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Abstract—Unmanned Aerial Vehicles (UAVs) have been 
increasingly used in military and civilian applications. Even 
though the UAV routing problems have similarities with Vehicle 
Routing Problems, there are still many problems where effective 
and efficient solutions are lacking. We propose a randomized 
heuristic algorithm for the cyclic routing of a single UAV. The 
UAV is required to visit a set of target areas where the time 
interval between consecutive visits to each area cannot exceed its 
relative deadline.  The PSPACE-complete problem has a solution 
whose length may be exponential. Our algorithm tries to compute 
a feasible cyclic route while trying to keep short the cycle time.  
Our tests of 57 instances of the problem show that the algorithm 
has good effectiveness and efficiency. 

Keywords—Single Unmanned Aerial Vehicle (UAV); cyclic 
routing; randomization; heuristic 

I. INTRODUCTION 

In recent years the deployment of Unmanned Aerial 
Vehicles (UAVs) for various purposes has been increasing.  
UAVs are used for surveillance and monitoring, mobile target 
tracking, search and rescue, delivery of small parcels and 
taking videos or photographs which are otherwise difficult to 
obtain from ground level. In this paper, we focus on the 
problem of cyclic routing of a single UAV for the purpose of 
surveillance and monitoring.  There is a set of target areas to be 
continuously monitored.  Each of the target areas needs to be 
visited repeatedly. The time interval between consecutive visits 
by the UAV to an area cannot exceed its relative deadline.  
Since the problem is PSPACE-complete [8], we propose a 
randomized heuristic to solve it. The objective of the algorithm 
is to find a cyclic route for the UAV that satisfies all the 
relative deadlines and minimizes the total distance traveled. 

The rest of the paper is organized as follows.  We review 
related work on UAVs in Section II.  The cyclic routing 
problem and our algorithm are presented in Section III.  Then 
Section IV presents the tests we have done to evaluate the 
effectiveness and efficiency of our algorithm.  Section V gives 
the conclusion. 

II. RELATED WORK 

The UAV routing problem has been studied mainly from 
two levels.  At the lower level, it is about guidance, navigation 
and control. Examples of the published works include the 
survey of these technologies by Kendoul [9], the navigation 
and control of the AR drone by Bristeau et al. [3], two 

complete system architectures by Elkaim et al. [5].  At the 
higher level, it is about routing. 

A number of studies have been done to route multiple 
UAVs to multiple target areas.  Pohl and Lamont [12] proposed 
a multi-objective optimization algorithm for routing multiple 
UAVs to multiple locations using genetic algorithm approach.  
In their problem, each location has a time window for an UAV 
to visit.  The objective is to minimize the number of UAVs, the 
waiting time of UAVs (if an UAV arrives before the start of 
the time window of a location) and the total travelling distance.  
Enright et al. [6] presented a survey on the algorithms for 
assigning and scheduling of one or more UAVs to perform 
tasks which dynamically appear in various locations. The 
objective of the algorithms is to minimize the average time 
between the times of appearances of the tasks and their 
completion times.  Mersheeva and Friedrich [10] proposed a 
heuristic method for multi-UAV routing with priorities and 
limited energy/power. The UAVs can be used to monitor crime 
scenes or disaster sites. The objective is to maximize the 
number of sites with up-to-date information under the 
constraint of limited energy resources.  Park et al. [11] 
proposed a 2-phase heuristics to route an unmanned combat 
vehicle to patrol a set of checkpoints where the probability of 
enemy infiltration to each checkpoint increases nonlinearly 
with time. 

For the cyclic routing of UAVs, Basilico et al. [1], [2] 
formulated the problem as a constraint satisfaction problem 
and proposed a solution method to find a feasible cyclic route 
for a single UAV. The algorithm searches the solution space by 
backtracking. To improve the efficiency a forward checking 
method is used to reduce the branching of the search tree.  
However, this solution is believed to be wrong [4] since it is 
based on the theorem that there is a polynomial bound on the 
length of the cyclic route, which implies NP-completeness of 
the problem. In fact, Ho and Ouaknine [8] proved that the 
cyclic routing of UAVs is PSPACE-complete, even in the 
single UAV case.  Fargeas et al. [7] also proposed heuristic to 
compute a cyclic route for a mobile agent to satisfy re-visit 
rates.  Drucker et al. [4] presented a lower bound and an upper 
bound on the number of UAVs for solving the cyclic routing 
problem and constraints models for single and multiple UAV 
problems, respectively. They solved their constraints models 
by a Satisfiability Modulo Theories (SMT) solver called Z3. 
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III. ROUTING ALGORITHM 

A. Cyclic Routing Problem 

Let G = (V, E) be a weighted graph and R = [r1, r2, …, rn] 
be a vector. V = {v1, v2, …, vn} is the set of target areas to be 
monitored and E = {fij}, (i = 1, 2, …, n; j = 1, 2, …, n), is the 2-
dimentional matrix specifying the flight times between vertices 
in V. R is a vector of relative deadlines for the target areas.  
The relative deadline of an area is the longest time interval 
allowed between two consecutive visits to the area by the 
UAV. There is a surveillance time required by the UAV at 
each visit to a target area. 

