Hg−1), which
can be treated as the probabilistic ‘DNA’ sequence of a deep
neural network.

We assume that synaptic connectivity characteristics in an
ancestor network are desirable traits to be inherited by the de-
scendant networks. Therefore, the genetic information of a deep
neural network is encoded in synaptic probability P (Sg|Wg−1),
where wk,g−1 ∈Wg−1 is the synaptic strength of each synapse

394 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

A
ir

pl
an

e

A
ir

pl
an

e

au
to

m
ob

ile

B
ir

d

B
ir

d

C
ar

C
at

C
at

D
ee

r

D
ee

r

D
og

D
og

Fr
og

H
or

se

H
or

se

M
on

ke
y

Sh
ip

Sh
ip

Tr
uc

k

Tr
uc

k

(a) CIFAR-10 (b) STL-10

Fig. 2. Example images from two of the tested object categorization benchmark
datasets: a) CIFAR-10, and b) STL-10.

sk,g ∈ Sg. In the proposed genetic encoding scheme for
synaptic cluster-driven evolution, we aim at incorporating the
neurobiological phenomenon of synaptic clustering [22]–[26],
where the probability of synaptic co-activation increases for
correlated synapses which encode similar information and are
close together on the same dendrite.

To promote the formation of synaptic clusters over suc-
cessive generations of more efficient offspring networks, we
introduce a multi-factor synaptic probability model defined as
follows:

P (Sg|Wg−1) =
∏
c∈C

[
P
(
s̄g,c|Wg−1

)
·
∏
i∈c

P (sg,i|wg−1,i)
]
(1)

where the first factor (first conditional probability) models
the synthesis probability of a particular cluster of synapses,
s̄g,c, while the second factor models the synthesis probability
of a particular synapse, sg,i, within synaptic cluster c. More
specifically, the probability P (s̄g,c|Wg−1) represents the like-
lihood that a particular synaptic cluster, s̄g,c, be synthesized
as a part of the network architecture in generation g given the
synaptic strength in generation g − 1. For example, in a deep
convolutional neural network, the synaptic cluster c can be any
subset of synapses such as a kernel or a set of kernels within the
deep neural network. The probability P (sg,i|wg−1,i) represents
the likelihood of existence of synapse i within the cluster c
in generation g given its synaptic strength in generation g − 1.
As such, the proposed synaptic probability model not only
promotes the persistence of strong synaptic connectivity in
offspring deep neural networks over successive generations,

but also promotes the persistence of strong synaptic clusters in
offspring deep neural networks over successive generations.

C. Cluster-driven Evolutionary Synthesis

In the seminal paper on evolutionary deep intelligence by
Shafiee et al. [15], the synthesis probability P (Hg) is composed
of the synaptic probability P (Sg|Wg−1), which mimic heredity,
and environmental factor model F(E) which mimic natural
selection by introducing quantitative environmental conditions
that offspring networks must adapt to:

P (Hg) = F(E) · P (Sg|Wg−1) (2)

In this study, (2) is reformulated in a more general way to
enable the incorporation of different quantitative environmental
factors over both the synthesis of synaptic clusters as well as
each individual synapse, thus facilitating for synaptic cluster-
driven evolution of deep neural networks:

P (Hg) =
∏
c∈C

[
Fc(E)P

(
s̄g,c|Wg−1

)
·
∏
i∈c
Fs(E)P (sg,i|wg−1,i)

]
(3)

where Fc(·) and Fs(·) represents environmental factors
enforced at the cluster and synapse levels, respectively.

D. Realization of Cluster-driven Genetic Encoding

To demonstrate the benefits of the proposed cluster-driven
genetic encoding scheme, a simple realization of this scheme
is presented in this study. Here, since we wish to promote the
persistence of strong synaptic clusters in offspring deep neural
networks over successive generations, the synthesis probability
of a particular cluster of synapses s̄g,c is modeled as

P
(
s̄g,c = 1|Wg−1

)
= exp

(∑
i∈cbωg−1,ic

Z
− 1
)

(4)

where b·c encodes the truncation of a synaptic weight and Z
is a normalization factor to make (4) a probability distribution,
P
(
s̄g,c|Wg−1

)
∈ [0, 1]. The truncation of synaptic weights

in the model reduces the influence of very weak synapses
within a synaptic cluster on the genetic encoding process. The
probability of a particular synapse, sg,i, within synaptic cluster
c, denoted by P (sg,i = 1|wg−1,i) can be expressed as:

P (sg,i = 1|wg−1,i) = exp
(ωg−1,i

z
− 1
)

(5)

where z is a layer-wise normalization constant. By incorpo-
rating both of the aforementioned probabilities in the proposed
scheme, the relationships amongst synapses as well as their
individual synaptic strengths are taken into consideration in
the genetic encoding process.

