
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Task Graph Mapping of General Purpose
Applications on a Neuromorphic Platform

Indar Sugiarto∗, Pedro Campos†, Nizar Dahir‡, Gianluca Tempesti§ and Steve Furber¶
∗¶School of Computer Science, University of Manchester, United Kingdom

†§Department of Electronics, University of York, United Kingdom
‡IT Research and Development Center, University of Kufa, Iraq

∗¶{indar.sugiarto, steve.furber}@manchester.ac.uk, †§{pedro.campos, gianluca.tempesti}@york.ac.uk
‡nizar.dahir@uokufa.edu.iq

Abstract—A task graph is an intuitive way to represent
the execution of parallel processes in many modern computing
platforms. It can also be used for performance modeling and
simulation in a network of computers. Common implementation
of task graphs usually involves a form of message passing
protocol, which depends on a standard message passing library in
the existing operating system. Not every emerging platform has
such support from mainstream operating systems. For example
the Spiking Neural Network Architecture (SpiNNaker) system,
which is a neuromorphic computer originally intended as a brain-
style information processing system. As a massive many-core com-
puting system, SpiNNaker not only offers abundant processing
resources, but also a low-power and flexible application-oriented
platform. In this paper, we present an efficient mapping strategy
for a task graph on a SpiNNaker machine. The method relies
on the existing low-level SpiNNaker’s kernel that provides the
direct access to the SpiNNaker elements. As a result, a fault
tolerant aware task graph framework suitable for high per-
formance computing can be achieved. The experimental results
show that SpiNNaker offers very low communication latency and
demonstrate that the mapping strategy is suitable for large task
graph networks.

Keywords—Task graph; mapping; neuromorphic; Spiking Neu-
ral Network Architecture (SpiNNaker)

I. INTRODUCTION

In distributed and parallel computing, high performance
computation can be achieved by splitting a large set of tasks
into a collection of independent operations [1]. These opera-
tions work in a stream of computation, in which the output
of an operation is used as inputs to others. Visualizing this
flow graphically, we get the task graph that represents the
dependencies between operations. In a task graph, a vertex
represent one independent operation, or task, and the connec-
tion between two vertices dictate the data transfer between
those tasks. In this framework operations may be performed
concurrently, or serially, depending on the availability of inputs
to those operations.

Task graph implementation for high performance applica-
tions is gaining popularity especially in multi-core computing
platforms [2]–[4]. Such a massive distribution of processing
elements is expected to provide optimal power usage and
maximizes performance while maintaining high reliability by
tolerating component failures. This reliability issue must be
addressed when designing the mapping strategy for the imple-
mented task graph.

The mapping strategy from a task graph representation
to the targeted platform depends on several constraints, such
as the number of available processing elements and the net-
working infrastructure in the targeted platform [4], [5]. If
the number of processing elements in the targeted platform
is smaller than the number of tasks, then the presence of a
scheduler plays an important role in the mapping since it is
supposed to manages correctly the communication between
dependent tasks. In a many-core system, on the other hand,
the scheduler function can be implicitly integrated into the
mapping scenario since designers have more flexibility in
choosing which processing element will be assigned to a
certain task. However, a new challenge will arise due to
the communicating nature of the interconnected elements in
many-core platform. This mapping strategy should not only
designed for high performance, but also to accommodate the
requirement of lower energy consumption.

In this paper, we explore one possible scenario that can
be used for achieving both fault tolerance features and higher
performance throughput. We use SpiNNaker, a neuromorphic
many-core platform, for testing the mapping strategy. The plat-
form was originally designed as a massively parallel spiking
neural network capable of modeling a part of human brain [6].
However, it is also possible to deploy it as a general purpose
high performance application, as the SpiNNaker system is built
on top of generic ARM microprocessors. By implementing
task graphs on SpiNNaker and measuring their data communi-
cation throughput, we are able to evaluate the performance of
the proposed mapping strategy. To this end, the contribution
of this paper can be summarized as follows.

• We propose a fault-aware task graph framework that
can be extended into a concurrent multi-user platform.

• We implement a hybrid parallelism approach that
addresses the challenge of a parallel programming
paradigm on a neuromorphic system.

• We present the evaluation of task graph mapping on
a neuromorphic system.

The paper is structured as follows. Section II describes
work related to our paper, including a previously developed
task graph generator program. In Section III, we describe the
mapping strategy for a task graph on a SpiNNaker system.
Section IV explains how the experiments were conducted and
how the results are evaluated. Section V summarizes the study
and explains our envisioned extension of the mapping strategy.

