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Abstract—This work presents the results of applying an
advanced performance monitoring technique to centrifugal com-
pressor system using deep recurrent neural network (DRNN).
In reality, due to different kind of disturbances, the compressor
system may lead to catastrophic situations. Therefore, perfor-
mance monitoring has become an issue of primary importance
in modern process engineering automation. Detecting anomalies
in such scenarios become challenging using standard statistical
approaches. In this article, we discuss a Long Short Term
Memory (LSTM) based DRNN technique to predict the faulty
behavior of the compressor system. Due to the ability of LSTM
to maintain memory, these networks have been proven effective
for learning patterns of the time series data with unknown length.
This motivates us to propose a performance monitoring schema
based on LSTM-DRNN. To validate the proposed approach, we
have simulated the compressor model in Simulink and trained
the LSTM-DRNN model on the obtained time series data of
the compressor system that is running under ideal conditions.
Further, the trained network have been used to detect anomalies
in the time series data that was generated by introducing
disturbance as an inlet temperature changes.

Keywords—Performance monitoring; LSTM-DRNN; anomaly
detection; compressor control system

I. INTRODUCTION

Any automated system or process design is carried out in
two important phases: the first phase consists of the design,
tuning and implementation of control strategies, and the second
phase consists of the supervision of the control loops and
early detection of performance deterioration. The later tasks
are performed within the frame work of performance monitor-
ing which has got considerable attention from industrial and
academic communities [1].

In the past few decades, human intuition has played a
big role in the monitoring of control loops for evaluating the
performance of the systems and the controllers. This manual
monitoring approach is limited in its use because of the fact
that a typical operator in the control room is responsible for
the entire control system that consists of many control loops.
Therefore, automatic performance monitoring techniques that
have been developed in recent years are proven far superior
than the conventional ones. Some model based conventional
techniques used for anomaly detection include observer based
approach [2] and parameter identification based methods [3].
On the other hand, if the model identification of a process is

not possible under standard techniques then statistical methods
are developed to extract the information about the fault from
the measurement data [4].

In recent years, neural networks have been employed for
performance monitoring applications (for instance see [5], [6])
and have been proven far superior than the classical tech-
niques. Neural networks are valuable alternative to the classical
methods because of two reasons: First, they can model a
complex phenomenon provided one chooses sufficient number
of neurons. Any non-linear function can be approximated with
an arbitrary accuracy using proper neural network architecture.
Second, training neural networks needs least amount of the
process information. In the anomaly detection task, we will
apply a special form of recurrent neural network that is know
as Long Short Term Memory (LSTM) [7]. These LSTM are
widely applied to many sequence learning tasks [8] because
this architecture is more robust to training algorithms and it
has memory units that are useful in sequence learning. In this
work, we use stacked LSTM deep recurrent neural network for
performance monitoring from sensor data. LSTM networks can
be used to accurately detect deviation from the normal process
behavior to a disturbed process behavior. To validate our
approach, we needed time series data of the compressor system
under normal operations to train the LSTM network, and a set
of anomalous data under the influence of disturbance to detect
the anomaly. To this end, we have developed a Simulink [9]
model of centrifugal compressor system to generate nominal
plant data as well as anomalous data under the effect of
disturbances.

This article is organized as follows: Section II presents
the basic LSTM neural network architecture and data pre-
processing steps. Subsequently, Section III explains about the
Simulink model of the centrifugal compressor system. Section
IV demonstrates the numerical experiments and discuss the
results. Finally, in Section V, we conclude the paper with a
discussion on the future directions.

II. DEEP RNN AND LSTM

Recently, deep neural networks (DNN) have become very
popular in computer vision [10] and speech processing related
applications [11]. One type of network that falls into this cate-
gory of deep networks is recurrent neural networks (RNN). In
general, RNN’s layers do not provide hierarchical processing
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Fig. 1. (a) The recurrent network unfolded across time steps. (b) LSTM
memory cell.

but they actually introduce memory. RNNs have loops at each
layers hence when folded out in time it can be considered
as a DNN with indefinitely many layers (see Fig. 1(a)). One
problem that arises from the unfolding of an RNNs is that the
gradient of some of the weights starts to become too small
or too large if the network is unfolded for too many time
steps [12]. This phenomenon is known as vanishing gradient.
Long Short Term Memory (LSTM) [13] neural network over-
come the vanishing gradient problem experienced by RNNs.
LSTM neural network employ multiplicative gates that enforce
constant error flow through the internal states of special units
called “memory cell” (see Fig. 1(b)). As shown in the Fig. 1(b),
Input gate, output gate and forget gate do not allow memory
contents from being perturbed by irrelevant inputs and outputs.
Equation for gates are summarized as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi),

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ),

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bf ),

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo),

ht = ot tanh(ct).

where xt is input vector, ht and ht−1 are output of current
and previous block, ct and ct−1 are memory from current and
previous block, σ and tanh are sigmoid and hyperbolic tangent
function, W and b are respective parameters which have to be
trained.

Fig. 2. LSTM network architecture.

1) LSTM neural network architecture: We consider the
following LSTM network architecture in our work. We take
one unit in the input layer and one unit for output layer. We
have two hidden layers of size 50 and 50 respectively. We stack
LSTM layer such that each unit in a lower layer LSTM hidden
layer is fully connected to each unit in the LSTM hidden layer
above it through feed-forward connection. This architecture is
illustrated in Fig. 2.

A. Data Preprocessing

We train LSTM neural network model on the normal
operating condition dataset. Before feeding this data into
the network, we need to pre-process the data for a better
accuracy and the fast convergence of the training algorithm.
The preprocessing of data is done as follows: first the the
overall dataset is divided into sequences with predefined length
and then the training and target data is generated in such a way
that a sequence of length n will have target value as (n+ 1)th

term of that sequence. Further, to reduce the variance and unify
the scale we applied normalization for all sequences as follows:

s∗i =
si − s̄i
σi

,

where s̄i and σi are the mean value and the standard
deviation for each sequence.