The assumptions are as follows: 

 Target areas can be entered by the UAV from any 
direction. 

 The surveillance time is large enough to allow the UAV 
to leave a target area from the point that is closest to the 
next area that it is going to visit. Thus the given flight 
time between a pair of target areas is the shortest. 

 Flight times between areas are constants. 

 Flight times and relative deadlines are given in integers 
as input data. 

 For a triangle formed by any three vertices, the triangle 
inequality theorem is obeyed, i.e. the sum of two sides 
is greater than the third. 

 Each flight time is at most half of the relative deadline 
of the target that the UAV is traveling to or from.  This 
means there is no isolated vertex which will require 
another UAV to manage. 

Let ti, i = 1, 2, …, n, be the surveillance time.  We can 
simplify the problem by distributing the surveillance time into 
flight times such that each fij in E is added by (ti + tj)/2.  After 
this simplification, the cyclic routing problem is: given a graph 
G and a vector R, find a cyclic path of minimum length which 
starts from a vertex, visits every vertex at least once (including 
the starting vertex) and returns to the starting vertex while all 
relative deadline constraints are satisfied. 

 
Fig. 1. Main components. 

B. Basic Randomized Routing Algorithm 

We first present a basic algorithm whose main objective is 
to find a feasible solution with good total flying distance by the 

UAV. The main components of the algorithm for the 
computation of cyclic route are shown in Fig. 1.  The name of 
each component tells the function of that component. The 
arrows in the figure show the caller-callee relationship between 
two components. The whole algorithm starts from the MAIN 
function. 

As shown in Fig. 2, the MAIN function repeatedly calls 
COMPUTE-CYCLIC-ROUTE to find a solution.  When one 
solution is found, it terminates.  Otherwise, it continues until 
1000 trials have been attempted.  Since there are randomized 
decisions in the construction of a cyclic route, a failure in one 
attempt does not mean there is no feasible solution. The 
number of trials can be set by the user of the algorithm.  In our 
experiments, we find that for most problem instances where a 
solution is found by our algorithm, the number of trials is 
smaller than 30 (we tested graphs up to 7 vertices). 

 
Fig. 2. Main function. 

In the pseudo code for COMPUTE-CYCLIC-ROUTE in Fig. 3, 
V is the set of target areas (vertices), E is the matrix of flight 
times between each pair of vertices, R is the array of relative 
deadlines for the vertices. The data structures used are as 
follows: 

Solution is the cyclic route being constructed which is 
presented by a vector of vertices together with the time the 
UAV reaches each of these vertices and whether a vertex at 
this position in the cyclic route is locked (cannot be removed 
when handling relative deadline violations).  An example of a 
solution (which is the route in a number of functions in Fig. 4-
9) when V = {a, b, c, d}: ab (5 time units) c (3 time units) 
d (5 time units) a (3 time units). 

position 0 1 2 3 4 
vertex a b c d a 
travelTime 0 5 8 13 16
locked    

Violated is to hold the list of violations of relative deadlines 
in solution, each entry is indexed by the vertex. If there is a 
violation the entry stores the start and end positions in the 
cyclic route which is a section of the route whose traveling 
time violates the relative deadline of the vertex.  For example, 
V = {a, b, c, d}, R = {16, 8, 14, 8} and solution is 

 

MAIN COMPUTE-CYCLIC-ROUTE 

BUILD-
NEXT-LOOP 

CHECK-
VIOLATIONS 

HANDLE-
VIOLATIONS 

RESOLVE-BY-
REMOVAL 

RESOLVE-BY-
INSERTION 

IS-
VIOLATED 

function MAIN() 
{  
 V  ← input vertex set 
 R ← input relative deadlines 
  E ← input flight times 
  trials ← 0 
  repeat 
   trials ← trials + 1 
   solution ← COMPUTE-CYCLIC-ROUTE(V, E, R) 
   if solution is not None then return True  
  until trials = 1000 
  return False  
} 
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position 0 1 2 3 4 5 6
vertex d a b d b c d
travelTime 0 3 5 8 11 14 16
locked       

In this case, from position 4 to position 2, the interval for b 
is 10 (>8) and from position 0 to position 6, the interval for c is 
16 (>14).  So violated contains: 

vertex b c 
start 4 0 
end 2 6 

UnvistedSet is the set of vertices which have not been 
included in the cyclic route solution. 

FirstVertex is the starting vertex of solution which is the 
starting vertex of every loop in solution. 

