
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

462 | P a g e

A Randomized Heuristic Algorithm for Cyclic
Routing of UAVs

Cheng Siang Lim and Shell Ying Huang
School of Computer Science and Engineering

Nanyang Technological University
Singapore

LIMC0183@e.ntu.edu.sg, assyhuang@ntu.edu.sg

Abstract—Unmanned Aerial Vehicles (UAVs) have been
increasingly used in military and civilian applications. Even
though the UAV routing problems have similarities with Vehicle
Routing Problems, there are still many problems where effective
and efficient solutions are lacking. We propose a randomized
heuristic algorithm for the cyclic routing of a single UAV. The
UAV is required to visit a set of target areas where the time
interval between consecutive visits to each area cannot exceed its
relative deadline. The PSPACE-complete problem has a solution
whose length may be exponential. Our algorithm tries to compute
a feasible cyclic route while trying to keep short the cycle time.
Our tests of 57 instances of the problem show that the algorithm
has good effectiveness and efficiency.

Keywords—Single Unmanned Aerial Vehicle (UAV); cyclic
routing; randomization; heuristic

I. INTRODUCTION

In recent years the deployment of Unmanned Aerial
Vehicles (UAVs) for various purposes has been increasing.
UAVs are used for surveillance and monitoring, mobile target
tracking, search and rescue, delivery of small parcels and
taking videos or photographs which are otherwise difficult to
obtain from ground level. In this paper, we focus on the
problem of cyclic routing of a single UAV for the purpose of
surveillance and monitoring. There is a set of target areas to be
continuously monitored. Each of the target areas needs to be
visited repeatedly. The time interval between consecutive visits
by the UAV to an area cannot exceed its relative deadline.
Since the problem is PSPACE-complete [8], we propose a
randomized heuristic to solve it. The objective of the algorithm
is to find a cyclic route for the UAV that satisfies all the
relative deadlines and minimizes the total distance traveled.

The rest of the paper is organized as follows. We review
related work on UAVs in Section II. The cyclic routing
problem and our algorithm are presented in Section III. Then
Section IV presents the tests we have done to evaluate the
effectiveness and efficiency of our algorithm. Section V gives
the conclusion.

II. RELATED WORK

The UAV routing problem has been studied mainly from
two levels. At the lower level, it is about guidance, navigation
and control. Examples of the published works include the
survey of these technologies by Kendoul [9], the navigation
and control of the AR drone by Bristeau et al. [3], two

complete system architectures by Elkaim et al. [5]. At the
higher level, it is about routing.

A number of studies have been done to route multiple
UAVs to multiple target areas. Pohl and Lamont [12] proposed
a multi-objective optimization algorithm for routing multiple
UAVs to multiple locations using genetic algorithm approach.
In their problem, each location has a time window for an UAV
to visit. The objective is to minimize the number of UAVs, the
waiting time of UAVs (if an UAV arrives before the start of
the time window of a location) and the total travelling distance.
Enright et al. [6] presented a survey on the algorithms for
assigning and scheduling of one or more UAVs to perform
tasks which dynamically appear in various locations. The
objective of the algorithms is to minimize the average time
between the times of appearances of the tasks and their
completion times. Mersheeva and Friedrich [10] proposed a
heuristic method for multi-UAV routing with priorities and
limited energy/power. The UAVs can be used to monitor crime
scenes or disaster sites. The objective is to maximize the
number of sites with up-to-date information under the
constraint of limited energy resources. Park et al. [11]
proposed a 2-phase heuristics to route an unmanned combat
vehicle to patrol a set of checkpoints where the probability of
enemy infiltration to each checkpoint increases nonlinearly
with time.

For the cyclic routing of UAVs, Basilico et al. [1], [2]
formulated the problem as a constraint satisfaction problem
and proposed a solution method to find a feasible cyclic route
for a single UAV. The algorithm searches the solution space by
backtracking. To improve the efficiency a forward checking
method is used to reduce the branching of the search tree.
However, this solution is believed to be wrong [4] since it is
based on the theorem that there is a polynomial bound on the
length of the cyclic route, which implies NP-completeness of
the problem. In fact, Ho and Ouaknine [8] proved that the
cyclic routing of UAVs is PSPACE-complete, even in the
single UAV case. Fargeas et al. [7] also proposed heuristic to
compute a cyclic route for a mobile agent to satisfy re-visit
rates. Drucker et al. [4] presented a lower bound and an upper
bound on the number of UAVs for solving the cyclic routing
problem and constraints models for single and multiple UAV
problems, respectively. They solved their constraints models
by a Satisfiability Modulo Theories (SMT) solver called Z3.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

463 | P a g e

III. ROUTING ALGORITHM

A. Cyclic Routing Problem

Let G = (V, E) be a weighted graph and R = [r1, r2, …, rn]
be a vector. V = {v1, v2, …, vn} is the set of target areas to be
monitored and E = {fij}, (i = 1, 2, …, n; j = 1, 2, …, n), is the 2-
dimentional matrix specifying the flight times between vertices
in V. R is a vector of relative deadlines for the target areas.
The relative deadline of an area is the longest time interval
allowed between two consecutive visits to the area by the
UAV. There is a surveillance time required by the UAV at
each visit to a target area.