562 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

II. RELATED WORK

A. Task Graph Representation

In this paper, we focus on task graphs as directed acyclic
graphs (DAGs) that represent the flow of data and computa-
tional activities. It is an intuitive way to represent the execution
of parallel processes in many modern computing platforms.
Recently, it has become popular also for performance modeling
and simulation in a network of computers. In its most basic
form, a task graph G contains nodes (or vertices V) represent-
ing computational tasks, and edges E representing precedence
constraints between tasks.

In a processor-bound system, a task graph may also be
presented as G = (V,E,w), where w is the weight function
w : V → N that gives weight (or duration) to the task. In
this paper, we use a simpler task graph representation G =
(V,E), since we use a many-core system with high degree of
redundancy that renders it as non processor-bound.

In the task graph, a directed edge ei,j ∈ E connects a
node i ∈ V to the next node j ∈ V such that the processing in
node j starts after it receives a certain amount of data resulting
from the processing in node i. This creates a distribution of
processing stages: nodes in higher processing stages have their
dependencies in lower stages. In our work, we created two
particular nodes with special functions. We designated the
SOURCE node for a node that does not have predecessor(s),
and it operates as the input port for sending data into the task
graph. Another node, which is labeled as the SINK node and
does not have successor(s), operates as the output port for
sending data out from the task graph to other systems, such
as other task graphs or a host computer.

Constructing a task graph automatically from the source
code of an application can be very challenging and imposes
the combination of analytical and pre-simulation of individual
components [7]. In this paper we focus on the mapping of
a task graph on the target platform and we assume that the
task graph network has been constructed beforehand either
automatically or manually. For the sake of simplicity, we use a
tool for graph generation from [8], which is called XL-Stage.
In this paper, the XL-Stage is used to generate example task
graphs that will be implemented on a SpiNNaker machine.

In general, mapping a task graph into a target platform
requires a scheduling strategy to obtain an efficient execution
of the application graph. The efficiency can be achieved by
optimizing some objective function, most usually the total ex-
ecution time. The complexity of task scheduling scales up with
the size of the graph and becomes an NP-complete problem for
most optimization algorithms. Heuristic methods have attracted
many researchers recently and provide convenient yet powerful
way to solve optimization problems. One example of such a
method is the evolutionary algorithm (EA), which is proposed
in [9].

B. Hybrid Communication Protocol

In standard computing, among several parallel program-
ming models, there are two that have been used widely. The
first prominent model is the shared memory multiprocessing
(SMP). It is widely accepted that for a multicore processor
based system, the SMP approach is a convenient way to

achieve high performance computation through parallelizing
many tasks/processes. This multithreading mechanism imple-
ments the fork-join model that can be used to exploit task
and/or data dependency of a program running on the same
machine. One popular implementation of this mechanism is the
OpenMP, which is available on most platforms and provides
library routines directly callable by C, C++ and Fortran based
programs.

With many-core system, on the other hand, the direct
benefit of SMP is inhibited by the fact that the system
memory is distributed across several chips and/or machines.
In this infrastructure, the second model, which is based on
a message passing technique, is favourable to achieve high
scalability. The MPI (Message Passing Interface) provides a
standardized communication protocol that is commonly used
in a wide variety of parallel computing architectures including
supercomputer clusters. In our work, we are inspired by the
work of Nguyen et al. that introduces latency-tolerance MPI
translation from C source code into a data-driven form [10].

It is natural to think that by combining both models, higher
performance and scalability can be achieved [11]. Intel Cluster
OpenMP is an example of a commercially available OpenMP
framework that aims to increase scalability of OpenMP over a
commodity cluster using a massage passing model [12] . With
this spirit, we develop a task graph scheduling and mapping
framework that emphasizes the hybrid utilization of comple-
mentary approaches: shared memory based parallelism and
distributed computation via message passing. In the SpiNNaker
infrastructure, the shared memory parallelism can be achieved
by utilizing a MC (multicast) packet communication protocol;
whereas message passing mechanism can be implemented
using SDP (SpiNNaker Datagram Protocol). These protocols
are described in Section III-B. MC communication protocol
in SpiNNaker has been proved to support high performance
computation (see for example [13], [14]); however, SDP is
yet to be explored in any general purpose application on
SpiNNaker.

III. TASK GRAPH MAPPING ON A SPINNAKER MACHINE

A. Brief Overview of SpiNNaker System

SpiNNaker (Spiking Neural Network Architecture) is a
neuromorphic system designed for emulating a massive spiking
neural network in biological real time. In its top hardware
structure, a SpiNNaker machine is made up of many SpiN-
Naker boards Going down to the chip level, each SpiNNaker
chip is composed of up to 18 ARM low power processors,
running at a modest frequency about 200 MHz. Currently,
SpiNNaker construction is underway. When complete, it will
host 64K chips; hence, it will have one million processors
running in parallel.