III. CENTRIFUGAL COMPRESSOR SYSTEM

Compressor is a device that increases the pressure of gas
by decreasing its volume mechanically. Oil and gas processing
industries have several compressors operating either alone or
in parallel. To maximize the profit, modeling and control of
compressor system is primary concern. In literature, various
models can be found that describes the working of centrifugal
compressor system. For example, authors in [15] describes a
mathematical model for the dynamics of the physical phenom-
ena of compressor system. Depending on the application two
important types of models can be considered. First is Control
model which can be useful for development of controller.
Second is more complex simulation model which can be used
for more detailed system dynamic analysis.

Fig. 4. Simple compressor system’s component.

A compressor system for which the main components are a
compressor, a plenum volume and a throttle is considered. Fig.
4 shows these components of the system. Dynamic equations
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Fig. 3. Interconnection of compressor system modules [14].

for the plenum pressure, mass-flow dynamics and impeller
speed dynamics are discussed below:

ṗp =
C2

p

Vp
(ωc − ωt)

where p subscript refers plenum for pressure and volume.
Cp is the speed of sound in plenum. ωc and ωt are mass
flow entering the plenum and mass flow leaving the plenum,
respectively.

ω̇c =
Ac

Lc
(pa − pp + Fc)

Mass flow in the duct containing the throttling device is
modeled in the same manner

ω̇t =
Ac

Lc
(pa − pp − Ft)

where subscript c,t and a refers compressor, throttle and
ambient condition. Ac and Lc are area and length of com-
pressor. Fc is working along the flow direction whereas Ft is
working against it.

ω̇ =
1

J
(τd − τl)

where ω is the impeller speed, J is the moment of inertia
of rotating parts. τd is torque applied to the impeller by the
driving unit and τl is the load torque due to fluid flow and
friction torque.

In addition to pressure and flow dynamics part, we can
have static parts in the model for example, manifold and cooler.

Considering this, the overall compressor system can be broadly
divided into three categories.

• Part I contains pressure dynamics.

• Part II contains flow dynamics.

• Part III neither pressure nor flow dynamics (also called
static module).

The overall compressor system with their interconnections
are shown in Fig. 3. Readers can refer [14] for detailed
modeling of each module.

A. Control System

From control point of view, surge in centrifugal compressor
system is a very important phenomenon [16]. Compressor
system will surge when forward flow through the compressor
can no longer be maintained. This could be occur due to an
increase pressure across the compressor and hence, momentary
flow reversal occurs. To handle this situation, PID controller
has been tuned which typically measures a function of pressure
rise versus flow. On the other hand performance controller (i.e.
also PID type) is tuned for desired pressure and velocity con-
trol in the compressor system. Although theses controllers are
in action, disturbance through inlet flow or inlet temperature
can affect performance substantially. In our experiment, we try
to predict this kind of disturbance through sensor data using
LSTM-DRNN. The model has been developed in the Simulink
with anti surge and performance controller. The Simulink block
diagram is shown in Fig. 5.

IV. EXPERIMENT

In the course of developing performance monitoring tech-
nique, general approach can be illustrated as in Fig. 6. We
take sensor signal as an input signal which is used to train the
deep recurrent neural network. Then residual can be generated
through measured output signal and predicted output signal.
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Fig. 5. Simulink block diagram for compressor control system with anti-surge and performance controller.

Fig. 6. General performance monitoring technique block diagram.

Further, residual evaluation can be useful for generating the
alarm signal.

In our study, we measure the upstream pressure signal for
4500 seconds. Note that, this signal is collected during normal
operating condition of centrifugal compressor control system.
(i.e. without any disturbance). Fig. 7 illustrates measured pres-
sure signal with normal process behavior. After collecting that,
we do preprocessing on data (rearranging in train and target
set and normalization) as discussed in Section II-A. Then we
feed this processed data to LSTM-DRNN network for training.
To train the network, the dropout technique [17] is used for
regularization to reduce the over-fitting. The mean square error
between training and predicted values is considered as loss
function. “RMSprop” [18] optimization algorithm is used for
training the network. This LSTM-DRNN neural network is
developed with Keras library. [19] (tensorflow [20] backend)

After training, we test the network on disturbed operating
condition signal. For example, inlet temperature changes at
1000 second may cause the disturbed operating condition.
This disturbed operating condition signal is represented in
Fig. 8. Predicted signal and square error (i.e. (Y − Ym)2) are
represented in Fig. 9.

From Fig. 9 it can be observed that squared error is sig-
nificantly higher than particular threshold value and therefore

Fig. 7. Normalized upstream pressure signal in normal operating condition.

Fig. 8. Normalized upstream pressure signal in disturbed operating condition.
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Fig. 9. Predicted signal (in green) and squared error plot with threshold.

the effect of disturbance can be identify in that operating
condition. The error threshold level can be introduced as a
tunable parameter that allows a user to achieve a satisfactory
false positive and false negative detection rule.

V. CONCLUSION

In this work, we develop a performance monitoring tech-
nique for centrifugal compressor system using LSTM-DRNN
based network. We developed the network architecture, data
preprocessing and training rules for the LSTM-DRNN net-
work. We have also discussed the centrifugal compressor
control system. To test our proposed approach, we generated
data with inlet temperature disturbance in Simulink model.
The applied performance monitoring schema gives satisfactory
result for detecting the disturbed process behavior. In future,
multi-sensors data can be used to predict anomalous operating
conditions and to generate prioritized alert system which does
not restricts us to binary decisions.
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