It is observed that the cyclic route for the UAV consists of 
one or more loops all of which start from a certain vertex a and 
return to a.  This vertex a will be one of the vertices with the 
minimum relative deadline.  For example, a cyclic route 
involving 4 vertices may just be d  a  c  b  d which 
means one loop, or d  a  c  d  b  d which means 2 
loops.  Vertex d will be a vertex with the smallest deadline.  So 
COMPUTE-CYCLIC-ROUTE in Fig. 3 begins with an empty 
cyclic route, and a loop is built repeatedly to extend the cyclic 
route. Each time BUILD-NEXT-LOOP will build a loop that 
includes all current unvisited vertices. After this, CHECK-
VIOLATIONS will check for deadline violations and it is 
followed by HANDLE-VIOLATIONS. The function HANDLE-
VIOLATIONS may remove some vertices from the loop just built 
so that the current cyclic route does not violate any relative 
deadlines.  Then another loop to include these vertices needs to 
be built in the next iteration of the ‘repeat’ statement.  The 
iteration stops when all vertices are included in at least one 
loop in the cyclic route and their relative deadlines are not 
violated. 

Fig. 4 shows the pseudo code for BUILD-NEXT-LOOP. It is a 
greedy algorithm to build a TSP path including all vertices 
currently not in the cyclic route. The vertex firstVertex is 
always the starting vertex, which is randomly chosen among 
the vertices with the shortest relative deadline by COMPUTE-
CYCLIC-ROUTE.  The first two vertices to be added in the route 
(not including the starting vertex) are chosen at random among 
the set of unvisited vertices, as vertices added at this point 
make little impact to the algorithm.  Subsequent vertices are 
added in between existing vertices in the loop or at the end of 
the route so that it results in the smallest increase in cycle time.  
The function GET-INSERT-POSITION in Fig. 4, whose pseudo 
code is not presented for brevity, finds the position for 
inserting a vertex into the loop.  Note that each entry in route 
includes the vertex identifier and the time the UAV reaches 
this vertex since the start time of the route. This is the 
travelTime computed in BUILD-NEXT-LOOP. 

 
Fig. 3. Pseudo code for Compute-Cyclic-Route. 

 
Fig. 4. Pseudo code for BUILD-NEXT-LOOP. 

The function CHECK-VIOLATIONS in Fig. 5 checks whether 
there is a violation of relative deadline in route for each vertex 
in the set of vertices aList. The function is called 

function COMPUTE-CYCLIC-ROUTE(V, E, R)  
{  violated ← { }   
  solution ← empty cyclic route 
 unvistedSet ← V 
 firstVertex ← randomly chosen vertex with the shortest 
relative deadline  
  repeat  
      while violated is not empty do 
   if a vertex with the longest deadline is in solution  
        then return None  
  if not HANDLE-VIOLATIONS(solution, violated, 
unvisitedSet) 
        then return None  
       if unvisitedSet is not empty then 
   BUILD-NEXT-LOOP(firstVertex, solution, 
unvisitedSet, E) 
       CHECK-VIOLATIONS(solution, violated, V, R) 
  until violated and unvisitedSet are empty 
  return solution 
} 

 

function BUILD-NEXT-LOOP(firstVertex, route, unvisited, 
flightTime) 
{ // build a new loop to include all vertices in unvisited 
 if route is empty then travelTime ← 0 
  else travelTime ← the cycle time of the current route 
  route.append(firstVertex, travelTime) 
  unvisited.discard(firstVertex) 
for  i= 1 to min(2, |unvisited|) do 
  lastVertex ← current last vertex in route 
  nextVertex ← choose a random vertex in unvisited  
  travelTime ← travelTime  flightTime[lastVertex, 
nextVertex] 
  route.append(nextVertex, travelTime) 
  unvisitedSet.discard(nextVertex) 
while unvisited is not empty 
  nextVertex ← choose a random vertex in unvisited 
  start ← the timeslot at which firstVertex is last visited 
  end ← no. of vertices in route 
  position ← GET-INSERT-POSITION(nextVertex, start, 
end) 
  route.insert(nextVertex, position) 
  unvisitedSet.discard(nextVertex) 
} 
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from several places.  When CHECK-VIOLATIONS is called from 
COMPUTE-CYCLIC-ROUTE, the vertex set V of the whole graph 
is aList.  This is because of these two observations: 1) after 
BUILD-NEXT-LOOP, every vertex that has not been included in 
previous loop(s) in the cyclic route is included in the current 
loop; 2) with the inclusion of the current loop, the cycle time of 
the route is increased so some vertices in previous loop(s) may 
have their relative deadline violated.  Therefore, every vertex 
needs to be checked.  The checking for each vertex is done by 
IS-VIOLATED shown in Fig. 6. 

 
Fig. 5. Pseudo code for CHECK-VIOLATIONS. 