III. EXPERIMENTAL RESULTS

To study the efficacy of synaptic cluster-driven evolution for
synthesizing highly efficient deep neural networks, evolutionary
synthesis of deep neural networks across several generations
was performed using the proposed genetic encoding scheme
across four well-known deep neural network architectures for
two different tasks:
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Fig. 3. Example images from the MNIST character recognition dataset.

• Object categorization using three benchmark datasets:
MNIST [27], STL-10 [28] and CIFAR10 [29].

• Object detection using one benchmark dataset:
KITTI [30].

A. Datasets

The CIFAR-10 image dataset [29] comprises of 50,000
training and 10,000 test natural images with 10 different classes
which equally distributed. The image size is 32×32. The
MNIST image dataset [27] comprises of 60,000 training images
and 10,000 test images of 28×28 handwritten digits. The STL-
10 image dataset [28] has 5,000 labeled training and 8,000
labeled test natural images categorized into 10 different classes.
Although the original image size is 96×96 the images were
shrinked in to 32×32 for consistency purposes. It is also should
be noted that the 100,000 unlabeled images associated to this
dataset were not used in training process. Fig. 2 demonstrates
some examples of two natural images categorization datasets
(i.e., CIFAR-10 and STL-10). The example images of MNIST
dataset are shown in Fig. 3.

The Kitti dataset [30] is utilized for the purpose of object
detection. We specifically apply the examined network structure
for car detection in the scene. The utilized dataset comprises
of 6373 training and 1108 images with 1242× 375 in size as
testing set. As seen in Fig. 4, the goal is to find a bounding
box around every car in the scene.

B. Experimental Setup

For the MNIST and STL-10 experiments for object cat-
egorization, the LeNet-5 architecture [27] is selected as the
network architecture of the original, first generation ancestor
network. For the CIFAR10 experiment for object categorization,
two different network architectures were explored as the first
generation ancestor network. First, the AlexNet architecture [31]
is utilized as one of the ancestor networks for CIFAR10,
with the first layer modified to utilize 5 × 5 × 3 kernels
instead of 11× 11× 3 kernels given the smaller image size in
CIFAR10. Second, the ResNet-56 architecture [32] is utilized
as another ancestor network for CIFAR10, which allows us
to study the behaviour of the proposed scheme for two very
different deep neural network architectures. For the KITTI
experiment for object detection, the DetectNet architecture
which is derived from GoogleNet [33] that is tuned for object

detection is selected as the network architecture of the original,
first generation ancestor network.

The environmental factor model being imposed at different
generations in this study is designed to form deep neural net-
works with progressively more efficient network architectures
than its ancestor networks while maintaining modeling accuracy.
More specifically, Fc(·) and Fs(·) is formulated in this study
such that an offspring deep neural network should not have
more than 80% of the total number of synapses in its direct
ancestor network. Furthermore, in this study, each kernel in the
deep neural network is considered as a synaptic cluster in the
synapse probability model. In other words, the probability of
the synthesis of a particular synaptic cluster (i.e, P (s̄g,c|Wg−1))
is modeled as the truncated summation of the weights within
a kernel.

