
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Leveraging Different Learning Rules in Hopfield
Nets for Multiclass Classification

Pooja Agarwal, Abhijit J. Thophilus, Arti Arya, Suryaprasad Jayadevappa
PESIT Bangalore South Campus

Abstract—Retaining customer and finding the loyalty of an
existing customer is an important aspect of today’s business
industry. In this paper the study of behavior of different machine
learning rules on Hopfield Nets is conducted. This is a work in
continuation w.r.t the classification of a real customer dataset into
four different classes of Super Premium Loyal Customer (SPL),
Premium Loyal Customer (PL), Valued Customer (VC), Normal
Customer (NC). This model enhances the approach of finding the
loyalty of customer using Hebbian learning and Storkey learning
of Hopfield Neural Network (HNN). HNN is reported to give good
accuracy with image datasets but with some data preprocessing
on customer dataset, it is showing very reasonable accuracy of
around 85%. The proposed framework is tested on Breast cancer
dataset also and results are tabulated in the paper.

Keywords—Customer loyalty; Hopfield Neural Networks; learn-
ing rate; momentum; Storkey learning; Hebbian learning; Softmax
activation function

I. INTRODUCTION

The successful operation of a commercial establishment
primarily depends on the perspective of current and potential
customers towards the establishment and the products or
services it provides.

Customer Relationship Management, or CRM, is the sys-
tematic process of deriving solutions to meet customer de-
mands, predict market trends and build marketing strategies
by collecting, organizing and analyzing customer data [1]. The
development of complex models that form highly accurate
representations of data without being explicitly programmed
to do so are what make the field of machine learning central
to CRM. The techniques developed in this field may be applied
either on a large scale, to provide real time predictions on large
amounts of data, or on a small scale, identifying customer
classes on transaction history.

For business the focus of customer retention is towards at-
tracting prospective customers and ensuring existing customers
continue to receive the quality of service they expect [2], [3].
This paper is an attempt towards modeling the records of
customers visiting a grocery store to predict the loyalty bracket
of a new customer. The data pertaining to a venture such as this
is characterized by few attributes and a relatively small number
of records collected through a online survey. The model
analyzed in this paper is the Hopfield Network. Introduced in
1982, by J.J. Hopfield. The model explores the different aspects
and learning in Hopfield Nets and gives the better results than
the solution given in literature [4]. The simplicity of the model
and ease of training make it a prospective candidate in the
analysis of small data sets using minimal effort. Indeed, this
is exactly what the results of the experiment outlined in this
paper indicate. The Hopfield Network is able to successfully

classify an arbitrarily distributed input data in spite of having a
very simple and quick training technique [5]. The organization
of paper is as follows: Section 2 highlights the work done in
related area. Section 3 explains the proposed model, different
learning rules used in HNN and softmax activation function.
Sections 4 and 5 talks about the experimental setup and results
and testing of the model and Section 6 is the conclusion of
the work.

II. RELATED WORK

To classify the customer in different categories of loyalty,
number of factors need to be taken care. It is important for
any organization to retain their existing customer than getting
the new ones [1]. The cost of acquisition will always be much
higher than the cost of retention.

The model considered in this paper is a Hopfield neural
network, a recurrent neural network (RNN) that belongs to a
broad family of computational models called Neural Networks
(NNs) for multiclass classification. Most of the Neural network
models use a significant amount of information for the training.
Cabeza et al. [6] proposed a diagnostic system based on a
Hopfield neural network to overcome the inconvenience due
to different factors such as data losses in the data acquisition
systems with successful performance.

Models of recurrent neural networks come in different
flavors. Samuel et al. [7] distinguished between discrete and
continuous values of the neurons and also between determinis-
tic and stochastic updates representing the difference between
binary and real values.

The activation function is necessary to scale the outputs of
the neurons in neural networks, and to introduce a non-linear
relationship between the input and output of the neuron. The
sigmoid function, given by,

g(x) =
1

1 + e−x
(1)

is the most frequently used activation function, although
popular alternatives include the hyperbolic tan, piecewise lin-
ear, and the binary step functions [8].

However, due to the structure of the data set under con-
sideration, both the sigmoid and hyperbolic tan functions
cause the network to converge to a single spurious state
regardless of the input pattern. Therefore, to overcome this,
the Hopfield network has been adapted to use the softmax
activation function (illustrated in Section III-D).The proposed
framework uses Hopfield network with hebbian and storkey
learning.