When CHECK-VIOLATIONS is called from COMPUTE-
CYCLIC-ROUTE, it is after a new loop is built each time.  With 
the addition of the new loop, the cycle time of the cyclic route 
is increased.  So for a vertex which appears only once in the 
whole cyclic route, function CHECK-VIOLATIONS calls function 
IS-VIOLATED in Fig. 6 with start index and end index being the 
two ends of the cyclic route.  This will allow IS-VIOLATED to 
check whether the cycle time of the whole route exceeds the 
relative deadline of the vertex.  For a vertex which appears 
more than once (in separate loops) except the starting vertex 
firstVertex, function CHECK-VIOLATIONS calls function IS-
VIOLATED with start index being the position of the last 
appearance of the vertex and end index being the position of 
the first appearance of the vertex in the cyclic route.  This will 
allow IS-VIOLATED to check whether the time interval between 
the last visit and the first visit to the vertex exceeds the relative 
deadline.  There is no need to check the time interval between 
the ith and (i+1)th visits to the vertex because this check is 
done when the (i+1)th visit is inserted into the cyclic route.  
For the starting vertex firstVertex, function CHECK-
VIOLATIONS calls function IS-VIOLATED with start index being 
the position of the last appearance of the vertex (start point of 
the new loop) and end index being the end of the cyclic route.  
This will allow IS-VIOLATED to check whether the cycle time 
of the loop exceeds the relative deadline of the vertex.  There is 
no need to check whether the cycle time of the previous loop(s) 
violates the relative deadline because it was checked previously 
when the loop was added to the cyclic route. 

With the information passed from CHECK-VIOLATIONS, 
function IS-VIOLATED in Fig. 6 simply checks whether the time 
interval between the start visit and the end visit in the cyclic 
route exceeds the relative deadline of vertex. When a 

relative deadline is violated, it saves in violated the start and 
end positions in the cyclic route which is a section of the route 
whose traveling time violates the relative deadline of the vertex 
and locks the vertex in the cyclic route to prevent the vertex 
from being removed by HANDLE-VIOLATIONS in Fig. 7.  This is 
because if the vertex has its relative deadline violated, this 
vertex should get more visits to shorten the interval between 
visits and not be removed from the current cyclic route. 

 
Fig. 6. Pseudo code for IS-VIOLATED. 

Function HANDLE-VIOLATIONS in Fig. 7 is to resolve all 
violations in the current cyclic route as specified by 
violatedRegions. The basic idea of HANDLE-VIOLATIONS in 
Fig. 7 is that if the firstVertex has a violation, it means the 
cycle time in the last loop in the cyclic route is longer than the 
relative deadline of the vertex.  This violation will be resolved 
by removing one or more vertices from the loop to reduce the 
cycle time until it is within the length of the relative deadline.  
This is done by RESOLVE-BY-REMOVAL. 

It was mentioned earlier that if a vertex has a violated 
relative deadline, it is locked in the route and the vertex will 
not be removed. So if after RESOLVE-BY-REMOVAL, it is found 
that the number of vertices with unresolved violations is 
greater than the number of vertices in route (no. of vertices in 
route  ≤ |violatedVertices | ), no solution can be found and 
HANDLE-VIOLATIONS will return false. Function CHECK-
VIOLATIONS is called again to check for violations after the 
removal of vertices. 

When a violated vertex is not the firstVertex, the violation 
will need to be resolved by inserting the violated vertex into 
the cyclic route one more time. For each of such vertices, 
function RESOLVE-BY-INSERTION is called in a random order to 
insert it into the cyclic route.  There are situations where the 
violation cannot be resolve by insertion.  In such situations, no 
solution can be found and HANDLE-VIOLATIONS will return 
false. 

function CHECK-VIOLATIONS(route, violatedRegions, aList, 
R) 
{ 
 for each vertex v in aList do 
   start ← 0 
   end ← no. of vertices in route    
  if v is visited more than once then 
    start ← position in route where v is last visited 
    if v ≠ firstVertex then 
   end ← position in route where v is first visited 
   IS-VIOLATED(v, route, start, end, violatedRegions, R) 
} 

function IS-VIOLATED(vertex, route, start, end, violated, 
deadline)  
{ if end < start  then      
 // vertex visited more than once and vertex ≠ firstVertex 
   timeInBetween ← the time between vertex is first 
visited and last visited 
   travelTime ← the cycle time – timeInBetween // 
This is time-around. 
  else if vertex = firstVertex  then 
   travelTime ← the cycle time – route.times[start] 
  else travelTime ← route.times[end] – route.times[start] 
  if travelTime > deadline[vertex] then // is violated. 
   violated[vertex] ← (start, end) 
   route.locked[position in route where vertex is last 
visited] ← True    // vertex cannot be removed later 
   return True 
  if violated ≠ None then violated.discard(vertex) 
  return False 
} 
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Fig. 7. Pseudo code for Handle-Violations. 