C. Architectural Efficiency Over Generations

In this study, offspring deep neural networks were syn-
thesized in successive generations until the accuracy of the
offspring network exceeded 4%, so that we can better study the
changes in architectural efficiency in the descendant networks
over multiple generations. Table I and Table II show the
architectural efficiency (defined in this study as the total number
of synapses of the original, first-generation ancestor network
divided by that of the current synthesized network) versus the
modeling accuracy at several generations for three datasets
and based on three different network architectures (LeNet-
5, AlexNet, and ResNet-56). As observed in Table I, the
descendant network at the 13th generation for MNIST based
on the LeNet-5 architecture was a staggering ∼125-fold more
efficient than the original, first-generation ancestor network
without exhibiting a significant drop in the test accuracy (∼1.7%
drop). This trend was consistent with that observed with the
STL-10 results based on the LeNet-5 architecture, where the
descendant network at the 10th generation was ∼56-fold more
efficient than the original, first-generation ancestor network
without a significant drop in test accuracy (∼1.2% drop). It also
worth noting that since the training dataset of the STL-10 dataset
is relatively small, the descendant networks at generations 2 to
8 actually achieved higher test accuracies when compared to
the original, first-generation ancestor network, which illustrates
the generalizability of the descendant networks compared to
the original ancestor network as the descendant networks had
fewer parameters to train.
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Fig. 4. Example images from the KITTI object detection dataset. Ground truth object bounding boxes are overlaid onto the images for context.

TABLE I. ARCHITECTURAL EFFICIENCY VS. TEST ACCURACY FOR DIFFERENT GENERATIONS OF SYNTHESIZED NETWORKS FOR MNIST AND STL-10
USING LENET-5. “GEN.”, “A-E” AND “ACC.” DENOTE GENERATION, ARCHITECTURAL EFFICIENCY, AND ACCURACY, RESPECTIVELY

MNIST - LeNet-5
Gen. A-E ACC.

1 1.00X 99.47
5 5.20X 99.41
7 12.09X 99.28

11 62.74X 98.49
13 125.09X 97.75

STL-10 - LeNet-5
Gen. A-E ACC.

1 1.00X 57.74
3 2.37X 59.33
7 14.99X 60.51
9 38.22X 57.44
10 56.27X 56.58

TABLE II. ARCHITECTURAL EFFICIENCY VS. TEST ACCURACY FOR DIFFERENT GENERATIONS OF SYNTHESIZED NETWORKS FOR CIFAR-10 USING
ALEXNET AND RESNET-56. “GEN.”, “A-E” AND “ACC.” DENOTE GENERATION, ARCHITECTURAL EFFICIENCY, AND ACCURACY, RESPECTIVELY

CIFAR10 - AlexNet
Gen. A-E ACC.

1 1.00X 86.69
2 1.64X 88.14
3 2.82X 87.66
5 8.39X 85.88
6 14.39X 84.59

CIFAR10 - ResNet-56
Gen. A-E ACC.

1 1.00X 93.00
3 1.66X 91.95
5 3.04X 90.27
6 3.69X 89.76
7 4.02X 89.79

TABLE III. ARCHITECTURAL EFFICIENCY VS. PRECISION AND RECALL
FOR DIFFERENT GENERATIONS OF SYNTHESIZED NETWORKS FOR KITTI

USING DETECTNET. “GEN.”, “A-E” DENOTE GENERATION AND
ARCHITECTURAL EFFICIENCY, RESPECTIVELY

KITTI - DetectNet
Gen. A-E Precision Recall

1 1.00X 78.03 62.03
7 2.48X 81.93 69.31
10 5.24X 81.36 67.57
11 9.97X 78.84 63.73

For the case of CIFAR10 based on the AlexNet architecture,
the descendant network at the 6th generation network was
∼14.4-fold more efficient than the original ancestor network
with ∼2% drop in test accuracy. For the case of CIFAR10
based on the ResNet-56 architecture, the descendant network
at the 7th generation network was ∼4-fold more efficient than
the original ancestor network with ∼3% drop in test accuracy.

Finally, Table III shows the architectural efficiency versus
modeling accuracy at several generations for the KITTI dataset
and based on the DetectNet architecture. For this case, the
descendant network at the 11th generation was ∼10-fold more
efficient compared to the original, first-generation ancestor
network while achieving a ∼0.8% increase in precision and a
∼1.7% increase in recall. These results not only demonstrate
the efficacy of the proposed scheme, but also illustrate the
applicability of the proposed scheme for a variety of different
network architectures.