455 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

According to Ue-Pyng et al. [9], Neural networks have
been characterized in various categories according to many
relevant features. HNN is a type of recurrent neural network
(RNN) represented by a set of interconnected neurons, which
asynchronously keep on updating their weights.

Hopfield Neural Network (HNN) [5] is a neural network
with symmetrical connections between binary neural units.
These networks can learn by imposing the patterns on the
network and gets modified by Hebbian learning. It also tunes
the network to minimize the energy function across the entire
network and finally stabilize.

Amos Storkey [10] proposed a new learning rule and
a heuristic calculation of the absolute capacity of learning
algorithm that provides a good measure of capacity for finite
network.

Xiao [11] summarized the Storkey Learning Rules for the
Hopeld Model and evaluated performance relative to other
learning rules. Hopeld Models are normally used for auto-
association, and Storkey Learning Rules have been found to
have good balance between local learning and capacity.

The proposed model improves the accuracy of the classifier
over the model proposed in [4] With a combination of Hebbian
learning and softmax activation function.

III. PROPOSED MODEL

A. Data set Description and Preprocessing

The dataset used in this paper is real customer dataset of
a retail store. It is dataset collected through an online survey
(https://goo.gl/p4LZjK). This dataset has a collection of more
than 600 instances that are described by four attributes Total
Expenditure (TE), Life time of customer (LT), Frequency of
visit (FV), Mode of Payment (MP) [4].

A second data set, the Breast Cancer Wisconsin [12]
(Diagnostic) Data Set hosted at the UCI Machine Learning
Repository, has been considered as contrasting data to the
customer data set for the proposed model. The data set has
binary classes, where each observation corresponds to a digi-
tized image of a fine needle aspirate (FNA) of a breast mass.
With both of the data sets the proposed model gives promising
results of around 85% accuracy. Hopfield networks inherently
have a low recall capacity for their stored patterns. Although
in a continuous network some extent of fault tolerance is
permissible, there is an upper bound on the number of records
that can exist in the state space of the network. Thus, instead
of storing the entire data set in the network, a subset of four
records is taken that consists of the median of records from
each class, as

• these records are the most accurate representatives of
the data members of its class, and

• these records have their corresponding state space
vectors (The visible neurons in input layer) distant
from each other,

is stored in the network. These representative records are
hereby referred to as prototypes.

The method of extracting prototypes employed in this paper
is through the application of Partitioning Around Medoids

(PAM) variant of the K-Medoids algorithm. A high level
description of the procedure used to select the prototypes is
given by Algorithm 1.

The input data X consists of the training records from the
data set. Prototypes are generated class-wise. The first step
involves extracting all records belonging to a given class c
into Xc. Depending on the number of prototypes desired, np,
Xc is partitioned around np medoids. These medoids form the
prototypes of their corresponding class. This is repeated over
all classes, and the medoids for each class are extracted and
stored in P , which is returned by the algorithm on completion.

Algorithm 1 Generating Prototypes
Input:

Input data X ,
Number of prototypes np,
Function pam(X,n) that partitions X around n medoids.

Output:
Set of prototypes P .

1: P ← {}
2: for all classes c do
3: Xc ← records in X belonging to class c
4: parts← pam(Xc, np)
5: meds← retrieve np medoids from parts
6: P ← P ∪meds
7: end for
8: return P

B. Hopfield Network

Complex interactions occur when the network is taken
as a whole, and although the individual components seem
simplistic, the emergent property of the network is universal
approximation.

Conventional Neural Networks, called Feed-Forward Neu-
ral Networks are only connected to the immediately succeeding
layer. Despite this, universality holds for these networks and
time-series data cannot be easily handled by such feed-forward
networks. In Recurrent Neural Networks, in contrast neurons
may be interconnected in an arbitrary manner, thereby allowing
directed cycles to form in the network.