 
Fig. 8. Pseudo code for Resolve-By-Removal. 

Function RESOLVE-BY-REMOVAL in Fig. 8 calls function 
REMOVE-VERTEX (pseudo code not presented for brevity) to 
remove a vertex from the last loop of cyclic route as 
demarcated by start and end values from violatedRegions.  It 
will choose a vertex which results in the biggest reduction in 
cycle time of the last loop.  The removed vertex will be put 
back to unvisitedSet so that it can be included in a new loop to 
be built later.  If REMOVE-VERTEX cannot find a vertex to 
remove, e.g. all vertices in the loop are locked, it will return 
false to indicate the failure of the resolution of the violation.  
This will cause HANDLE-VIOLATIONS to return false, i.e. a 
solution cannot be found.  Function IS-VIOLATED is called to 
check whether the violation of the loop has been resolved after 
removing a vertex. If that is the case, removal of vertices will 
stop. 

 
Fig. 9. Pseudo code for Resolve-By-Insertion. 

A vertex needs to be inserted into the cyclic route again if it 
has been visited before, and the cycle time or time between the 

function HANDLE-VIOLATIONS(route, violatedRegions, 
unvisitedSet)  
{ if firstVertex in violatedRegions then  
  if firstVertex is visited only once then 
    violatedVertices ← a list of keys in 
violatedRegions   // Before removal. 
   if not RESOLVE-BY-REMOVAL(firstVertex, route, 
violatedRegions, unvisitedSet) then return False 
  if firstVertex is visited only once then 
    if no. of vertices in route  ≤ |violatedVertices|  
     then return False    
  violatedVertices ← a list of keys in violatedRegions
  CHECK-VIOLATIONS(route, violatedRegions, 
violatedVertices) 
  repeat 
   violatedVertex ← randomly choose a vertex in 
violatedRegions 
   if not RESOLVE-BY-INSERTION(violatedVertex, 
route, violatedRegions,unvisitedSet) then return False
 until violatedRegions is empty 
  return True 
} 

function RESOLVE-BY-REMOVAL(violatedVertex, route, 
violatedRegions, unvistedSet) 
{ (start,end) ← violatedRegions[violatedVertex] 
 repeat   
   if not REMOVE-VERTEX(route, 
violatedRegions[violatedVertex], unvisitedSet) 
   then return False 
  end ← violatedRegions[violatedVertex].end  
  until not IS-VIOLATED(violatedVertex, route, start, end, 
violatedRegions) 
 violatedRegions.discard(violatedVertex)  
 // Vertex is no longer violated. 
} 

function RESOLVE-BY-INSERTION(violatedVertex, route, 
violatedRegions, unvisitedSet)  
{ 
  timeInBetween ← travel time from the position in route 
at which violatedVertex is last visited to the last position at 
which it is presumably inserted 
  start ←position of start point of the last loop 
 end ← no. of vertices in route 
  repeat 
   lastVisit ← position in route at which violatedVertex 
is last visited 
   if lastVisit > position of start point of the loop being 
checked then 
    if unvisitedSet not empty then  break 
   else  if travel time from the position in route at 
which violatedVertex is last visited to one it is first visited  
≤ deadline[violatedVertex]  then  break 
    else return False 
   position ← GET-INSERT-POSITION(violatedVertex, 
route, start, end) 
   timeInBetween ← travel time from lastVisit to 
position at which it is presumably inserted 
   if timeInBetween ≤ deadline[violatedVertex] then 
    // Revisit violatedVertex at position. 
    lock ← True 
   route.insert(violatedVertex, position, lock) 
    end ← end + 1 
    violatedRegions.discard(violatedVertex)  
    if IS-VIOLATED(firstVertex, route, start, end, 
violatedRegions) then 
     if not Resolve-By-Removal(firstVertex, route, 
violatedRegions,  unvisitedSet) then return False 
     position ← position in route at which 
violatedVertex is last visited 
    if INSERT-VIOLATED (position, route) 
     then return False 
    timeInBetween ←  travel time from the position 
in route at which violatedVertex is last visited to the last 
position at which it is presumably inserted 
    end ← no. of vertices in route   
  else  // timeInBetween is too long, try previous loop 
    end ← start 
    if start is the start position of the first loop  
    then return False   
   start ← start position of the previous loop in route 
  until unvisitedSet is not empty and timeInBetween < 
deadline[violatedVertex] 
  violatedRegions.discard(violatedVertex)  
  return True 
} 
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last visit and the first visit is greater than its relative deadline.  
Function RESOLVE-BY-INSERTION in Fig. 9 will perform this 
task.  The basic idea is to search for a loop to insert the vertex. 
The search starts from the last loop. Function GET-INSERT-
POSITION which is used in BUILD-NEXT-LOOP as mentioned 
earlier is also used here to find a position in the loop.  This will 
cause minimum increase in cycle time.  This tentative position 
for insertion will be checked to see whether inserting the vertex 
here will result in an interval between this position and the 
position of the last visit, i.e. timeInBetween, violating the 
relative deadline of the vertex.  If it is the case, search has to 
continue with the previous loop to find a suitable insertion 
point. Otherwise the vertex will be inserted. Since this insertion 
increases the cycle time of the loop, IS-VIOLATED is called to 
check whether the relative deadline of firstVertex is violated.  
If it is the case, Resolve-By-Removal is called to remove some 
vertices which will put certain vertex to go into unVisitedSet.  
Function INSERT-VIOLATED (pseudo code not shown here for 
brevity) is used to check whether the insertion of the vertex 
will cause an interval between two consecutive visits of any 
other vertices violating their deadline.  If it is the case, return 
false to indicate failure of vertex insertion. 