D. Cluster Efficiency

Table IV and V shows the cluster efficiency of the
synthesized deep neural networks in the last generations, where
cluster efficiency is defined in this study as the total number
of kernels in a layer of the original, first-generation ancestor
network divided by that of the current synthesized network.
It can be observed that for MNIST, the cluster efficiency of
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TABLE IV. CLUSTER EFFICIENCY VS. TEST ACCURACY FOR THE FIRST AND LAST REPORTED GENERATIONS OF SYNTHESIZED NETWORKS FOR MNIST
AND STL-10 USING LENET-5. “GEN.”, “C-E” AND “ACC.” DENOTE GENERATION, CLUSTER EFFICIENCY, AND ACCURACY, RESPECTIVELY

MNIST - LeNet-5
Gen. C-E ACC.

1 1.00X 99.47
13 9.71X 97.75

STL-10 - LeNet-5
Gen. C-E ACC.

1 1.00X 57.74
10 5.96X 56.58

TABLE V. CLUSTER EFFICIENCY VS. TEST ACCURACY FOR THE FIRST AND LAST REPORTED GENERATIONS OF SYNTHESIZED NETWORKS FOR
CIFAR-10 USING ALEXNET AND RESNET-56. “GEN.”, “C-E” AND “ACC.” DENOTE GENERATION, CLUSTER EFFICIENCY, AND ACCURACY, RESPECTIVELY

CIFAR10 - AlexNet
Gen. C-E ACC.

1 1.00X 86.69
6 2.82X 84.59

CIFAR10 - ResNet-56
Gen. C-E ACC.

1 1.00X 93.00
6 2.25X 89.79

TABLE VI. CLUSTER EFFICIENCY VS. PRECISION AND RECALL FOR
THE FIRST AND LAST REPORTED GENERATIONS OF SYNTHESIZED

NETWORKS FOR KITTI USING DETECTNET. “GEN.” AND “C-E” DENOTE
GENERATION AND CLUSTER EFFICIENCY, RESPECTIVELY

KITTI - DetectNet
Gen. C-E Precision Recall

1 1.00X 78.03 62.03
11 8.16X 78.84 63.73

the last-generation descendant network is ∼9.7X, which may
result in a near 9.7-fold potential speed-up in running time on
embedded GPUs and deep neural network accelerator chips
by reducing the number of arithmetic operations by ∼9.7-
fold compared to the first-generation ancestor network, though
computational overhead in other layers such as ReLU may
lead to a reduction in actual speed-up. The potential speed-up
from the last-generation descendant network for STL-10 is
lower compared to MNIST dataset, with the reported cluster
efficiency in last-generation descendant network ∼6X.

The cluster efficiency for the last generation descendant
networks for CIFAR10 using AlexNet and ResNet-56 are ∼2.8X
and ∼2.25X, respectively. Finally, Table VI demonstrates the
cluster efficiency of the synthesized deep neural networks in the
last generations for the KITTI dataset using DetectNet. As seen,
the cluster efficiency of the last generation descendent network
is ∼8.16X, while achieving a ∼0.8% increase in precision
and a ∼1.7% increase in recall compared to the original, first-
generation ancestor network. These results demonstrate that not
only can the proposed genetic encoding scheme promotes the
synthesis of deep neural networks that are highly efficient yet
maintains modeling accuracy, but also promotes the formation
of highly sparse synaptic clusters that make them highly tailored
for devices designed for highly parallel computations such as
GPUs and deep neural network accelerator chips.

IV. CONCLUSION

In this study, we took a deeper look at a synaptic cluster-
driven strategy for the evolution of deep neural networks,
where synaptic probability within a deep neural network is
driven towards the formation of highly sparse synaptic clusters.
Experimental results for the tasks of object categorization and
object detection demonstrated that the synthesized ‘evolved’
offspring networks using this evolution strategy via a synaptic
cluster-driven genetic encoding scheme can achieve state-
of-the-art performance while having network architectures

that are not only significantly more efficient compared to
the original ancestor network, but also highly tailored for
operational machine learning applications and scenarios using
devices designed for highly parallel computations such as
GPUs and deep neural network accelerator chips. Future work
involves investigating alternative realizations of this new genetic
encoding scheme beyond the simple realization presented in
this study, and study the network architecture evolutions of
deep neural networks synthesized by these realizations over
successive generations to better understand their effectiveness
and efficiency.
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