The Hopfield network is a recurrent neural network where
the connection weights are symmetric, and no neuron is
connected to itself. The weights of the network are represented
by an N ×N matrix W , where N is the number of neurons
in the network. W is symmetric, with the diagonal elements
set to 0. The elements of W are initialized by a learning rule
(Section III-C), an algorithm applied on the training data to
yield appropriate connection strengths. The Hopfield network
considered in this paper is the continuous variant of the model
proposed by J.J. Hopfield [5]. The visible neurons in input
layer of the Hopfield network is the set of vectors V , for which
the components of each vector ~v are given by,

ui =

n∑
j=1
j 6=i

wijvj (2)

vi = g (ui) (3)

456 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

where, ui is the input to the ith neuron, g is the activation
function, vi is the ith component of ~v and, wij is the weight
of the synapse between neurons i and j.

The state space of the Hopfield network is characterized
by basins of attraction with attractors being state vectors
corresponding to the minima of an energy function[13] defined
by Hopfield to be,

E = − 1

2n

n∑
i=1

n∑
j=1

wijvivj +
1

n

n∑
i=1

∫ vi

0

g−1(v)dv (4)

Consider an input pattern ~ξ with the corresponding input
state vector ~v = g(~ξ)[14]. Hopfield showed that if ~v is within
the basin of some attractor ~φ, ~v will converge to ~φ.

C. Learning Rules

In order to actually apply the Hopfield network to the
problem of classification, the weights of the network must
be initialized such that the prototypes discussed in Section
III-A correspond to attractors in the network’s state space. The
equations that govern weight initialization form the learning
rule for the model. Learning rules differ in the approach taken
to ensure the minima of (4) are state vectors corresponding to
training patterns. The capacity of a network is the maximum
number of patterns that can be stored in the network. Network
capacity varies among different learning rules.

1) Hebbian Learning Rule: Hebbian learning was the
learning rule employed in the standard Hopfield network
described by Hopfield. The learning rule is one shot, along
with being incremental, immediate, and local in space and
time. This ensures that a Hopfield network can be trained in
finite time. If the number of patterns in the network is below its
capacity, additional patterns may be stored making it suitable
for time-series data. The learning rule is given by,

wij =
1

N

np∑
p=1

vpi v
p
j (5)

where, np is the number of patterns to be stored, vpi =

g(ξpi) and ~ξp is the pth pattern to be stored in the network.

For binary valued data, the Hebb learning rule has been
shown to have a capacity of 0.14N .

2) Storkey Learning Rule: Storkey proposed a learning rule
that improved on the capacity of the original Hopfield rule. The
Storkey rule, like Hebbian learning, is also local, incremental
and immediate, thereby allowing patterns to be added and
removed after the network has been trained. The improved
capacity of the network, for binary values, was shown by
Storkey to be five times greater than the Hebbian learning rule
[15] at network sizes of a million neurons. The learning rule
is given by the following recursive definition,

w0
ij = 0

wpij = wp−1ij +
1

N

(
vpi v

p
j − v

p
i h

p
ji − h

p
ijv

p
j

) (6)

where hpij is a local field at neuron i given by,

hpij =

N∑
k=1
k 6=i,j

wp−1ij vpk (7)

and 1 ≤ p ≤ np corresponds to the next pattern to be
stored.

D. Softmax Activation

The activation function defines how the weighted input
to a neuron is transformed to produce its output. Although
it may be a linear function, often the choice of a non-linear
transformation is warranted to introduce non-linearity to the
system. Traditionally, the sigmoid function has been used,
especially in multilayer perceptron networks. However, due to
the nature of the data, and the Hopfield network architecture,
the sigmoid activation fails to cause the network to converge
toward any desired state. For the network to converge to one
of these desired states, it has been observed, that the number
of neurons must be significantly higher than the number of
patterns to be stored in the network. The number of neurons
is dictated by the dimensions of the input data to the system.
Further, the feature domains in the data set under consideration,
and the weight matrix generated for the data by both learning
rules is non negative. Therefore, for a sigmoid, or tanh,
activation function, the input only comprises one half the
range of its domain. Since both the sigmoid and tanh are
monotonically increasing functions, the output of the neuron is
restricted to red half image (Fig. 1) of the activation function.

Fig. 1. Sigmoid Activation Function. The range of values within which the
activation function operates is indicated by the red shaded region.