The assumptions are as follows:

 Target areas can be entered by the UAV from any
direction.

 The surveillance time is large enough to allow the UAV
to leave a target area from the point that is closest to the
next area that it is going to visit. Thus the given flight
time between a pair of target areas is the shortest.

 Flight times between areas are constants.

 Flight times and relative deadlines are given in integers
as input data.

 For a triangle formed by any three vertices, the triangle
inequality theorem is obeyed, i.e. the sum of two sides
is greater than the third.

 Each flight time is at most half of the relative deadline
of the target that the UAV is traveling to or from. This
means there is no isolated vertex which will require
another UAV to manage.

Let ti, i = 1, 2, …, n, be the surveillance time. We can
simplify the problem by distributing the surveillance time into
flight times such that each fij in E is added by (ti + tj)/2. After
this simplification, the cyclic routing problem is: given a graph
G and a vector R, find a cyclic path of minimum length which
starts from a vertex, visits every vertex at least once (including
the starting vertex) and returns to the starting vertex while all
relative deadline constraints are satisfied.

Fig. 1. Main components.

B. Basic Randomized Routing Algorithm

We first present a basic algorithm whose main objective is
to find a feasible solution with good total flying distance by the

UAV. The main components of the algorithm for the
computation of cyclic route are shown in Fig. 1. The name of
each component tells the function of that component. The
arrows in the figure show the caller-callee relationship between
two components. The whole algorithm starts from the MAIN
function.

As shown in Fig. 2, the MAIN function repeatedly calls
COMPUTE-CYCLIC-ROUTE to find a solution. When one
solution is found, it terminates. Otherwise, it continues until
1000 trials have been attempted. Since there are randomized
decisions in the construction of a cyclic route, a failure in one
attempt does not mean there is no feasible solution. The
number of trials can be set by the user of the algorithm. In our
experiments, we find that for most problem instances where a
solution is found by our algorithm, the number of trials is
smaller than 30 (we tested graphs up to 7 vertices).

Fig. 2. Main function.

In the pseudo code for COMPUTE-CYCLIC-ROUTE in Fig. 3,
V is the set of target areas (vertices), E is the matrix of flight
times between each pair of vertices, R is the array of relative
deadlines for the vertices. The data structures used are as
follows:

Solution is the cyclic route being constructed which is
presented by a vector of vertices together with the time the
UAV reaches each of these vertices and whether a vertex at
this position in the cyclic route is locked (cannot be removed
when handling relative deadline violations). An example of a
solution (which is the route in a number of functions in Fig. 4-
9) when V = {a, b, c, d}: ab (5 time units) c (3 time units)
d (5 time units) a (3 time units).

position 0 1 2 3 4
vertex a b c d a
travelTime 0 5 8 13 16
locked

Violated is to hold the list of violations of relative deadlines
in solution, each entry is indexed by the vertex. If there is a
violation the entry stores the start and end positions in the
cyclic route which is a section of the route whose traveling
time violates the relative deadline of the vertex. For example,
V = {a, b, c, d}, R = {16, 8, 14, 8} and solution is

MAIN COMPUTE-CYCLIC-ROUTE

BUILD-
NEXT-LOOP

CHECK-
VIOLATIONS

HANDLE-
VIOLATIONS

RESOLVE-BY-
REMOVAL

RESOLVE-BY-
INSERTION

IS-
VIOLATED

function MAIN()
{
 V ← input vertex set
 R ← input relative deadlines
 E ← input flight times
 trials ← 0
 repeat
 trials ← trials + 1
 solution ← COMPUTE-CYCLIC-ROUTE(V, E, R)
 if solution is not None then return True
 until trials = 1000
 return False
}

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

464 | P a g e

position 0 1 2 3 4 5 6
vertex d a b d b c d
travelTime 0 3 5 8 11 14 16
locked

In this case, from position 4 to position 2, the interval for b
is 10 (>8) and from position 0 to position 6, the interval for c is
16 (>14). So violated contains:

vertex b c
start 4 0
end 2 6

UnvistedSet is the set of vertices which have not been
included in the cyclic route solution.

FirstVertex is the starting vertex of solution which is the
starting vertex of every loop in solution.