Fig. 1 shows the currently available SpiNNaker machine.
It is constructed using standard 19 inch cabinets (up to 10
cabinets in total) with 120 SpiNNaker boards hosted in each.
The SpiNNaker board (also shown in Fig. 1) contains 48
SpiNNaker chips. The SpiNNaker chip itself is actually a
system-on-chip (SoC) with a 128MB SDRAM mounted on
top of the microprocessor die. The chip also incorporates a
network-on-chip (NoC), capable of driving inter- and intra-
chip communication protocols.

563 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Although originally designed for simulating spiking neural
networks, SpiNNaker is also envisioned to be a general com-
puting machine with a neuromorphic paradigm: running at low
power consumption and having high reliability by virtue of
high redundancy. The multi-core fabrication of the SpiNNaker
chip was also for anticipating flawed devices. The idea was:
if there were one or a few malfunction cores, the entire chip
should not be entirely shut down. In fact, only 65% of the
batches were flawless chips and the remaining chips usually
had 17 or fewer working cores [6]. This will provide a high
degree of redundancy as the foundation of the SpiNNaker
fault tolerance architecture. It can be used to protect against
run-time faults by offloading work. Normally, a SpiNNaker
program is expected to spare at least one core as a stand-by
core on each node so that it can accommodate a run-time fault
without too much effort since the majority of the data is held
in a separate but shared SDRAM.

Regarding the software stack, SpiNNaker follows the route
of a library operating system. An application program that
will be implemented on SpiNNaker will be compiled against
the SpiNNaker library. Thus, when the application runs on
SpiNNaker, it will interact with the underlying run-time kernel
already present in the machine, which is called SpiNNaker
Application Run-time Kernel (SARK). In our work, we extend
the functionality of SARK such that future task graph-based
applications can run smoothly without too many low level
SARK’s routines calls.

Fig. 1. Semi-completed part of the SpiNNaker machine. Each cabinet hosts
120 SpiNNaker boards, and each board (shown to the left) has 48 SpiNNaker
chips.

B. SpiNNaker Networking Infrastructure

Each SpiNNaker chip has six bidirectional links to other
chips, and in a fully interconnected SpiNNaker network, a
doughnut-shape torus can be created. However, if only a few
SpiNNaker boards are connected, the SpiNNaker networking
topology will be a two-dimensional triangular torus. Fig. 2
shows the interconnection layout of three SpiNNaker boards
(as used in this paper).

The NoC inside each SpiNNaker chip is responsible for
managing various event-driven communication protocols. The
router module in the NOC is responsible for delivering many
small SpiNNaker packets to one or more cores in the chip
and/or to the external links. The SpiNNaker router has a simple
architecture in which ports are hierarchically merged into a
single pipelined queue so that only one packet can use the

7,3

6,9

11,11

7,12

2,5 8,5

5,8

4,0

10,8

6,7

5,5 11,5

10,7

7,6

6,10

12,6

15,11

13,7

1,1

8,15

4,10

3,2

9,14

5,11

4,5

10,13

7,5

12,11

13,10

0,1

8,12

3,1

9,9

10,14

6,13

11,15

7,8 14,812,8

2,1

8,9

9,4

5,1

11,10

3,6

2,2

8,6

4,1

10,9

9,7

6,45,4 11,410,4

6,11

12,7

11,9

15,10

14,613,6

15,7

1,0

4,11

3,5

9,13

5,10

4,6

10,10

5,7

7,4 12,4

15,913,9

0,2

1,3

8,13

4,8

3,0

9,8

10,15

6,2

11,14

7,11

14,912,9

8,10

9,11

11,13

7,14

14,10

1,4

2,3

8,7

4,2

9,6

6,5

5,3

11,7

10,5

6,8 11,8

7,13

14,7

13,5

3,42,4

9,12

8,4

5,9

4,7

10,11

6,65,6 10,6

7,7

12,5

15,813,8

0,3

1,2

8,14

4,9

3,3

9,15

5,12

4,4

10,12

6,3

7,10 12,10

13,11

0,0

8,11

9,10

6,12 11,12

7,9

14,11

2,0

8,8

4,3

9,5

5,2

11,6

Fig. 2. An example layout of three SpiNNaker boards connected in a non-
torus topology as used in this paper. Different layout may be produced for
different cabling connection on those boards.

routing engine at once. It has a high speed content addressable
memory module to store the routing table, allowing it to run
at high bandwidth of about 8 Gbps; hence, it can avoid a
bottleneck since the router load will be very low and will not
burden the packet processing by the ARM cores. However, due
to many factors of low power chip design and fabrication, the
actual network link throughput is measured to be limited at
roughly 250 Mbps.

