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Abstract—The cloud infrastructures afford a proper environ-
ment for the execution of large-scale big data application. The
scheduling of a substantial number of tasks in the heterogeneous
multi-tenant cloud environment is one of the most significant
research challenges in the current era. The major challenges of
task allocation are to optimize the overall completion time, cost of
execution, tardiness and utilize idle resources of cloud effectively.
In this paper, we have proposed a novel scheduling algorithm
for task allocation of the cloud resources to optimize the overall
execution time by minimizing response time. In order to find
the effectiveness of our proposed algorithm, we have compared
our solution with six standard competing algorithms for the
optimization of performance metrics in the cloud environment.
The results confirm that our proposed algorithm operates better
than the other state-of-the-art algorithms in terms of response
time (allocation time), makespan and the total execution time.

Keywords—Scheduling; cloud computing; task allocation; allo-
cation time; execution time

I. INTRODUCTION

Cloud Computing is a service delivery model that af-
fords computing resources on demand from data centers to
applications over the Internet on the pay-for-use basis. The
primary intent of using this technology is to increase efficiency,
performance, and to decrease the cost [1]. The physical cloud
resources are virtualized to serve a large number of users at a
time. This is possible because of the virtualization technique
used in the cloud system. The technology behind virtualization
is virtual machine monitor (VMM) or hypervisor that separates
the computer environments from the actual physical infrastruc-
ture [23], [24]. The issue with this model is: ‘how to allocate
resources and jobs by satisfying features of cloud computing?’
The efficient scheduling algorithm is needed to schedule the
resources to jobs by meeting certain Quality of Services
(QoS) [2]. There has been a lot of different task scheduling
algorithms which have their advantages and disadvantages.
An incompatible scheduling of tasks may result in inefficient
utilization of the resource. Optimal scheduling will schedule a
maximum number of jobs to a minimum number of resources
while meeting the QoS which leads to decrease in cost and
response time [20].

In the modern time, a large number of cloud users inter-
act with the CSP simultaneously for getting services. These
huge number of varied size tasks with their required data

are stored in Big Data which mainly provides Storage-as-a-
Service (SaaS) properties. The Cloud Service Provider (CSP)
renders a reliable and scalable environment for the big data
applications through the cloud computing system. The business
model is one of the important issues in Big Data [3]. This
paper addresses methods and environments to accomplish
Cloud services for Big Data applications. The compelling
combination of Cloud and Big Data enables the on-demand
storage, space, and computing power for the cloud users [21],
[22]. A Big Data cloud incorporates an extremely scalable,
efficient, and a low-cost data storage platform [4].

The basic standard optimum algorithms for task scheduling
are min-min, and max-min and the remaining algorithms are
the modification of these algorithms. Based on research work
[5], [6], [7], it had declared that suffrage algorithm is better in
terms of makespan. There are some algorithms which combine
both advantages of min-min and max-min to minimize the
starvation of tasks and makespan [8], and some scheduling
algorithms combine the min-min and sufferage for better task
allocation [9]. However all existing algorithms had better
performance, but a high range of diversity and inconsistency
of real-time tasks may degrade their performance in real
environments. By considering all these issues in the standard
algorithms, a new algorithm has been designed which try to
minimize the makespan of the system with minimum starvation
and execution time of the algorithm. The literature survey is
indicating that the proposed algorithm is a new method which
is not following the characteristics of existing algorithms. This
method is not a combination of any standard algorithms, and
it follows its own procedure to reduce makespan.

Scheduling is defined as a set of policies to manage the flow
of work which will be executed by computing resources [10].
In the cloud computing, task scheduling can be defined as a
set of policies, and factors that determine and choose the task
from the task set to execute on a set of minimum available
resources at a particular instant of time. So, the dominant
component of the cloud system performance solely depends on
task scheduling algorithms. Task scheduling algorithms have
to achieve high performance and efficient system throughput.
The good scheduling algorithm has to use a minimum number
of resources while maintaining the SLAs. There are different
types of scheduling algorithms based on different policies.
Some policies try to minimize the makespan, load, energy etc.
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Most of the algorithms in the literature focused on minimizing
the makespan. In the cloud environment, user submits tasks
to the data center broker or cloud service provider (CSP).
The broker will submit these tasks to VMS. The broker is
an intermediary between cloud and user. In this paper, a new
algorithm has proposed that is more efficient in execution
time than existing task scheduling algorithms with comparable
makespan.