It is observed that the cyclic route for the UAV consists of
one or more loops all of which start from a certain vertex a and
return to a. This vertex a will be one of the vertices with the
minimum relative deadline. For example, a cyclic route
involving 4 vertices may just be d a c b d which
means one loop, or d a c d b d which means 2
loops. Vertex d will be a vertex with the smallest deadline. So
COMPUTE-CYCLIC-ROUTE in Fig. 3 begins with an empty
cyclic route, and a loop is built repeatedly to extend the cyclic
route. Each time BUILD-NEXT-LOOP will build a loop that
includes all current unvisited vertices. After this, CHECK-
VIOLATIONS will check for deadline violations and it is
followed by HANDLE-VIOLATIONS. The function HANDLE-
VIOLATIONS may remove some vertices from the loop just built
so that the current cyclic route does not violate any relative
deadlines. Then another loop to include these vertices needs to
be built in the next iteration of the ‘repeat’ statement. The
iteration stops when all vertices are included in at least one
loop in the cyclic route and their relative deadlines are not
violated.

Fig. 4 shows the pseudo code for BUILD-NEXT-LOOP. It is a
greedy algorithm to build a TSP path including all vertices
currently not in the cyclic route. The vertex firstVertex is
always the starting vertex, which is randomly chosen among
the vertices with the shortest relative deadline by COMPUTE-
CYCLIC-ROUTE. The first two vertices to be added in the route
(not including the starting vertex) are chosen at random among
the set of unvisited vertices, as vertices added at this point
make little impact to the algorithm. Subsequent vertices are
added in between existing vertices in the loop or at the end of
the route so that it results in the smallest increase in cycle time.
The function GET-INSERT-POSITION in Fig. 4, whose pseudo
code is not presented for brevity, finds the position for
inserting a vertex into the loop. Note that each entry in route
includes the vertex identifier and the time the UAV reaches
this vertex since the start time of the route. This is the
travelTime computed in BUILD-NEXT-LOOP.

Fig. 3. Pseudo code for Compute-Cyclic-Route.

Fig. 4. Pseudo code for BUILD-NEXT-LOOP.

The function CHECK-VIOLATIONS in Fig. 5 checks whether
there is a violation of relative deadline in route for each vertex
in the set of vertices aList. The function is called

function COMPUTE-CYCLIC-ROUTE(V, E, R)
{ violated ← { }
 solution ← empty cyclic route
 unvistedSet ← V
 firstVertex ← randomly chosen vertex with the shortest
relative deadline
 repeat
 while violated is not empty do
 if a vertex with the longest deadline is in solution
 then return None
 if not HANDLE-VIOLATIONS(solution, violated,
unvisitedSet)
 then return None
 if unvisitedSet is not empty then
 BUILD-NEXT-LOOP(firstVertex, solution,
unvisitedSet, E)
 CHECK-VIOLATIONS(solution, violated, V, R)
 until violated and unvisitedSet are empty
 return solution
}

function BUILD-NEXT-LOOP(firstVertex, route, unvisited,
flightTime)
{ // build a new loop to include all vertices in unvisited
 if route is empty then travelTime ← 0
 else travelTime ← the cycle time of the current route
 route.append(firstVertex, travelTime)
 unvisited.discard(firstVertex)
for i= 1 to min(2, |unvisited|) do
 lastVertex ← current last vertex in route
 nextVertex ← choose a random vertex in unvisited
 travelTime ← travelTime flightTime[lastVertex,
nextVertex]
 route.append(nextVertex, travelTime)
 unvisitedSet.discard(nextVertex)
while unvisited is not empty
 nextVertex ← choose a random vertex in unvisited
 start ← the timeslot at which firstVertex is last visited
 end ← no. of vertices in route
 position ← GET-INSERT-POSITION(nextVertex, start,
end)
 route.insert(nextVertex, position)
 unvisitedSet.discard(nextVertex)
}

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

465 | P a g e

from several places. When CHECK-VIOLATIONS is called from
COMPUTE-CYCLIC-ROUTE, the vertex set V of the whole graph
is aList. This is because of these two observations: 1) after
BUILD-NEXT-LOOP, every vertex that has not been included in
previous loop(s) in the cyclic route is included in the current
loop; 2) with the inclusion of the current loop, the cycle time of
the route is increased so some vertices in previous loop(s) may
have their relative deadline violated. Therefore, every vertex
needs to be checked. The checking for each vertex is done by
IS-VIOLATED shown in Fig. 6.

Fig. 5. Pseudo code for CHECK-VIOLATIONS.

When CHECK-VIOLATIONS is called from COMPUTE-
CYCLIC-ROUTE, it is after a new loop is built each time. With
the addition of the new loop, the cycle time of the cyclic route
is increased. So for a vertex which appears only once in the
whole cyclic route, function CHECK-VIOLATIONS calls function
IS-VIOLATED in Fig. 6 with start index and end index being the
two ends of the cyclic route. This will allow IS-VIOLATED to
check whether the cycle time of the whole route exceeds the
relative deadline of the vertex. For a vertex which appears
more than once (in separate loops) except the starting vertex
firstVertex, function CHECK-VIOLATIONS calls function IS-
VIOLATED with start index being the position of the last
appearance of the vertex and end index being the position of
the first appearance of the vertex in the cyclic route. This will
allow IS-VIOLATED to check whether the time interval between
the last visit and the first visit to the vertex exceeds the relative
deadline. There is no need to check the time interval between
the ith and (i+1)th visits to the vertex because this check is
done when the (i+1)th visit is inserted into the cyclic route.
For the starting vertex firstVertex, function CHECK-
VIOLATIONS calls function IS-VIOLATED with start index being
the position of the last appearance of the vertex (start point of
the new loop) and end index being the end of the cyclic route.
This will allow IS-VIOLATED to check whether the cycle time
of the loop exceeds the relative deadline of the vertex. There is
no need to check whether the cycle time of the previous loop(s)
violates the relative deadline because it was checked previously
when the loop was added to the cyclic route.