When trying to continue the search in a previous loop, 
obviously a vertex cannot be revisited/inserted in the first loop 
of the cyclic route (condition: start is the start position of the 
first loop).  When the condition arises, the attempt to insert is 
aborted.  In addition, there are situations where it is better to 
procrastinate the vertex insertion: when unvisitedSet is not 
empty due to the removal of vertices.  Then insertion will not 
be done for this vertex at this point.  The attempt to insert will 
terminate when unvisitedSet is found not empty or after an 
insertion, the time between the last visit and the first visit of the 
vertex in route is not greater than the relative deadline. 

C. Improved Randomized Routing Algorithm 

The basic algorithm stops when a solution is found.  This 
solution may be a good solution but a better solution may be 
found if the randomized basic algorithm is allowed to have 
more trials. 

In an improved version of the algorithm, after a solution is 
returned, it will continue with the next trial in the repeat loop in 
Fig. 2.  When in the next trial, because of the randomization, a 
different solution may be returned.  The computation of a 
solution continues until either three solutions with the same 
(minimum) total cycle time are obtained or (3*the number of 
vertices with the shortest relative deadline*the total number of 
vertices) iterations have been tried.  Then the solution with the 
shortest cycle time is returned. 

IV. EVALUATION RESULTS 

Experiments are conducted to evaluate the effectiveness 
and the efficiency of the randomized heuristic routing 
algorithm. The algorithm is implemented in Python 3.  
Experiments are run on Intel® Core™ i7-6500U CPU @ 2.50 
GHz, 8.00 Gb RAM, 64-bit Operating System, x64-based 
processor. 

The following test cases are designed according to 1) the 
different number of vertices; and 2) the different patterns of 
solutions that may be found.  Different patterns refer to: 

 All vertices only need to be visited once (a single loop 
in the cyclic route solution). 

 Only the vertex with the shortest relative deadline 
needs to be revisited. 

 Multiple vertices need to be revisited. 

 Various numbers of loops are required in the cyclic 
route solution. 

We tested 6 cases of 3-vertex graphs, 17 cases of 4-vertex 
graphs, 13 cases of 5-vertex graphs, 12 cases of 6-vertex 
graphs, 9 cases of 7-vertex graphs.  All graphs are complete 
graphs.  Fig. 10 shows the 6 cases of 3-vertex graphs where the 
number on top of each vertex is the relative deadline.  Fig. 11 
shows 3 of the 9 cases of 7-vertex graphs tested.  The results 
include 1-loop, 2-loop and 3-loop cyclic routes. 

 
Fig. 10. Six 3-vertex graphs tested. 

 
Fig. 11. Three of the nine 7-vertex graphs tested. 

Table 1 shows the results of finding a cyclic route for the 
UAV by the basic algorithm. For each graph, 1000 independent 
runs are conducted. The graphs are labeled in column 1 in the 
table, e.g. 7(1) means the first instance of the 7-vertex graph 
which is shown in the leftmost graph in Fig. 11. The 
independent runs for each graph may produce cyclic routes of 
different cycle times because of the randomization in the 
algorithm.  Columns 2 and 3 show the lowest and the highest 
cycle times obtained among the 1000 runs. When the two 
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entries for a certain row are blank, it means all 1000 runs 
produce the same cycle time (may have different cyclic routes).  
The last two columns show the probabilities of obtaining the 
lowest and the highest cycle times, respectively, based on the 
1000 run results. When these two probabilities do not add up to 
100%, it means there are other cycle times (in between the 
lowest and the highest cycle times) returned by the algorithm. 