The communication protocols in SpiNNaker system can
be in a form of multicast mode or point-to-point mode. In
either case, the router supports either 40 or 72 bits data
packets. The multicast (MC) communication is the foundation
of spiking neural network simulation on SpiNNaker. This com-
munication protocol has a remarkable characteristic such that
it reduces the pressure at the injection ports and the number
of packets traversing the network [13]. In the case of point-
to-point communication, a higher communication protocol
can be constructed by encapsulating several packets into one
stream which is called SpiNNaker Datagram Protocol (SDP).
However, this higher level encapsulation has a cost in a higher
processing overhead at the processing core; hence, the SDP
has lower bandwidth compared to the MC communication.

In this work, both communication protocols (MC and SDP)
are used for different purposes. The MC communication is
mainly used inside the chip for emulating hardware mul-
tithreading useful for task duplication and parallelism, but
also outside the chip for process migration purposes.The SDP
communication, on the other hand, is primarily used for the
message passing mechanism between nodes in a task graph.

We use the SDP as the main communication protocol in
the task graph framework for the following reasons:

564 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

1) Data flow in a task graph is basically a point-to-
point mechanism and SDP, which is constructed from
SpiNNaker Point-to-Point (P2P) packets, is most suit-
able for this purpose. Furthermore, an SDP packet can
carry a payload of up to 272 bytes, much more than
any other communication protocol in SpiNNaker.

2) Although the MC protocol runs faster than SDP, it
is very difficult to manage its routing at run time.
This makes the process migration very difficult to be
implemented using MC packets.

An SDP packet is constructed from several lower level P2P
packets. It consists of a 10-byte header, which contains source
and destination addresses of communicating cores, and a data
segment, which can be used for general purpose communica-
tion. The default routing of P2P packets is determined during
the boot-up process of the SpiNNaker kernel. Once the boot-
up process is completed, each chip will hold a P2P routing
table that contains 64K entries. Each entry determines which
of the six chip’s links will be used to deliver a P2P packet
to all other chips in the machine. An example configuration
of P2P routing table in a single SpiNNaker board is shown in
Fig. 3. The figure shows which link will be used to deliver
P2P/SDP packets to the chip at coordinate (0,0). As we can
see from the figure that the direction of such a routing is not
uniform; some chips prefer the horizontal link rather than the
diagonal link as used by majority chips. This condition might
have an impact on the task graph communication channels as
described later in this paper.

X-coordinate

Y-
c
o
o
rd
in
a
te

Fig. 3. Graphical representation of the default P2P routing towards chip
(0,0) that was defined during the SpiNNaker boot-up process. The arrow
indicates the preferred link selected by the corresponding chip when sending
P2P packets to chip (0,0).

C. Task Mapping on a SpiNNaker Machine

As described in the previous subsection, the SpiNNaker
system was originally designed for simulating massive spiking
neural network; thus, the multicast communication protocol
plays very important role in the SpiNNaker framework to
mimic the similar mechanism of information broadcasting in

the spiking neural model of the brain. However, we argue
that this multicast fashion is not the best mechanism to carry
information in a point-to-point communication centric such as
in a task graph. Hence, we developed a mapping strategy for
task graphs on SpiNNaker using the SDP mechanism, even
though it runs slower due to its pre-processing overhead.

Regarding nodes mapping into SpiNNaker resources, we
opt to use one-to-one mapping such that one node in a task
graph will be mapped into one SpiNNaker chip. The selection
of a mapping scenario is determined by the preferred task
granularity. In general, a larger task granularity will reduce
communication and task creation overhead. However, smaller
grained tasks may result in better load balancing. In this
circumstance, it is possible to create arbitrary mapping for
flexible task granularity, such as one-to-many or many-to-one
mapping. We are also working on this aspect as a part of an
extension as described in Section III-C2. Nonetheless, for the
sake of simplicity, they are not evaluated in this paper.

With one-to-one mapping, the communication overhead
can be minimized. In the one-to-one mapping, MC packets are
mainly utilized for intra-chip communication, such as master-
worker thread coordination and fast data sharing. Thus the
entire network will not be polluted by intensively traversing
MC packets between chips. However, small MC packets are
still circulated outside the chip to accommodate the process
migration in the fault tolerance scenario. Also with this one-
to-one mapping, we can use the SDP packets to implement
message passing protocol for task graphs.