With the information passed from CHECK-VIOLATIONS,
function IS-VIOLATED in Fig. 6 simply checks whether the time
interval between the start visit and the end visit in the cyclic
route exceeds the relative deadline of vertex. When a

relative deadline is violated, it saves in violated the start and
end positions in the cyclic route which is a section of the route
whose traveling time violates the relative deadline of the vertex
and locks the vertex in the cyclic route to prevent the vertex
from being removed by HANDLE-VIOLATIONS in Fig. 7. This is
because if the vertex has its relative deadline violated, this
vertex should get more visits to shorten the interval between
visits and not be removed from the current cyclic route.

Fig. 6. Pseudo code for IS-VIOLATED.

Function HANDLE-VIOLATIONS in Fig. 7 is to resolve all
violations in the current cyclic route as specified by
violatedRegions. The basic idea of HANDLE-VIOLATIONS in
Fig. 7 is that if the firstVertex has a violation, it means the
cycle time in the last loop in the cyclic route is longer than the
relative deadline of the vertex. This violation will be resolved
by removing one or more vertices from the loop to reduce the
cycle time until it is within the length of the relative deadline.
This is done by RESOLVE-BY-REMOVAL.

It was mentioned earlier that if a vertex has a violated
relative deadline, it is locked in the route and the vertex will
not be removed. So if after RESOLVE-BY-REMOVAL, it is found
that the number of vertices with unresolved violations is
greater than the number of vertices in route (no. of vertices in
route ≤ |violatedVertices |), no solution can be found and
HANDLE-VIOLATIONS will return false. Function CHECK-
VIOLATIONS is called again to check for violations after the
removal of vertices.

When a violated vertex is not the firstVertex, the violation
will need to be resolved by inserting the violated vertex into
the cyclic route one more time. For each of such vertices,
function RESOLVE-BY-INSERTION is called in a random order to
insert it into the cyclic route. There are situations where the
violation cannot be resolve by insertion. In such situations, no
solution can be found and HANDLE-VIOLATIONS will return
false.

function CHECK-VIOLATIONS(route, violatedRegions, aList,
R)
{
 for each vertex v in aList do
 start ← 0
 end ← no. of vertices in route
 if v is visited more than once then
 start ← position in route where v is last visited
 if v ≠ firstVertex then
 end ← position in route where v is first visited
 IS-VIOLATED(v, route, start, end, violatedRegions, R)
}

function IS-VIOLATED(vertex, route, start, end, violated,
deadline)
{ if end < start then
 // vertex visited more than once and vertex ≠ firstVertex
 timeInBetween ← the time between vertex is first
visited and last visited
 travelTime ← the cycle time – timeInBetween //
This is time-around.
 else if vertex = firstVertex then
 travelTime ← the cycle time – route.times[start]
 else travelTime ← route.times[end] – route.times[start]
 if travelTime > deadline[vertex] then // is violated.
 violated[vertex] ← (start, end)
 route.locked[position in route where vertex is last
visited] ← True // vertex cannot be removed later
 return True
 if violated ≠ None then violated.discard(vertex)
 return False
}

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

466 | P a g e

Fig. 7. Pseudo code for Handle-Violations.

Fig. 8. Pseudo code for Resolve-By-Removal.

Function RESOLVE-BY-REMOVAL in Fig. 8 calls function
REMOVE-VERTEX (pseudo code not presented for brevity) to
remove a vertex from the last loop of cyclic route as
demarcated by start and end values from violatedRegions. It
will choose a vertex which results in the biggest reduction in
cycle time of the last loop. The removed vertex will be put
back to unvisitedSet so that it can be included in a new loop to
be built later. If REMOVE-VERTEX cannot find a vertex to
remove, e.g. all vertices in the loop are locked, it will return
false to indicate the failure of the resolution of the violation.
This will cause HANDLE-VIOLATIONS to return false, i.e. a
solution cannot be found. Function IS-VIOLATED is called to
check whether the violation of the loop has been resolved after
removing a vertex. If that is the case, removal of vertices will
stop.

Fig. 9. Pseudo code for Resolve-By-Insertion.