Definition I.1. Makespan is the time taken to complete the
execution of all tasks after submitting them for scheduling.

Definition I.2. Allocation time is the time required to take the
decision by the algorithm to map tasks to virtual machines for
optimal scheduling.

Definition I.3. Total Time is the sum of Makespan and
Allocation time for this work.

Definition I.4. Expected time to compute (ETC) tells the
possible execution time of a given task on a given Virtual
Machine. The ETC Matrix shows execution time of each task
on every VM in matrix format.

Definition I.5. Expected completion time (ECT) is the prob-
able completion time of a task on assigned Virtual machine.
It is the addition of Virtual Machine waiting time and ETC of
the given task.

The remaining of the paper is constructed as follows.
Section II outlines a summary of related work regarding the
task scheduling in cloud computing; Section III describes a
brief idea about the problem statement with the description
of the system model (includes host model, VM model, and
task model). Section IV describes our proposed algorithm to
minimize the makespan of the heterogeneous computing envi-
ronment along with an explanation of an example. Section V,
explains simulation model and results, where the effectiveness
of our algorithm is shown followed by the conclusion of the
paper in Section VI.

II. RELATED WORK

The scheduling of Big Data tasks is an assignment problem
where tasks have to map to the cloud virtualized resources.
Assignment problem is a well-known NP-hard problem. A
huge number of researchers have been working on this issue,
and they have proposed various heuristic techniques for it
[13], [14]. Due to a large amount of interactive data or
information and need to a deadline to execute services, usually,
in most of the cases, users could not get the service with
acceptable QoS. After receiving the service request from
the user, the resources (e.g. CPU, network bandwidth, main
memory, secondary storage, etc.) of the cloud data center are
virtualized. Task execution time is more important to everyone,
and for this, there should be a proper management of physical
resources by an efficient mapping between the tasks and VMs.

Some proposed works related to this paper are explained in
TABLE I. All the existing algorithms concentrated primarily
on reducing the makespan of the system. Out of them, some
works have been done with multi-objective solutions. Re-
searchers have used First Come First Serve (FCFS) technique
to allocate tasks to VMs with makespan minimization as the
objective [11]. In their model, the smaller task has to wait if

a larger task is in front of them in the queue which degrades
the makespan. In [12], authors have used Opportunistic Load
Balancing (OLB) technique where they mainly focused on load
balancing through makespan of the cloud system. In TABLE
I, the last column shows the time complexity of different
algorithms, where n is the number of input tasks and m is
the number of VMs.

The Min-Min algorithm calculates minimum completion
time of all the tasks [15]. Then, it chooses and assigns the
task with minimum completion time. There is a chance of
starvation in most of the scheduling problem in the cloud
environment, because of a huge number of tasks. The limitation
of the Min-Min algorithm is starvation of larger task [15].
The similar procedure followed by Max-Min [15], there it
leads to starvation of smaller tasks. Some existing works [10],
[8], [9] used both approaches to take the advantage of min-
min and max-min to get less makespan. There has been no
existing work which focuses on reducing makespan, allocation
time, and starvation of tasks parallely. To achieve all these
objectives, in this paper, we have proposed a new algorithm.

III. PROBLEM STATEMENT

The scheduling of Big Data task in the cloud environment
is a multi-objective problem. The objectives can be 1) mini-
mizing makespan; 2) avoiding starvation; 3) load balancing; 4)
minimizing allocation time; 5) optimizing resource utilization;
6) maintaining certain SLAs; 7) Guarantee QoS. In this paper,
we concentrated on the minimizing the makespan, waiting
time, and most importantly the allocation time. The model
about the system gave a brief idea about characteristics of
physical machines and their resources, virtual machines initi-
ated on them.