This problem can be solved by using the Softmax activation
function,

S(ui) =
e−ui∑d
j=1 e

−uj

(8)

The Softmax function balances itself across the network.
The Softmax function, however, requires the original definition

457 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

of the Hopfield network to be tweaked. The domain of a
Softmax function is a multidimensional vector, and therefore
operates on the entire network state. Therefore, instead of
applying the activation function on one neuron at a time, every
time a neuron is updated, the Softmax function is applied on
the current network state, with the value of the updated neuron
set to its weighted input.

The final value of the output neuron does not depend on
the range of inputs fed to the neuron, rather it depends on the
extent to which the input differs from the activation values of
the other neurons. As the entire image of Softmax activation
function is utilized by the network for its output, causing the
network to converge to one of the desired states, even with a
few neurons.

E. Post-training

Once the prototypes of the network have been generated,
they are used to initialize the weights of the network by one
of the training rules i.e. Hebbian or Storkey learning. These
initialized weights form the structure of the network and are
used to predict the class labels of test data. Data is fed to the
Hopfield network according to (2) and (3) and the final state
of the network is taken as the output. However, the output of a
test vector alone is not enough to decide its class label. In order
to do so, a reference and a proximity metric is required. The
outputs of the prototypes form the reference, and although any
distance metric may be used, the Euclidean distance has been
considered in this paper. Algorithm 2 illustrates the generation
of the reference vectors.

Algorithm 2 Generate References
Input:

Set of prototypes P ,
Weight matrix W ,
Activation function g.

Output:
Set of stable states R corresponding to P .

1: R← ∅
2: for (~p in P) do
3: ~u← ~p
4: ~v = g(~u)
5: repeat
6: equation (2)
7: equation (3)
8: until network is stable.
9: ~φp ← ~v

10: R← R ∪ ~φp
11: end for

Each vector in P is fed to the network, until the values
of ~v do not change, i.e., network has converged, after which
the final state of the network is stored. The final states
corresponding to all the prototypes are then compiled into a
set returned by the Algorithm 2.

Once the references have been generated and the proximity
metric decided, the next step is to predict the labels of test
data. The process is similar to the generation of references.
Each vector τ in the test set is fed to the network and the cor-
responding final state is generated. For each reference vector,

the Euclidean distance from the final state is determined, and
the reference vector corresponding to the minimum vector is
taken to be the class representative of the test vector. The class
label of this reference is assigned to the test vector.

Algorithm 3 Classifying a Test Sample
Input:

Set of prototypes P ,
Weight matrix W ,
Activation function g,
Reference set R for P as generated by Algorithm 2,
Test sample τ ,
Proximity measure prox.

Output:
Class label of test sample τ .

1: ~u← ~τ
2: ~v ← g(~u)
3: repeat
4: equation (2)
5: equation (3)
6: until network is stable.
7: ~φτ ← ~v
8: min_dist← min{prox(~φp, ~φτ) ∀ ~φp ∈ R}
9: ~pc ← ~p such that, prox(~φp, ~φτ) = min_dist

10: return class label represented by pc.

From Algorithm 3, lines 8, 9 and 10 form the decision rule
for the model.

IV. EXPERIMENT SETUP

The aforementioned algorithms have been implemented
and were executed in the R programming environment. Both
data sets have been normalized by feature scaling. If X is the
input data set, let ~xi be the ith column vector in X , then the
normalized values of ~xi are given by,

~xi
′ =

~xi −min(~xi)
max(~xi)−min(~xi)

(9)

The data sets were split into training and test samples at a
70 : 30 ratio[16]. The prototypes corresponding to each class
label were extracted from the training data set by partitioning
around medoids according to Algorithm 1. These prototypes
were then used to initialize the weight matrix to store their
corresponding state vectors using either hebbian or storkey
training rules. Their corresponding state vectors, or references,
were then generated by Algorithm 2. Once the model was
constructed, each observation in the test data set was classified
by Algorithm 3. These predicted labels were then matched
with their true labels and an accuracy score was generated.
This experiment is illustrated in Algorithm 4.

As an artifact of the implementation, in order to gauge
the stability of the network after a given iteration, a threshold
was introduced. For a change in the state of the network to
be considered significant, the sum of squared differences of
the current state from the previous state must be greater than
or equal to the threshold. If not, the network reverts to the
previous state. Further, the number of significant figures in the
threshold was reflected onto the state vector of the network,
i.e., the state vector was rounded to the number of significant

458 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Algorithm 4 Experiment Procedure
Input:

Input data set X ,
Number of prototypes per class np,
Learning rule lrule,
Activation function g.