A vertex needs to be inserted into the cyclic route again if it
has been visited before, and the cycle time or time between the

function HANDLE-VIOLATIONS(route, violatedRegions,
unvisitedSet)
{ if firstVertex in violatedRegions then
 if firstVertex is visited only once then
 violatedVertices ← a list of keys in
violatedRegions // Before removal.
 if not RESOLVE-BY-REMOVAL(firstVertex, route,
violatedRegions, unvisitedSet) then return False
 if firstVertex is visited only once then
 if no. of vertices in route ≤ |violatedVertices|
 then return False
 violatedVertices ← a list of keys in violatedRegions
 CHECK-VIOLATIONS(route, violatedRegions,
violatedVertices)
 repeat
 violatedVertex ← randomly choose a vertex in
violatedRegions
 if not RESOLVE-BY-INSERTION(violatedVertex,
route, violatedRegions,unvisitedSet) then return False
 until violatedRegions is empty
 return True
}

function RESOLVE-BY-REMOVAL(violatedVertex, route,
violatedRegions, unvistedSet)
{ (start,end) ← violatedRegions[violatedVertex]
 repeat
 if not REMOVE-VERTEX(route,
violatedRegions[violatedVertex], unvisitedSet)
 then return False
 end ← violatedRegions[violatedVertex].end
 until not IS-VIOLATED(violatedVertex, route, start, end,
violatedRegions)
 violatedRegions.discard(violatedVertex)
 // Vertex is no longer violated.
}

function RESOLVE-BY-INSERTION(violatedVertex, route,
violatedRegions, unvisitedSet)
{
 timeInBetween ← travel time from the position in route
at which violatedVertex is last visited to the last position at
which it is presumably inserted
 start ←position of start point of the last loop
 end ← no. of vertices in route
 repeat
 lastVisit ← position in route at which violatedVertex
is last visited
 if lastVisit > position of start point of the loop being
checked then
 if unvisitedSet not empty then break
 else if travel time from the position in route at
which violatedVertex is last visited to one it is first visited
≤ deadline[violatedVertex] then break
 else return False
 position ← GET-INSERT-POSITION(violatedVertex,
route, start, end)
 timeInBetween ← travel time from lastVisit to
position at which it is presumably inserted
 if timeInBetween ≤ deadline[violatedVertex] then
 // Revisit violatedVertex at position.
 lock ← True
 route.insert(violatedVertex, position, lock)
 end ← end + 1
 violatedRegions.discard(violatedVertex)
 if IS-VIOLATED(firstVertex, route, start, end,
violatedRegions) then
 if not Resolve-By-Removal(firstVertex, route,
violatedRegions, unvisitedSet) then return False
 position ← position in route at which
violatedVertex is last visited
 if INSERT-VIOLATED (position, route)
 then return False
 timeInBetween ← travel time from the position
in route at which violatedVertex is last visited to the last
position at which it is presumably inserted
 end ← no. of vertices in route
 else // timeInBetween is too long, try previous loop
 end ← start
 if start is the start position of the first loop
 then return False
 start ← start position of the previous loop in route
 until unvisitedSet is not empty and timeInBetween <
deadline[violatedVertex]
 violatedRegions.discard(violatedVertex)
 return True
}

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

467 | P a g e

last visit and the first visit is greater than its relative deadline.
Function RESOLVE-BY-INSERTION in Fig. 9 will perform this
task. The basic idea is to search for a loop to insert the vertex.
The search starts from the last loop. Function GET-INSERT-
POSITION which is used in BUILD-NEXT-LOOP as mentioned
earlier is also used here to find a position in the loop. This will
cause minimum increase in cycle time. This tentative position
for insertion will be checked to see whether inserting the vertex
here will result in an interval between this position and the
position of the last visit, i.e. timeInBetween, violating the
relative deadline of the vertex. If it is the case, search has to
continue with the previous loop to find a suitable insertion
point. Otherwise the vertex will be inserted. Since this insertion
increases the cycle time of the loop, IS-VIOLATED is called to
check whether the relative deadline of firstVertex is violated.
If it is the case, Resolve-By-Removal is called to remove some
vertices which will put certain vertex to go into unVisitedSet.
Function INSERT-VIOLATED (pseudo code not shown here for
brevity) is used to check whether the insertion of the vertex
will cause an interval between two consecutive visits of any
other vertices violating their deadline. If it is the case, return
false to indicate failure of vertex insertion.

When trying to continue the search in a previous loop,
obviously a vertex cannot be revisited/inserted in the first loop
of the cyclic route (condition: start is the start position of the
first loop). When the condition arises, the attempt to insert is
aborted. In addition, there are situations where it is better to
procrastinate the vertex insertion: when unvisitedSet is not
empty due to the removal of vertices. Then insertion will not
be done for this vertex at this point. The attempt to insert will
terminate when unvisitedSet is found not empty or after an
insertion, the time between the last visit and the first visit of the
vertex in route is not greater than the relative deadline.

C. Improved Randomized Routing Algorithm

The basic algorithm stops when a solution is found. This
solution may be a good solution but a better solution may be
found if the randomized basic algorithm is allowed to have
more trials.