The system model for the scheduling of task in the cloud
environment is shown in Fig. 1. The cloud users submit their
tasks through various sources (i.e., sources can be mobiles,
computers, etc.). Sources generate tasks and submit these
tasks to cloud service provider for execution. The generated
tasks are stored in the task pool. The task scheduler (CSP)
mapped the input tasks to VMs. The VMs are heterogeneous
in terms of resource capacity and hosted on different physical
machines. Every physical machine can host multiple number of
VMs through virtualization technique. At the time scheduling,
the CSP allocates tasks to VMs without considering host.
By considering this fact we denoted Virtual machine as Vij

with respect to host and VMk with respect to scheduling
where i is host number, j is the VM number on that host
and k is the total number of VMs available in the cloud
system. The proposed model is a generalized model and can be
applied to different scenarios depending on the requirement of
the application. Mainly, the host (physical machine) contains
resources required to compute the task like resources for
storage, computation, network, etc.

Let {t1, t2, t3, ..., tn} be the set of tasks and
{V1, V2, V3, ..., Vm} be set of VMs. Assign the tasks to
VM in such a way that

Min(
∑m

i=1

∑n
j=1 Xijf(vi, tj))

Subjected to the constraints Xij 6= Xkj .
Min(

∑n
i=1 Wi)
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TABLE I. SOME ALGORITHM DESCRIPTIONS WITH THEIR LIMITATIONS AND TIME COMPLEXITY

Algorithm Description Disadvantages Time Complexity

Sufferage [10] It computes the difference between earliest expected completion time and second earliest
completion time for each task. This is called as suffrage value of task. Task which is having

high suffrage value will be assigned first and that task will be removed. Same process repeats
for remaining tasks.

The allocation time of this algorithm is
high. If there are more tasks with same
suffrage value then it always selects the

first one which leads to starvation of
remaining tasks.

O(mn2)

FCFS [11] It allocates the tasks to resources according to their arrival time. Task in front of queue will be
assigned to available resources.

Waiting time of tasks is more. Small
tasks have to wait, if larger tasks are in
front them in the queue, which leads to

high waiting time.

O(mn)

Round Robin [11] In this algorithm scheduler assigns a fixed time quantum to each process and it circulates
among tasks in round robin manner.

Context Switching burden is there. It is
not optimum as compared to other

algorithms.

O(n)

OLB [12] This algorithm mainly focuses on balancing the load among VM. It randomly selects an task
and assigns it available resource. The concern is on keeping resources busy all the time.

Poor makespan O(mn)

Min-Min [15] In this algorithm minimum expected completion time for every task is calculated . From this
set minimum of minimum expected completion time of all tasks is calculated and that

corresponding task is assigned to virtual machine. This task is removed from the set. Same
procedure is followed for remaining tasks.

According to min-min strategy small
tasks assigned first so larger tasks

waiting time is more.

O(mn2)

Max-Min [15] In this algorithm minimum expected completion time for every task is calculated . From this
set, maximum of minimum expected completion time of all tasks is calculated and that

corresponding task is assigned to virtual machine. This task is removed from the set. Same
procedure followed for remaining tasks.

According to max-min strategy larger
tasks are assigned first so small tasks

waiting time is more.

O(mn2)

RASA [8] Resource Aware Scheduling Algorithm is combination of min-min and max-Min. It tries to
overcome the disadvantages of these algorithm and simultaneously taking their advantages also.

The main step is that it alternates between min-min and max-min for every iterations. If
number of tasks are even it follows min-min otherwise it follows max-min algorithm.

Moderate Makespan & High allocation
time

O(mn2)

TASA [9] TASA (Task-aware scheduling algorithm) combines both Min-min and Suffrage algorithms. It
alternatively applies suffrage and Min-Min strategies, if the number of tasks are even and odd

respectively.The allocation strategy flips randomly. TASA mainly concerns about the number of
tasks rather than resources available.

Even though it alternates between
max-min and sufferage if two maximum
tasks have same sufferage value then first
task will be assign while second task has

to wait. The allocation time of this
algorithm is high.

O(mn2)

Selective [16]
This algorithms found the standard deviation of tasks. If half of tasks size is greater than standard
deviation then it will assign tasks by min-min otherwise by max-min. Always not guarantee minimum

makespan
O(mn2)

Min(
∑n

i=1 Ci)

Where f(vi, tj)) will return time taken to compute tj on
vi.Wi is waiting time of the tasks.