1) Redundancy and Task Migration for Fault Tolerance:
The SpiNNaker platform inherently provides the basic infras-
tructure for fault tolerance. At a chip level, it has a low power
multi-core processor system, equipped with fault-aware NoC
and a clock-less asynchronous communication channel. On top
of these, higher level software-defined fault-tolerance features
can be developed, such as emergency routing, dropped packet
re-insertion, watchdog mechanism, etc. [6]. In this work, we
introduce an additional fault handling mechanism via task
migration as an inherent part of the task graph framework.

The task graph framework is intended to be the under-
lying mechanism of parallel- and distributed computation to
achieve high performance computing on many-core systems.
In a many-core system such as SpiNNaker, fault tolerance
is a compulsory aspect that needs to be handled properly
to maintain service reliability of the system. Here, we take
advantage of a high degree of redundancy in SpiNNaker
resources and provide additional feature for fault tolerance
by providing a task migration capability for a task graph
based applications. The source of a fault that triggers the
task migration can be from anywhere in the system, either
from hardware or software. For experimental purpose, we
created simulated faults by manually trigger a node to start
the migration process.

Regarding the impact of migration on a running task graph,
we are interested to evaluate the overall performance of the
running program after migration takes place. This is important
for evaluating the performance of the proposed task graph
mapping scenario. Migrating a task from one node to another
node in the mesh might introduces performance degradation
that affects the overall performance. Thus, we evaluate this

565 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

migration effect as presented in Section IV-B.

2) Task Duplication to Improve Performance: In this paper,
we define a node in a task graph as a unit of processing
that will be implemented on a single SpiNNaker chip. This
constraint should be used for any other automatic task graph
generation program that relies on our task graph framework.

The framework uses the task graph description given by
the XL-Stage program (see [8]). Here, a task has an output
triggering condition that depends on its input dependency. For
example, the node P4 in a 9-node task graph shown in Fig. 4
has three outputs that depend on two inputs. The zoomed-in
representation shows the triggering condition for each output.
For example, output to node P5 and P6 depends on P3: after
receiving 1 packet from P3 the node P4 will generate 7 packets
to node P5, but node P4 will generate 4 packets to node P6
only after receiving 5 packets from node P3. Whereas output
to node P7 depends on both P2 and P3: 3 packets will be sent
to P7 after P4 receives 4 packets from P2 and 4 packets from
P3.

For implementing such a traffic model on SpiNNaker, we
created a task splitting and spawning mechanism. Although the
concept of task splitting and spawning is rather well defined
in the literature, their practical implementation on many-core
systems is far from worked out or trivial. In this work, we
took the advantage of the multi-core properties of a SpiNNaker
chip: we spawned the task on several cores, and then modified
the output link of each spawned task to a single target node.
With this scenario, we expect nodes in task graphs to have the
maximum output link of 16 nodes, which corresponds to the
number of available cores in a SpiNNaker chip.

To improve the performance further, we applied an amelio-
ration strategy such that a task may also be copied/multiplied
on empty cores in the chip. These identical copies can then
use the shared-memory mechanism to harness hardware multi-
threading. A similar mechanism has been used successfully to
achieve high performance image processing on SpiNNaker as
described in [14]. The zoomed-in representations of node P4
and P8 of the 9-node task graph illustrate this amelioration
strategy. For example in node P4, the task that targets P5 has
been duplicated on a set of cores C1,C4,C5,C6,C7. This set
of cores then uses MC packets inside the chip for creating
shared-memory parallelism similar to the standard OpenMP
protocol used in conventional parallel computing. Likewise,
a set of cores C2,C8,C9,C10,C11 works in parallel targeting
node P6. In this example, we use 5 cores for parallel processing
mechanism in node P4, which leaves the remaining two cores
of the corresponding SpiNNaker chip in an idle state. These
idle cores will then serve as the backup core to support fault
tolerance property of our task graph framework.

Similarly, node P8 in Fig. 4 will have higher degree of both
parallelism and redundancy. As illustrated, the node has 10
cores for parallelizing task P8 and has 7 backup cores for fault
tolerance support. Hence, one might think that this approach is
not the optimal one, because the load is not balanced across the
entire SpiNNaker system. We are aware of this condition and
we are also working on an extension with different splitting
strategies, by which a task is also distributed to other free
chips. However, for the sake of simplicity, we do not cover
this advanced and complex strategy in this paper.