TABLE I. CYCLE TIMES OF SOLUTIONS FROM BASIC ALGORITHM 

case 
Lowest 
cycle time 

Highest 
cycle time 

Prob. Of 
lowest cycle 
time 

Prob. Of 
highest cycle 
time 

All 3-
vertex 
cases* 

- - 100% - 

All 4-
vertex 
cases* 

- - 100% - 

Ten 5-
vertex 
cases* 

- - 100% - 

5(5) 31 34 37.8% 62.2% 
5(13) 23 25 54.7% 45.3% 
Four 6-
vertex 
cases* 

- - 100% - 

6(1) 31 35 42.8% 4.5% 
6(3) 36 47 46.0% 2.0% 
6(4) 50 62 75.8% 24.2% 
6(5) 39 50 67.0% 0.2% 
6(6) 46 64 50.2% 0.5% 
6(7) 48 54 92.1% 7.7% 
6(10) 39 41 32% 68% 
Three 7-
vertex 
cases 

- - 100% - 

7(1) 28 31 75.8% 0.1% 
7(3) 36 41 99.2% 0.5% 
7(4) 29 31 79.8% 0.5% 
7(5) 39 41 72.6% 9.8% 
7(8) 42 44 81.1% 18.9% 
7(9) 52 58 44.1% 0.1% 
*no solution is found for 2 of the 3-vertex cases, 2 of the 4-vertex cases, 1 of 5-vertex cases and 1 of 

6-vertext cases. 

As can be seen from Table 1, the basic algorithm has good 
effectiveness in computing a cyclic route which satisfies the 
relative deadlines of the vertices and produces short cycle 
times.  For all 3-vertex cases, the algorithm generates the same 
cycle time in every run except in two graphs where no solution 
is found. For all 4-vertex cases, the algorithm also generates 
the same cycle time in every run except in two graphs where 
no solution is found.  For 10 of the 5-vertex graphs, 4 of the 6-
vertex cases and 3 for the 7-vertex cases, the algorithm 
generates the same cycle time in 1000 runs.  For the other cases 
where a solution is found, the probability of producing the 
lowest cycle time based on the 1000 runs varies from 32% to 
99.2%.  Overall, the probability of getting a solution with the 
lowest cycle time based on the 1000 runs is generally high. 

Out of the 57 tested graphs, our algorithm does not return a 
solution for 6 graphs.  Checks carried out confirm that they are 
the cases where there is no solution for one UAV.  This means 
one UAV is not able to make cyclic visits that satisfy the 
relative deadlines of all vertices. For example, the third 
instance of the 3-vertex graphs shown as case (iii) in Fig. 10     
has no solution. In this graph, the relative deadlines of both 

vertices b and c are 10, and the weight of the edge ac is half of 
the relative deadline of vertex c. Travelling from vertex c to a 
would result in both relative deadlines of vertices b and c to be 
5, which would only give enough time to satisfy either vertices 
b or c but not both. The outcome is the same even if travelling 
from vertex c to a is avoided. Hence, it is impossible for a 
single UAV to satisfy both constraints.  Therefore, even though 
when the algorithm fails to find a solution, there is no 
guarantee that one does not exist, our test results show that the 
basic algorithm is quite competent. 

TABLE II. CPU TIME (MILLISECONDS) OF BASIC ALGORITHM 

Category Min  Median Max Mean 
3-vertex cases 
that have a 
solution 

0.0209 - 
0.0431 

0.0233 – 
0.0478 

0.1043 – 
0.6068 

0.0414 

4-vertex cases 
that have a 
solution 

0.0332 – 
0.1150 

0.0387 – 
0.2839 

0.1059 – 
3.0534 

0.1044 

5-vertex cases 
that have a 
solution 

0.0474 – 
0.1861 

0.0577 – 
0.5914 

0.1798 – 
5.8114 

0.2101 

6-vertex cases 
that have a 
solution 

0.0628 – 
0.2821 

0.0790 – 
0.9256 

0.2441 – 
13.2342 

0.3826 

All 7-vertex 
cases (have a 
solution) 

0.1075 – 
0.4618 

0.1316 – 
28.0597 

0.4930 – 
327.2841 

5.0229 

3-vertex cases 
that do not have 
a solution 

34.5742 – 
34.7666 

36.0654 – 
36.9703 

50.1992 – 
260.7659 

44.4364 

4-vertex cases 
that do not have 
a solution 

73.0449 – 
95.0147 

74.6350 – 
99.2205 

89.9638 – 
144.5263 

88.8542 

5-vertex case 
that does not 
have a solution 

111.6120 115.6246 138.9673 117.5761 

6-vertex case 
that does not 
have a solution 

97.4747 101.7835 352.0034 110.8454 

Table 2 shows the CPU time taken by the basic algorithm 
in the 1000 independent runs for each tested graph.  Note that 
in the basic algorithm, if one trial does not find a solution, it 
will try another time until either a solution is found or the 
algorithm has tried 1000 times. We present the CPU time based 
on the number of vertices in the graphs and whether a solution 
is found for a graph. The Min/Median/Max columns show the 
minimum/median/maximum CPU time in the independent runs 
for each category of graphs. The Mean column gives the 
overall average CPU time of all runs for graphs in the category.  
The results in Table 2 show that the basic algorithm is very fast 
and efficient.  Most of the cases will take not more than a few 
milliseconds, sometimes a few tens of milliseconds to find a 
solution.  The longest time on one case takes 372 milliseconds 
to compute a solution. When a solution cannot be found, the 
algorithm will go through 1000 trials before reporting failure.  
In these cases, the computational time ranges from a few tens 
to a few hundreds of milliseconds. 