∑n
i=1 Ci is number of

primitive steps taken by scheduling algorithm.

A. Host Model

We consider a virtualized cloud which contains a set
H = {h1, h2, ...hl} of physical computing hosts, to provide
hardware infrastructure for virtualized resources and size of
the set is l which is finite. Each host hi, 1 ≤ i ≤ l contains
following parameters.

hi ={hIdi, hTResi, hFResi, hV Mi}.

where,

• hIdi : identification number of ith host.

• hTResi = {hTRi1, hTRi2, ..., hTRik} such that
hTRij, i ∈ [1,m], j ∈ [1, k] is the total resource
capability of jth resource running on ith host.

• hFResi = {hFRi1, hFRi2, ..., hFRik} such that
hFResij , i ∈ [1,m], j ∈ [1, k] is the free resource
capability of jth resource running on ith host.

• hVMi : set of virtual machines that are running on
ith host.

For each host hi ∈ h, it contains a set of active virtual
machines running on the host indicated by set Vi such that
Vi = {Vi1, Vi2, ..., Vi|Vi|} of virtual machines and each VM Vij

has processing capability pij that is subject to the constraint

∑|Vi|
j=1 pij ≤ pi

where pi is processing capability of ith host.
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Fig. 1. Cloud system model.

B. Virtual Machine Model

We consider VMs are heterogenous in terms of resource
capacity. The set VM = {VM1, V M2, ...V Mm} is the set of
finite number of VMs. Each VM is described as follows.

VMj = {VMIdj , V Mpj , tIdj , tquej , hIdj}.

• VMIdj : identification number of jth virtual ma-
chine.

• VMpj : processing power of the VM.

• tIdj : identification number of currently executing
task.

• tquej : queue of waiting tasks assigned to this VM.
This Queue contains identification number of waiting
tasks.

• hIdj : identification number of host where this VM
is running.

C. Task Model

Let T = {t1, t2, ...tn} be set of tasks that came for
execution on to the cloud. Each task can contains following
parameters:

t = {tIdk, tSzk, tStak, tV Mk}

each parameter is defined as follows:

• tIdk : Task identification number.

• tSzk : Size of task.

• tStak : Status of task indicating whether task is
executing, waiting, completed, allocated, etc.

• tV Mk : Identification number of VM to which this
task is allocated.

IV. PROPOSED ALGORITHM

The proposed algorithm will take all user tasks and VMs as
input. It will create the maximum priority queue for tasks based
on their size and VMs based on their processing capability. The
algorithm tries to schedule the tasks from both sides of the task
priority queue. The first iteration will start from the first task in
the priority queue which is the largest task. It assigns this task
to a virtual machine which computes it in a minimum amount
of time. Let’s say it as mintime. Now in this minimum
amount of time, it will try to assign as many numbers of small
tasks as possible from the rear of the queue. It will remove all
assigned tasks from the task set. Next iteration again it will
check from starting of priority queue for task scheduling. Same
process repeats. To reduce time complexity of the algorithm,
we maintained the special list for VM called it as VMWtlist.
At the time of assigning task to VM, instead of updating
ETC matrix, we updated VM waiting time. So, always ETC
contains expected time to execute rather than expected time
to completion of the task. This saves a lot of time since ETC
matrix size is an order of no task ∗ no VM , its updation
time will be in order of a number of tasks whereas updating
VM will take only constant time. To compute the minimum
completion time of a task, first a list will be calculated which
is a sum of VMs waiting time and tasks expected time for
completion. The minimum value of this list will be returned
as minimum completion time. Since the proposed algorithm
assigns the task in parallel from top to bottom of the queue,
larger or smaller tasks would not wait for a large amount of
time.

Algorithm 1
Input: task list,VM list
Output: MakeSpan.