P0 P1
9

P2

P3

9

P4

9

8

P5

7

P6
4

P7

3

P8

2

9

4

Sink
2

Srce
1

P2

P3

P5

P7

P6

C1

C2

C3

P4

9

8

7

4

3
3

4

7

1

5

4

4

P5

P7

SinkC1

P8

2

4

242

5

3

P6
9

C0 C1 C2 C3 C4

C5 C6 C7 C8 C9

C10 C11 C12 C13 C14

C15 C16 C17 NoC

SDRAM

SpiNNaker chip

C0 C1 C2 C3 C4

C5 C6 C7 C8 C9

C10 C11 C12 C13 C14

C15 C16 C17 NoC

SDRAM

SpiNNaker chip

2

Fig. 4. An example 9-node task graph for our experiment. The number
associated with an edge represent the number of packets generated by the
“parent” node to its “child” node. The zoomed-in representations of node
P4 and P8 illustrate task splitting and spawning mechanisms inside the
SpiNNaker chips, as well as simple amelioration strategy by task duplication.
Some cores remain idle and can be used for fault tolerance purpose. The
black-colored core in each chip is a special core called “Monitor”, which is
dedicated for SpiNNaker kernel management and cannot be used by any other
user/application.

IV. EVALUATION AND DISCUSSION

A. Experimental Set-up

In this paper, we are interested to evaluate both the SpiN-
Naker networking infrastructure and the overall performance
of the task graph framework. Hence, we conducted two exper-
iments to address these two issues.

1) Intrinsic Latency: In the first experiment, we were
interested to evaluate the intrinsic latency of the SpiNNaker
machine. In this experiment, we mapped task graphs on
a SpiNNaker platform and distributed the nodes according
to the distance-adjacency (DA) parameter listed in Table I.
We created two scenarios: single-app mapping and multi-
app mapping. In the single-app mapping, we used only one
network shown in Fig. 4 and distributed the nodes according
to the DA parameter listed in Table I. The purpose of this
scenario is to evaluate the intrinsic latency due to the inter-
chip communication delay of the SpiNNaker platform when
only one application running on it. We expect some graceful
degradation on the overall performance as the nodes move
away from their initial position.

In the multi-app mapping, we run three task graph net-
works: two instances of the network shown in Fig. 7 in addition
to the evaluated network shown in Fig. 4. The purpose of
this second scenario is to evaluate the future use of our task
graph framework on SpiNNaker. In future, we expect many
users/applications will run on a single SpiNNaker machine
concurrently.

In both scenarios, the task migration for the network shown
in Fig. 4 is involved: when switching from one DA experiment

566 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

to another, the tasks are moved further. Fig. 5(a) shows the
experiment for single-app scenario using DA-0, where each
task graph node is mapped directly close to the others. Fig.
5(b) shows the experiment for single-app scenario using DA-1,
where one idle node is placed between two active nodes. Fig.
5(c) shows the experiment for single-app scenario using DA-
2, where two idle nodes are placed between two active nodes,
signifying further separation that might introduce additional
communication delays. Fig. 6 shows the experiment for multi-
apps scenario using DA-3, where two instances of 25-node
task graph shown in Fig. 7 (shown as green and blue nodes)
are mapped and run alongside the evaluated 9-node task graph.
Here, the nodes of 9-node task graph are placed regularly and
spaced by three other nodes (either by idle nodes or by nodes
from the 25-node network).

TABLE I. DISTANCE-ADJACENCY PARAMETER

Parameter Description
DA-0 Direct adjacency: no spacing between active nodes.
DA-1 Active nodes are spaced using one idle node (or using a

node from another running task graph).
DA-2 Active nodes are spaced using two idle nodes (or using nodes

from another running task graph).
DA-3 Active nodes are spaced using three idle nodes (or combi-

nation of idle nodes and nodes from another running task
graph).

i

3

4

 i

 i 65 8

 i

7

 i i

0

i

 i

 i

2

 i

 i

 i

 i

 i

 i i

 i

 i

 i

 i

 i

 i 1

 i

 i

 i

 i

 i

3

 i i i i

 i

 i

 i7

0

8

 i

 i

1

 i

5

 i

 i

 i

6 i

 i

2

 i

 i

 i

 i i

 i

4

 i

 i i

1

 i i

 i 8

 i

 i

 i i

 i i i

 i

 i

5

 i

 i

 i

 i i i i

0

 i

 i

 i i

 i

 i

 i

 i

 i

 i

 i

7

 i

 i

 i

 i i i

6 i i

 i

2

 i

3

 i

4

 i i

 i

 i

 i

 i

(a) (b)

(c)

Fig. 5. The mapping of the 9-node task graph shown in Fig. 4 for different
DA parameters in the single-app scenario.