Output:
Classification Accuracy.

1: shuffle X
2: split X into a training set train and a test set tests
3: P ← extract prototypes from train using Algorithm 1
4: if lrule is "Hebbian" then
5: initialize the weight matrix using P by equation (5)
6: else if lrule is "Storkey" then
7: initialize the weight matrix using P by equation (6)
8: end if
9: R← generate the references for P using Algorithm 2

10: corrects← 0
11: total← 0
12: for all obs in tests do
13: ypred← classify obs by Algorithm 3
14: ytrue← the actual label of obs
15: if ypred = ytrue then
16: corrects← corrects+ 1
17: end if
18: total← total + 1
19: end for
20: accuracy ← corrects

total
21: return accuracy

digits of the threshold. The threshold values, along with the
number of prototypes per class, for each data set on both the
learning rules, were set through heuristic fine tuning performed
over several iterations of the experiment. These values are
listed in Table I and explained in Section V.

The experiment illustrated in Algorithm 4 was repeated for
100 iterations and the accuracy for each iteration was recorded.

TABLE I. HYPER-PARAMETERS FOR THE IMPLEMENTATION

Customer Cancer

Hebb Storkey Hebb Storkey

Threshold 0.001 0.1 0.0001 0.0001

Prototypes 7 3 4 4

V. RESULTS

The results of the experiment described in Section IV for
Hebbian learning and Storkey learning, for both data sets, has
been aggregated and layered out in Table II.

TABLE II. CLASSIFICATION ACCURACY

Customer Cancer

Hebb Storkey Hebb Storkey

Max. 93.7% 87.4% 94.1% 95.3%

Mean 87.2% 72.3% 89.2% 87.5%

Min. 77% 56% 82.5% 77.8%

These results indicate the network successfully converges
close to one of the references given a test sample. Due to
the higher dimensionality of the cancer data set, accuracy is
marginally better. However, the simplicity of the model makes
it equally successful for customer loyalty classification.

In order to fix the number of prototypes, the experiment
was extended to compare the effect of employing an increasing
number of prototypes per class. Although the training time
increased, it was observed, that this did not necessarily corre-
spond to an increase in the performance of the network. The
mean accuracy of the Cancer data set, for the Hebbian learning
rule (Fig. 2a) and the Storkey learning rule (Fig. 2c) grows very
slowly over the number of prototypes and stagnates close to
90% accuracy. The prototypes were fixed at 4 to provide a
convenient speed-accuracy tradeoff.

For the Customer data set, however, the results drastically
vary among the learning rules. It was observed, that when the
network was trained for the Hebb learning rule at a threshold
of 0.001, up until 4 prototypes, the references (as outlined in
Section III-E) were identical for every input vector fed to the
network. Therefore, no classification was possible. This occurs
when trained by the Storkey learning rule as well at a 0.001
threshold, although this effect persists up to 7 prototypes. After
4 prototypes, for the Hebb rule, the references corresponding
to different prototypes are distinct across classes and therefore,
the network can function as a classification model with a
peak accuracy at 7 prototypes. Beyond 7, the network exceeds
its capacity and all input states once again converge to the
same state. For the Storkey learning rule, although the network
classifies at more than 7 prototypes, the classification accuracy
is poor. Therefore, the threshold was set to 0.1 and the number
of prototypes determined from the graph, i.e. 3. For this
threshold value and 3 prototypes, the performance of the Hebb
learning was observed to be the same as that of the Storkey
rule.

The comparison of Hebbian and Storkey learning rules
have been illustrated in Fig. 3. Here, the accuracies per proto-
type has been displayed as a bar graph for a clear distinction
in the performance variation among the learning rules.

459 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

(a) Accuracy (Hebb) (b) Experiment Time (Hebb)

(c) Accuracy (Storkey) (d) Experiment Time (Storkey)

Fig. 2. Model Performance with Prototypes. Graphs (a) and (c) indicate the change in mean accuracy as the number of prototypes are increased for both
learning rules. Graphs (b) and (d) indicate the change in execution time of the complete experiment as the number of prototypes per class is increased.