1: Build priority queue of VMs in decreasing order of their
processing speed

2: Build priority queue of tasks in decreasing order of their
Size

3: VM Wtlist initialize to zero. till time = 0;
4: from first = 0;
5: from last = no tasks;
6: Compute ETC Matrix;
7: while from first <= from last do
8: [min time, V Mind] = MCT (task, from first);
9: Update(VMind,min time);

10: till time = Max(till time,min time);
11: while MCT (task, from last, V M Wtlist) <

tillItime do
12: [min time1, V Mind1] =

MCT (task, from last, V M Wtlist);
13: Update(VMind1,min time1);
14: from last = from last− 1;
15: end while
16: from first = from first+ 1;
17: end while

The step-wise explanation of algorithm is as follows. We
are creating two priority queues in the beginning, for VMs
(high priority to VM with faster processing speed ) and tasks
(high priority to the largest task) respectively. So, we are able
to select VM, task in O(1) time. We have also created one array
called V m Wtlist to maintain the availability time of virtual
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machines in constant time. The size of this array is equal to
the number of virtual machines. Since we start allocating tasks
from both sides of the queue, we maintained two indexes
called from first and from last. from first indicating
the task index from the starting. Task with index less than
from first has been assigned . In the same way, from last
will also work. Here while selecting a task or VM from the
queue, it may not give minimum value since the priority
queue had given priority to a large sized task. We moved
towards the allocation considering the difference between
global minimum and popped element size is negligible . We
computed Expected Time to Compute matrix in step 6. Now,
we started the first task in the priority queue and found out
its minimum completion time in step 8 using the function call
minimum completion time indicated by MCT (Algorithm 3).
It will return min time and corresponding VM index where
to allocate the task. We updated the VM waiting time using the
VM Index through the Update function (Algorithm 2). Now,
within this execution time min time, we assigned as many
numbers of as smaller sized tasks as possible from bottom
side of queue using from last index from step 11-15. The
variable till time contains the makespan. It will update every
time in step 16. The entire process repeats till all the tasks have
assigned. Since at each and every step, we are reducing the
allocation time of algorithms, the total allocation time is very
less compared to other algorithms. We are following optimum
criteria for task scheduling to get better makespan as compared
to other algorithms. Since tasks are assigned from both the
sides of the queue in parallel, the starvation of tasks is lower
as compare to remaining algorithms.

Algorithm 2 Update
Input: VMind,wttime
Output: Updated VM waiting list

1: VM wtlist[VMind] = VM wtlist+ wttime

Algorithm 3 Minimum Completion time Algorithm(MCT )
Input: (taskind,ETC, )
Output: min time, V M ind

1: i = 0
2: while i < no VM do
3: task etc(i) = etc(i, :) + VM wtlist(i)
4: end while
5: [min time,VM ind]= min(task etc);

• Line 1, and Line 2 will take O(n), O(m) to create
priority queue, respectively.

• Line 6 will take O(m× n) time.

• Line 7 will take at most O(n) time in worst case. The
task taken through from last will take O(1) time
since the from last may not be global minimum
task.

• line 11 MCT will take O(m) time.

• Total time complexity is O(m× n).

A. Algorithm Explanation with Example

To explain the algorithm through an example, we have
considered the following scenario. There are three VMs

{V 1, V 2, V 3} with processing powers of {2000, 1000, 500}
respectively. Let {T1, T2, T3, T4} be the tasks with sizes in
MIPS as {10000, 8000, 4000, 2000}, respectively. The queues
will be formed for VMs and Tasks in O(v) and O(t) time,
respectively. Every VM contains one attribute to indicate
its waiting time means after how much time it can process
another task. Initially, the waiting time of every VM is zero.
Now, the large sized task is assigned to high processing power
capable VM. So, T1 is assigned to V 1. The waiting time
of V 1 is updated as 8. The local makespan is updated as 8.
Within this time, the algorithm allocates as many numbers
of tasks as possible from the bottom of the queue. It keeps
on allocating lower sized tasks to VMs which have less
waiting time. So, T4 and T3 are assigned to V 2 within the
makespan of 8. It is not possible to allocate T2 to any VM
with makespan less than 8. So, Algorithm goes to above
and starts continuing the process from T2. It repeats if the
number of tasks is higher. The largest task assigned to VM
with faster processing speed implies the local makespan is
lower, and within the time, many tasks are allocated to reduce
the global makespan. Since large tasks and small tasks are
assigned from both ends, the starvation will be less during
the execution of tasks. This way will results in less makespan
with less starvation and allocation time.