2) Overall Performance: In the second experiment, we
are interested to evaluate the overall performance of several
possible task mappings on SpiNNaker. Here, we use 25-node
task graph shown in Fig. 7. For this experiment, we used the
mapping produced by the EA approach from [9]. The fault
tolerance mechanism is achieved by providing idle nodes as
backups for malfunctioning nodes. One important metric used
as the objective function in the EA approach is the distance
from a running node to a nearby idle node. In this regard, we
are interested to evaluate the overall performance of a task
graph running on a SpiNNaker platform when the nodes are
moved around to create empty space of idle nodes.

For this experiment, we used two scenarios. The first
scenario uses a quad-link mesh topology, in which the number

 i

 i

 i

22

 i i

 i

 i

 i

24

 i i

1

17

 i

19

 i

 i

 i

 i

 i

4

 i

 i

13

 i

15

 i

18

1

 i

2

 i

 i

 i

 i

5 i6

 i

10

3

 i

 i

 i

 i

18

 i

 i

0

 i2 i11

20

2

11

 i

22 i

3

0

 i

 i

24

14

 i

17

 i

 i i

13 i

 i

 i

23

4

 i

6

 i

5

 i

 i

 i12

 i

 i

 i

 i

19

1

6

 i

 i

 i

 i

 i

 i

 i

4 i

 i

 i

 i

9 i

8

12

 i

23

 i

 i20 21

 i

16

 i7

 i

3

 i

8

7

 i

7

10

 i

8

15 i

 i

 i

21

16

 i i

9

 i

0

5

 i

14

 i

 i

Fig. 6. The mapping of three task graphs in the multi-app scenario. Red
nodes belong to the 9-node task graph shown in Fig. 4, whereas green and
blue nodes belong to two 25-node task graph shown in Fig. 7. The nodes of
two larger graphs are placed among the nodes of 9-node graph in order to
evaluate the effect of overlapping maps.

of links of each SpiNNaker chip is reduced to four; the
diagonal links (labeled as NorthEast-link and SouthWest-link)
were disabled. This is to closely mimic the condition assumed
in [9]. The second scenario uses the hexa-link topology, in
which all links in each SpiNNaker chip were activated. This
is to evaluate the impact of additional links provided by the
SpiNNaker system compared to the conventional rectangular
2D-mesh network. For both scenarios, three maps generated
by the EA as shown in Fig. 8 were used. Table II describes
the characteristic of those three maps.

TABLE II. THREE MAPPING SCENARIOS FOR THE 25-NODE TASK
GRAPH SHOWN IN FIG. 7

Map Description
MAP-1 Good fault tolerance with poor performance: at least one idle node is

preserved for each active node.
MAP-2 Good performance and poor fault tolerance: the distance between

coupled nodes are kept close while idle nodes are not guaranteed
directly adjacent to those nodes.

MAP-3 Balance between performance and fault tolerance: the availability of
backup/idle nodes are guaranteed while preserving the close distance
between coupled active nodes.

B. Performance Evaluation

1) Intrinsic Latency: In the first experiment, we were
interested to investigate the effect of SpiNNaker intrinsic
latency to the overall performance of a task graph running
on it. Conceptually, by moving further nodes the task graph
might experience some additional delays. For this, we run two
scenarios: single-app mapping and multi-app mapping. The
result is presented in Fig. 9 that shows the number of received
packets at the SINK-node of the task graph shown in Fig. 4
as the function of DA parameters (see Table I).

567 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

P0

P1

P2

P4

P6

P9

P3

P5

P8

P7

P10

P11

P13

P15

P12 P14

P16

P19

P17

P21

P22

P23P18

P20

P24 Sink

Source

Fig. 7. An example task graph with 25 nodes.

P0

P1

P2 P3

P4

P5P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20P21

P22

P23

P24

i

i

i

i

i

i

i

i

i

i

i

(a)

P0

P1

P2 P3

P4

P5P6

P7

P8

P9

P10

P11

P12 P13

P14

P15

P16

P17

P18

P19

P20

P21P22 P23

P24

i

i

i

i

i

i

i i

i

i

i

(b)

P0

P1

P2 P3

P4

P5P6

P7

P8

P9

P10

P11

P12 P13

P14

P15

P16

P17

P18

P19

P20P21

P22

P23

P24

i

i

i

i

i

i

i

i

i

i

i

(c)

P0

P1

P2 P3

P4

P5P6

P7

P8

P9

P10

P11

P12 P13

P14

P15

P16

P17

P18

P19

P20P21

P22

P23

P24

i

i

i

i

i

i

i

i

i

i

i

(d)

Fig. 8. Mapping the task graph shown in Fig. 7, exhibiting (a) good fault
tolerance but poor performance, (b) poor fault tolerance but good performance,
(c) balance between fault tolerance and performance, (d) similar to (c) but in
original SpiNNaker triangular mesh.