(a) Customer Loyalty (b) Breast Cancer Wisconsin (Diagnostic)

Fig. 3. Learning Rule Comparison. Graph (a) shows the comparison chart for the Customer Loyalty data set, and graph (b) shows the same for the Breast
Cancer data set. The red bars indicate the accuracy for the Hebb learning rule, while the green indicate Storkey. As seen, there is not much difference in the
performance of either across the number of prototypes.

VI. CONCLUSION

Implementation of proposed framework provides evidence
of improved accuracy of multi class classification of cus-
tomer dataset and binary classification of cancer dataset. For
customer dataset, Hopfield Nets with Hebbian and Storkey
learning along with Softmax function provides an accuracy of

average 87% and 72% and maximum 93.7% and 87.4%. For
cancer dataset it represents the accuracy of average 89% and
87% and maximum 94% and 95.3%. The accuracy achieved
in literature[8] for the customer problem was 87%. In this
paper, for both the cases of customer and cancer datasets
it is improved. With this kind of accuracy, we are further
investigating the role of Restricted Boltzmann machines and

460 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Deep nets towards customer dataset.

REFERENCES

[1] Shaw, Colin, and Ryan Hamilton. "Imperative 7: Realize the Only Way to
Build Customer Loyalty Is through Customer Memories." The Intuitive
Customer. Palgrave Macmillan UK, 2016. 141-159.

[2] Arya, Arti, and Agarwal Pooja. "Fuzzy Decision Tree based Automatic
Classifier for Customer Loyalty." In proc. of Intl. COnf. on Data
Management, 2010.

[3] Arya, Arti, Agarwal, Pooja et al. "Automatic Fuzzy Classification tool for
Customer Loyalty using Gaussian Membership Function." Data Mining
and Knowledge Engineering 2.7 (2010): 168-173.

[4] P. Agarwal, J Surya Prasad and A Arya. Article: A Naïve Hopfield Neural
Network based Approach for Multiclass Classification of Customer
Loyalty. Communications on Applied Electronics 2(5):36-43, July 2015.
Published by Foundation of Computer Science (FCS), NY, USA

[5] Hopfield, John J. "Neural networks and physical systems with emergent
collective computational abilities." Proceedings of the national academy
of sciences 79.8 (1982): 2554-2558.

[6] Cabeza, Raquelita Torres, et al. "Fault Diagnosis with Missing Data
Based on Hopfield Neural Networks." Mathematical Modeling and
Computational Intelligence in Engineering Applications. Springer Inter-
national Publishing, 2016. 37-46.

[7] Muscinelli, Samuel P., Wulfram Gerstner, and Johanni Brea. "Expo-
nentially long orbits in Hopfield neural networks." Neural computation
(2017).

[8] Oda, Tetsuya, et al. "A Neural Network Based User Identification for Tor
Networks: Comparison Analysis of Different Activation Functions Using
Friedman Test." Network-Based Information Systems (NBiS), 2016 19th
International Conference on. IEEE, 2016.

[9] Wen, Ue-Pyng, Kuen-Ming Lan, and Hsu-Shih Shih. "A review of Hop-
field neural networks for solving mathematical programming problems."
European Journal of Operational Research 198.3 (2009): 675-687.

[10] Storkey, Amos. "Increasing the capacity of a Hopfield network with-
out sacrificing functionality." Artificial Neural Networks—ICANN’97
(1997): 451-456.

[11] Hu, Xiao. "Storkey Learning Rules for Hopfield Networks." (2013).
[12] https://archive.ics.uci.edu/ml/datasets/breast+cancer UCI Machine

Learning Repository, Breast Cancer data set. This breast cancer domain
was obtained from the University Medical Centre, Institute of Oncology,
Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for
providing the data.

[13] Storkey, Amos J., and Romain Valabregue. "The basins of attraction of
a new Hopfield learning rule." Neural Networks 12.6 (1999): 869-876.

[14] Hopfield, John J. "Neural networks and physical systems with emergent
collective computational abilities." Proceedings of the national academy
of sciences 79.8 (1982): 2554-2558.

[15] Swingler, Kevin. "On the Capacity of Hopfield Neural Networks as
EDAs for Solving Combinatorial Optimisation Problems." IJCCI. 2012.

[16] Stranieri, Andrew, and John Zeleznikow. Knowledge discovery from
legal databases. Vol. 69. Springer Science & Business Media, 2006.

461 | P a g e