TABLE II. TASK-DESCRIPTION

Task-id T1 T2 T3 T4
Task-Size (MI) 16000 8000 4000 2000

TABLE III. VM-DESCRIPTION

VM-id V1 V2 V3
VM-Speed (MIPS) 2000 1000 500

ETC −Matrix =

8 16 32
4 8 16
2 4 8
1 2 4


VM Waiting time 0 0 0 VM Waiting Time 8 2 0

1. For T1 8 16 32 3.For T3 10 6 8
min 8 Min 6<8
T1 V1 T3 V2

MakeSpan 8 VM Waiting Time 8 6 0

VM Waiting Time 8 0 0 4.For T2 12 14 16
Min 12>8

2. For T4 9 2 4
Min 2<8 Don’t Assign Go To Top
T4 V2

For T2 12 14 16
VM Waiting Time 8 2 0 Min 12

MakeSpan 12

V. SIMULATIONS AND RESULTS

We evaluated the new proposed algorithm through simula-
tion with generated datasets. The experiments were done using
MATLAB R2014a version on Intel Core 2 Duo processor, 2,
20GHZ CPU and 4GB RAM running on Microsoft Windows
8 platform. We note that MATLAB simulator has been broadly
approved to evaluate schemes suggested in the literature
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Fig. 2. Comparison of Makespan of the system for different algorithms for
small sized tasks.
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Fig. 3. Comparison of allocation time of the system for different algorithms
for small sized tasks.

[17], [18]. The task arrival rate is generated with random
distribution. We have simulated and compared our proposed
algorithms with remaining algorithms in two scenarios as
follows:

• Scenario-1 We are fixing the number of VMs at 100.
The size of tasks and capacity of VMs is in between
1000-2000 Million Instructions (MI) and 1000-2000
Million Instructions Per Second(MIPS), respectively.
In our simulation, the number of tasks is varied from
500 to 4000 in intervals of 500.

• Scenario-2 We are fixing the number of VMs at 500.
The size of tasks and capacity of VMs are in between
10000-20000 Million Instructions (MI) and 1000-2000
Million Instructions Per Second(MIPS), respectively.
For simulation, the number of tasks are varied from
500 to 4000 in intervals of 500.

We tabulated the makespan and execution time of algo-
rithms under above scenarios. Every experiment is conducted
ten times for different input values, and the average of their
results are listed as shown in Tables II and III. Tables IV and V
show the comparison of various parameters (Makespan (MS),
Allocation Time (AT), Total Time (TT)) for our proposed
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Fig. 4. Comparison of total time of the system for different algorithms for
small sized tasks.

TABLE IV. COMPARISON OF DIFFERENT ALGORITHMS WHEN TASK
SIZE=1000-2000; no V m = 100; V m Capacity = 1000MIPS- 2000

MIPS

No. of tasks Min-Min Max-Min Sufferage Selective RASA TASA Proposed

500
MS 5.0 4.9 4.6 5.0 4.61 4.7 4.61
AT 0.4 0.4 1.4 0.4 0.4 0.5 0.03
TT 5.4 5.3 6 5.4 5 5.2 4.64

1000
MS 8.8 9.45 9.2 8.8 9.5 9.4 8.9
AT 1.5 1.5 5.6 1.6 1.5 2.2 0.2
TT 10.3 10.55 14.8 10.4 11 11.6 9.1

1500
MS 14.96 17.95 18.4 14.96 19.36 18.8 17.17
AT 4.45 4.32 16.02 4.31 4.39 6.72 0.61
TT 19.41 22.27 34.42 19.27 23.75 25.52 17.78

2000
MS 20.2 19.9 20.1 19.9 22 21.4 20.3
AT 6.6 7 22.4 6.3 6.5 8.7 0.9
TT 26.8 26.9 42.5 26.2 28.5 30.1 21.2

2500
MS 27.25 27.03 27.51 27.03 27.13 27.02 27.02
AT 13.86 12.92 49.2 13.78 14.72 19.5 1.5
TT 41.12 39.95 66.71 40.81 41.85 46.52 28.52