Our improved algorithm is able to produce solutions of 
better quality. Table 3 shows the cycle time of the cyclic routes 
computed by the improved algorithm.  It does not include cases 
where all independent runs produce the same cycle time since 
the improved algorithm returns the same solution as the basic 
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algorithm for these cases. Compared with Table 1, Table 3 
shows that the highest cycle time obtained from the 1000 
independent runs is smaller than those obtained by the basic 
algorithm.  For example, case 6(3), in Table 1 the highest cycle 
time is 47 while in Table 3, it is 42. This means the gap 
between the lowest cycle time and the highest cycle time 
obtained by the algorithm is smaller. In the case of 6(3), it 
means when the improved algorithm is executed, the cyclic 
route found will have a cycle time in the range from 36 to 42 
instead of the range from 36 to 47. The probability of getting 
the lowest cycle time based on 1000 independent runs is 
significantly improved. In the case of 6(3), the probability of 
getting a cyclic route of the lowest cycle time, 36, is 46% when 
the basic algorithm is run. When the improved algorithm is 
run, the probability is 91.9%. Compared with the 
corresponding results in Table 1, we see significant 
improvements. 

TABLE III. CYCLE TIMES OF SOLUTIONS FROM IMPROVED ALGORITHM 

case 
Lowest 
cycle time 

Highest 
cycle time 

Prob. Of 
lowest cycle 
time 

Prob. Of 
highest cycle 
time 

5(5) 31 34 75.8% 24.2% 
5(13) 23 25 86.1% 13.9% 
6(1) 31 33 94.6% 0.6% 
6(3) 36 42 91.9% 5.9% 
6(4) 50 62 98.8% 1.2% 
6(5) 39 41 97.1% 2.9% 
6(6) 46 48 86.8% 13.2% 
6(7) 48 48 100% 0% 
6(10) 39 41 67.1% 32.9% 
7(1) 28 29 98.7% 1.3% 
7(3) 36 36 100% 0% 
7(4) 29 30 99.1% 0.9% 
7(5) 39 41 98.7% 0.2% 
7(8) 42 44 99.6% 0.4% 
7(9) 52 54 85.8% 0.4% 

Table 4 shows the CPU time taken by the improved 
algorithm in the same format as Table 2.  Only the cases where 
a solution can be found are shown since it takes the same 
amount of time for the improved algorithm to realize no 
solution can be found as for the basic algorithm.  Naturally a 
longer computational time is required by the improved 
algorithm.  However, all cases need less than half a second. 

TABLE IV. CPU TIME (MILLISECONDS) OF IMPROVED ALGORITHM 

Category Min  Median Max Mean 
3-vertex cases 
that have a 
solution 

0.0648 - 
0.1335 

0.0676 – 
0.1454 

0.2054 – 
0.5353 

0.1170 

4-vertex cases 
that have a 
solution 

0.1035 – 
0.3560 

0.1165 – 
0.9092 

0.2679 – 
3.9392 

0.3120 

5-vertex cases 
that have a 
solution 

0.1509 – 
0.8593 

0.1758 – 
2.4899 

0.3642 – 
15.7958 

0.8812 

6-vertex cases 
that have a 
solution 

0.2141 – 
1.0327 

0.5199 – 
3.4989 

1.7031 – 
20.7731 

1.6643 

7-vertex cases 
that have a 
solution 

0.2781 – 
8.6815 

0.4229 – 
126.2340 

1.0003 – 
402.2829 

14.8122 

V. CONCLUSIONS 

The cyclic routing problem for a single UAV is to find a 
cyclic route for the UAV to visit all target areas possibly 
multiple times such that all relative deadlines are observed.  
The solution to such a problem may be exponential in length.  
We propose a randomized heuristic algorithm to computes a 
solution that has a reasonably short cycle time for a given 
graph with given relative deadlines. Even though we cannot 
guarantee to find a solution when there is one, the effectiveness 
of the algorithm is shown by the good quality solutions for 51 
graphs out of 57 graphs.  The remaining 6 graphs are the ones 
where there is no solution for a single UAV.  The efficiency of 
the algorithm is good. The CPU time required by the algorithm 
is in milliseconds for all our tested cases. 

Further tests can be conducted with cases of higher number 
of target areas. 
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