In an improved version of the algorithm, after a solution is
returned, it will continue with the next trial in the repeat loop in
Fig. 2. When in the next trial, because of the randomization, a
different solution may be returned. The computation of a
solution continues until either three solutions with the same
(minimum) total cycle time are obtained or (3*the number of
vertices with the shortest relative deadline*the total number of
vertices) iterations have been tried. Then the solution with the
shortest cycle time is returned.

IV. EVALUATION RESULTS

Experiments are conducted to evaluate the effectiveness
and the efficiency of the randomized heuristic routing
algorithm. The algorithm is implemented in Python 3.
Experiments are run on Intel® Core™ i7-6500U CPU @ 2.50
GHz, 8.00 Gb RAM, 64-bit Operating System, x64-based
processor.

The following test cases are designed according to 1) the
different number of vertices; and 2) the different patterns of
solutions that may be found. Different patterns refer to:

 All vertices only need to be visited once (a single loop
in the cyclic route solution).

 Only the vertex with the shortest relative deadline
needs to be revisited.

 Multiple vertices need to be revisited.

 Various numbers of loops are required in the cyclic
route solution.

We tested 6 cases of 3-vertex graphs, 17 cases of 4-vertex
graphs, 13 cases of 5-vertex graphs, 12 cases of 6-vertex
graphs, 9 cases of 7-vertex graphs. All graphs are complete
graphs. Fig. 10 shows the 6 cases of 3-vertex graphs where the
number on top of each vertex is the relative deadline. Fig. 11
shows 3 of the 9 cases of 7-vertex graphs tested. The results
include 1-loop, 2-loop and 3-loop cyclic routes.

Fig. 10. Six 3-vertex graphs tested.

Fig. 11. Three of the nine 7-vertex graphs tested.

Table 1 shows the results of finding a cyclic route for the
UAV by the basic algorithm. For each graph, 1000 independent
runs are conducted. The graphs are labeled in column 1 in the
table, e.g. 7(1) means the first instance of the 7-vertex graph
which is shown in the leftmost graph in Fig. 11. The
independent runs for each graph may produce cyclic routes of
different cycle times because of the randomization in the
algorithm. Columns 2 and 3 show the lowest and the highest
cycle times obtained among the 1000 runs. When the two

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

468 | P a g e

entries for a certain row are blank, it means all 1000 runs
produce the same cycle time (may have different cyclic routes).
The last two columns show the probabilities of obtaining the
lowest and the highest cycle times, respectively, based on the
1000 run results. When these two probabilities do not add up to
100%, it means there are other cycle times (in between the
lowest and the highest cycle times) returned by the algorithm.

TABLE I. CYCLE TIMES OF SOLUTIONS FROM BASIC ALGORITHM

case
Lowest
cycle time

Highest
cycle time

Prob. Of
lowest cycle
time

Prob. Of
highest cycle
time

All 3-
vertex
cases*

- - 100% -

All 4-
vertex
cases*

- - 100% -

Ten 5-
vertex
cases*

- - 100% -

5(5) 31 34 37.8% 62.2%
5(13) 23 25 54.7% 45.3%
Four 6-
vertex
cases*

- - 100% -

6(1) 31 35 42.8% 4.5%
6(3) 36 47 46.0% 2.0%
6(4) 50 62 75.8% 24.2%
6(5) 39 50 67.0% 0.2%
6(6) 46 64 50.2% 0.5%
6(7) 48 54 92.1% 7.7%
6(10) 39 41 32% 68%
Three 7-
vertex
cases

- - 100% -

7(1) 28 31 75.8% 0.1%
7(3) 36 41 99.2% 0.5%
7(4) 29 31 79.8% 0.5%
7(5) 39 41 72.6% 9.8%
7(8) 42 44 81.1% 18.9%
7(9) 52 58 44.1% 0.1%
*no solution is found for 2 of the 3-vertex cases, 2 of the 4-vertex cases, 1 of 5-vertex cases and 1 of

6-vertext cases.

As can be seen from Table 1, the basic algorithm has good
effectiveness in computing a cyclic route which satisfies the
relative deadlines of the vertices and produces short cycle
times. For all 3-vertex cases, the algorithm generates the same
cycle time in every run except in two graphs where no solution
is found. For all 4-vertex cases, the algorithm also generates
the same cycle time in every run except in two graphs where
no solution is found. For 10 of the 5-vertex graphs, 4 of the 6-
vertex cases and 3 for the 7-vertex cases, the algorithm
generates the same cycle time in 1000 runs. For the other cases
where a solution is found, the probability of producing the
lowest cycle time based on the 1000 runs varies from 32% to
99.2%. Overall, the probability of getting a solution with the
lowest cycle time based on the 1000 runs is generally high.