3000
MS 33.71 33.47 33.71 33.41 33.32 33.32 33.34
AT 23.56 22.14 80.73 23.34 22.74 29.2 2.52
TT 57.27 55.61 114.44 56.75 56.16 62.52 35.86

3500
MS 38.61 38.57 38.57 38.57 38.53 38.42 38.43
AT 32.98 29.51 112.81 32.79 31.36 47.1 3.42
TT 71.59 67.08 151.38 71.36 69.89 85.52 41.85

4000
MS 43.43 43.1 44.12 43.1 43.36 44.15 43.49
AT 36.28 33.71 121.96 35.17 35.4 49.2 6.1
TT 79.71 76.81 166.08 77.27 78.76 93.35 49.59
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Fig. 5. Comparison of makespan time of the system for different algorithms
for large sized tasks.

algorithms (in the last column) with other existing algorithms.
Fig. 2 to 4 show the comparison graphs of the proposed
algorithm with the existing competing six algorithms for
makespan, allocation time (response time) and total time of
the system for scenario 1, respectively. Fig. 5 to 7 show the
comparison graphs for makespan, allocation time and total time
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TABLE V. COMPARISON OF DIFFERENT ALGORITHMS WHEN
Task Size = 10000− 20000; no V m = 500; V m Capacity = 1000

MIPS- 2000 MIPS

No. of tasks Min-Min Max-Min Sufferage Selective RASA TASA Proposed

500
MS 17.2 15.4 17.2 17.2 14.1 14.1 14.2
AT 1 1 9.3 1.1 1.1 2.7 0.4
TT 18.2 16.4 26.5 18.3 15.2 16.8 14.6

1000
MS 26.9 23.4 23.4 26.9 25.1 23.4 24.5
AT 4.7 4.9 30.4 4.9 4.9 10.1 1.1
TT 31.6 28.3 53.8 31.7 30 33.5 25.6

1500
MS 35.2 32.9 32.7 32.9 32.1 31.9 32
AT 10.2 10.4 89.4 10.3 10.5 25.9 3.1
TT 45.4 43.3 112.1 43.2 42.6 57.8 35.1

2000
MS 46.7 42.9 46.7 46.7 45.4 45.4 43.8
AT 19.7 19.8 179.9 19.9 19.7 54.7 5.9
TT 66.4 62.7 226.6 66.6 65.1 100.1 49.7

2500
MS 54.2 54.2 53.91 54.2 53.8 53.4 53.8
AT 35.1 35.3 250.1 35.4 35.7 87.4 10.2
TT 89.3 89.5 254.01 89.6 89.5 141.8 64

3000
MS 62.1 63.2 61.8 63.2 63.5 63.2 62.9
AT 51.9 51.7 560.2 52.4 52.9 143.4 15.4
TT 114 114.9 622 115.6 116.4 206.5 78.3

3500
MS 75.3 77.9 76.2 75.3 76.1 77.2 75.4
AT 69.4 69.2 690.7 69.7 69.8 192.7 20.72
TT 144.7 147.1 766.9 145 145.9 269.9 96.1

4000
MS 86.9 85.3 84.3 85.1 82.4 82.7 84.1
AT 89.1 89.3 820.5 89.7 89.9 240.8 27
TT 176 174.6 904.8 174.8 172.3 323.5 111.1
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Fig. 6. Comparison of allocation time of the system for different algorithms
for large sized tasks.
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Fig. 7. Comparison of total time of the system for different algorithms for
large sized tasks.

for scenario 2, respectively.

VI. CONCLUSION

In this paper, we have studied various task scheduling
approaches in homogeneous and heterogeneous cloud environ-

ments. Moreover, we have proposed a heuristic algorithm by
considering both larger and smaller size task simultaneously
in heterogeneous cloud computing environment. Our proposed
method considered a system model that consists of host model,
VM model, and task model. We have used the ETC [19] to
implement the proposed algorithm. Our proposed algorithm
shows better efficiency with a large number of tasks in com-
parison with existing approaches. Therefore, we conclude that
our algorithm is suitable for the execution of Big Data tasks
in the cloud environment. In the future, we are planning to
consolidate the real-time tasks with the partial modification
of the system model and then verify the algorithm with the
generated traffic.
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