Out of the 57 tested graphs, our algorithm does not return a
solution for 6 graphs. Checks carried out confirm that they are
the cases where there is no solution for one UAV. This means
one UAV is not able to make cyclic visits that satisfy the
relative deadlines of all vertices. For example, the third
instance of the 3-vertex graphs shown as case (iii) in Fig. 10
has no solution. In this graph, the relative deadlines of both

vertices b and c are 10, and the weight of the edge ac is half of
the relative deadline of vertex c. Travelling from vertex c to a
would result in both relative deadlines of vertices b and c to be
5, which would only give enough time to satisfy either vertices
b or c but not both. The outcome is the same even if travelling
from vertex c to a is avoided. Hence, it is impossible for a
single UAV to satisfy both constraints. Therefore, even though
when the algorithm fails to find a solution, there is no
guarantee that one does not exist, our test results show that the
basic algorithm is quite competent.

TABLE II. CPU TIME (MILLISECONDS) OF BASIC ALGORITHM

Category Min Median Max Mean
3-vertex cases
that have a
solution

0.0209 -
0.0431

0.0233 –
0.0478

0.1043 –
0.6068

0.0414

4-vertex cases
that have a
solution

0.0332 –
0.1150

0.0387 –
0.2839

0.1059 –
3.0534

0.1044

5-vertex cases
that have a
solution

0.0474 –
0.1861

0.0577 –
0.5914

0.1798 –
5.8114

0.2101

6-vertex cases
that have a
solution

0.0628 –
0.2821

0.0790 –
0.9256

0.2441 –
13.2342

0.3826

All 7-vertex
cases (have a
solution)

0.1075 –
0.4618

0.1316 –
28.0597

0.4930 –
327.2841

5.0229

3-vertex cases
that do not have
a solution

34.5742 –
34.7666

36.0654 –
36.9703

50.1992 –
260.7659

44.4364

4-vertex cases
that do not have
a solution

73.0449 –
95.0147

74.6350 –
99.2205

89.9638 –
144.5263

88.8542

5-vertex case
that does not
have a solution

111.6120 115.6246 138.9673 117.5761

6-vertex case
that does not
have a solution

97.4747 101.7835 352.0034 110.8454

Table 2 shows the CPU time taken by the basic algorithm
in the 1000 independent runs for each tested graph. Note that
in the basic algorithm, if one trial does not find a solution, it
will try another time until either a solution is found or the
algorithm has tried 1000 times. We present the CPU time based
on the number of vertices in the graphs and whether a solution
is found for a graph. The Min/Median/Max columns show the
minimum/median/maximum CPU time in the independent runs
for each category of graphs. The Mean column gives the
overall average CPU time of all runs for graphs in the category.
The results in Table 2 show that the basic algorithm is very fast
and efficient. Most of the cases will take not more than a few
milliseconds, sometimes a few tens of milliseconds to find a
solution. The longest time on one case takes 372 milliseconds
to compute a solution. When a solution cannot be found, the
algorithm will go through 1000 trials before reporting failure.
In these cases, the computational time ranges from a few tens
to a few hundreds of milliseconds.

Our improved algorithm is able to produce solutions of
better quality. Table 3 shows the cycle time of the cyclic routes
computed by the improved algorithm. It does not include cases
where all independent runs produce the same cycle time since
the improved algorithm returns the same solution as the basic

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

469 | P a g e

algorithm for these cases. Compared with Table 1, Table 3
shows that the highest cycle time obtained from the 1000
independent runs is smaller than those obtained by the basic
algorithm. For example, case 6(3), in Table 1 the highest cycle
time is 47 while in Table 3, it is 42. This means the gap
between the lowest cycle time and the highest cycle time
obtained by the algorithm is smaller. In the case of 6(3), it
means when the improved algorithm is executed, the cyclic
route found will have a cycle time in the range from 36 to 42
instead of the range from 36 to 47. The probability of getting
the lowest cycle time based on 1000 independent runs is
significantly improved. In the case of 6(3), the probability of
getting a cyclic route of the lowest cycle time, 36, is 46% when
the basic algorithm is run. When the improved algorithm is
run, the probability is 91.9%. Compared with the
corresponding results in Table 1, we see significant
improvements.

TABLE III. CYCLE TIMES OF SOLUTIONS FROM IMPROVED ALGORITHM

case
Lowest
cycle time

Highest
cycle time

Prob. Of
lowest cycle
time

Prob. Of
highest cycle
time

5(5) 31 34 75.8% 24.2%
5(13) 23 25 86.1% 13.9%
6(1) 31 33 94.6% 0.6%
6(3) 36 42 91.9% 5.9%
6(4) 50 62 98.8% 1.2%
6(5) 39 41 97.1% 2.9%
6(6) 46 48 86.8% 13.2%
6(7) 48 48 100% 0%
6(10) 39 41 67.1% 32.9%
7(1) 28 29 98.7% 1.3%
7(3) 36 36 100% 0%
7(4) 29 30 99.1% 0.9%
7(5) 39 41 98.7% 0.2%
7(8) 42 44 99.6% 0.4%
7(9) 52 54 85.8% 0.4%

Table 4 shows the CPU time taken by the improved
algorithm in the same format as Table 2. Only the cases where
a solution can be found are shown since it takes the same
amount of time for the improved algorithm to realize no
solution can be found as for the basic algorithm. Naturally a
longer computational time is required by the improved
algorithm. However, all cases need less than half a second.

TABLE IV. CPU TIME (MILLISECONDS) OF IMPROVED ALGORITHM

Category Min Median Max Mean
3-vertex cases
that have a
solution

0.0648 -
0.1335

0.0676 –
0.1454

0.2054 –
0.5353

0.1170

4-vertex cases
that have a
solution

0.1035 –
0.3560

0.1165 –
0.9092

0.2679 –
3.9392

0.3120

5-vertex cases
that have a
solution

0.1509 –
0.8593

0.1758 –
2.4899

0.3642 –
15.7958

0.8812

6-vertex cases
that have a
solution

0.2141 –
1.0327

0.5199 –
3.4989

1.7031 –
20.7731

1.6643

7-vertex cases
that have a
solution

0.2781 –
8.6815

0.4229 –
126.2340

1.0003 –
402.2829

14.8122

V. CONCLUSIONS

The cyclic routing problem for a single UAV is to find a
cyclic route for the UAV to visit all target areas possibly
multiple times such that all relative deadlines are observed.
The solution to such a problem may be exponential in length.
We propose a randomized heuristic algorithm to computes a
solution that has a reasonably short cycle time for a given
graph with given relative deadlines. Even though we cannot
guarantee to find a solution when there is one, the effectiveness
of the algorithm is shown by the good quality solutions for 51
graphs out of 57 graphs. The remaining 6 graphs are the ones
where there is no solution for a single UAV. The efficiency of
the algorithm is good. The CPU time required by the algorithm
is in milliseconds for all our tested cases.

Further tests can be conducted with cases of higher number
of target areas.

REFERENCES

[1] N. Basilico, N. Gatti and F. Amigoni, “Developing a deterministic
patrolling strategy for security agents,” In Proceedings of the 2009
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, Vol. 02, pp. 565-572. IEEE Computer Society, 2009.

[2] N. Basilico, N. Gatti and F. Amigoni, “Patrolling security games:
Definition and algorithms for solving large instances with single
patroller and single intruder,” Artificial Intelligence, Vol. 184–185, pp.
78–123, June 2012.

[3] P. J. Bristeau, F. Callou, D. Vissière and N. Petit, “The Navigation and
Control technology inside the AR.Drone micro UAV,” In Proceedings
of the 18th IFAC World Congress, pp. 1477-1484, August 2011.

[4] N, Drucker, M. Penn and O. Strichman, Cyclic Routing of Unmanned
Aerial Vehicles, Lecture Notes in Computer Science: Integration of AI
and OR Techniques in Constraint Programming, Vol. 9676, pp. 125-141,
2016.

[5] G. H. Elkaim, F. A. Lie, and D. Gebre-Egziabher, “Principles of
Guidance, Navigation and Control of UAVs,” In Handbook of
Unmanned Aerial Vehicles, K. P. Valavanis, & G. J. Vachtsevanos
(Eds.), Springer, 2015, pp. 347-380.

[6] J. J. Enright, E. Frazzoli, M. Pavone and K. Savla, “UAV Routing and
Coordination in Stochastic, Dynamic Environments,” In Handbook of
Unmanned Aerial Vehicles, K. P. Valavanis, & G. J. Vachtsevanos
(Eds.), Springer, 2015, pp. 2079-2109.

[7] J. L. Fargeas, B. Hyun, P. Kabamba and A. Girard, “Persistent Visitation
under Revisit Constraints,” In Proceedings of International Conference
on Unmanned Aircraft Systems, pp. 952-957, 2013.

[8] H. Ho and J.Ouaknine, “The cyclic-routing UAV problem is PSPACE
complete,” Lecture Notes in Computer Science: Foundations of
Software Science and Computation Stuctures, Vol. 9034, pp. 328-342.
Springer, 2015.

[9] F. Kendoul, “Survey of Advances in Guidance, Navigation, and Control
of Unmanned Rotorcraft Systems,” J. Field Robotics, Vol. 29, pp. 315–
378, 2012.

[10] V. Mersheeva and G. Friedrich, “Multi-UAV Monitoring with Priorities
and Limited Energy Resources,” In Proceedings of the Twenty-Fifth
International Conference on Automated Planning and Scheduling, pp.
347-355, 2015.

[11] C. Park, Y. Kim, B. Jeong, “Heuristics for determining a patrol path of
an unmanned combat vehicle,” Computers & Industrial Engineering,
Vol. 63, pp. 150–160, 2012.

[12] A. J. Pohl and G. B. Lamont, “Multi-Objective UAV Mission Planning
Using Evolutionary Computation,” In Proceedings of the 2008 Winter
Simulation Conference, pp. 1268-1279, 2008.