From the plot, we can make two observations. First, the
distance between nodes indeed gives some delay. However, for
a single application graph the delay is minuscule, which shows
the performance drop only 2.45% when nodes were moved far
away (using DA-3 scenario). In normal fault aware situation
as suggested in [9], the performance drop is much reduced to
only 0.22% (obtained from DA-1 scenario).

Second, running multiple task graph applications on SpiN-
Naker reduces the overall performance, especially when the
nodes are scattered across the mesh and the network overlaps
with other networks. The worst case scenario shows the

Distance Adjacency Scenario

0 1 2 3

#
 R

e
c
e
iv

e
d
 P

a
c
k
e
ts

 a
t

S
IN

K
-n

o
d
e

#105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

448k 447k
439k 437k444k

400k

364k
352k

single-app

multi-apps

Fig. 9. The distance adjacency plot presenting the number of received packets
at the SINK-node of the 9-node task graph as a function of DA parameters
described in Table I. The multi-app plot shows a noticeable impact of the
overlapping maps.

performance drop up to 20.72% (using DA-3 scenario), but
the normal fault-aware scenario (using DA-1) shows the drop
only 9.9%. However, when we isolated the three task graphs
so that they did not overlap, the performance drop returned to
the normal rate of about 0.2% in the DA-1 scenario.

By examining the traffic report produced by the SpiNNaker
kernel, we observed there were several P2P packet drops
indicating a congestion on some SpiNNaker links. Unfortu-
nately, the kernel does not have a native mechanism to re-
inject the packet; the affected nodes simply wait for another
packets, thus reducing its final throughput. One possible option
for reducing the number of dropped P2P packets is by re-
injecting the dropped packet back to the network. This re-
injection mechanism is currently being developed for the main
SpiNNaker software stack, which provides a programming en-
vironment for developing spiking neural network applications.
In the future, this re-injection program might be integrated
into the SpiNNaker kernel so that any program beyond spiking

568 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

neural network, such as our task graph framework, can take
its advantage to improve the performance.

From this experiment, we can see that multiple task graphs
can run simultaneously on one machine instance as long as
their mappings are not overlap. Conceptually we can run a
very large task graph as long as the number of nodes is smaller
than the number of available chips in the SpiNNaker machine.

2) Overall Performance: In the second experiment, we
implemented three mapping examples for the 25-node graph
example case. These three mappings were produced by the EA
program representing possible combination of two metrices:
fault tolerance coverage and communication performance. We
measured the number of SDP packets arriving at the SINK
node of the graph in two scenarios: using a modified rectangu-
lar mesh and the original SpiNNaker triangular mesh. Table III
shows the result of both scenarios.

TABLE III. THE OVERALL THROUGHPUT MEASURED AS THE
NUMBER OF SDP PACKETS ARRIVE AT THE SINK NODE

Map-1 Map-2 map-3
� mesh 14700 15267 15033
4 mesh 14650 15050 14800

From Table III, we can see that Map-2, which was indicated
as the best performance map by the original author in [9],
shows the highest throughput for both scenarios. Concerning
the impact of the two different mesh topologies, we can see
that the standard 2D rectangular mesh produces a throughput
slightly higher than the triangular mesh. On average, the
task graph in the triangular mesh topology produces 1.1%
less throughput than that in the rectangular mesh topology.
This was a surprising phenomenon that we observed in the
experiment. But when we looked again into the traffic report
produced by the SpiNNaker kernel, we found that the decreas-
ing throughput of the task graph running on a triangular mesh
topology was due to higher P2P packet drops. This is reported
in Table IV.

TABLE IV. NUMBER OF DROPPED P2P PACKETS

Map-1 Map-2 map-3
� mesh 700 790 596
4 mesh 760 812 658

As we can see in Table IV, the dropped P2P packets in
the triangular mesh experiment is slightly higher than that in
the rectangular mesh experiment. This fact can be understood
by looking into the P2P routing table, the nodes’ dependency
values, and the mapped task graph shown for example in
Fig. 8d. From the reported P2P traffic, we found that node
P14 and node P17 are two of busiest nodes in the network.
These two nodes contribute much traffic to the late-stage nodes
P21 to P23, which happen to be mapped very close to each
other. The burstiness of traffic from node P14 and node P17
creates severe traffic locality on those late-stage nodes. This
was confirmed by looking at the P2P routing table that showed
possible congestion on the link between nodes P14/P17 to
those late-stage nodes P21-P23.

Since there is no traffic management algorithm imple-
mented on the SpiNNaker kernel, traffic from P14 and P17 was
not re-routed to different path. It seems that even though the
triangular mesh topology offers additional channels, without

proper traffic management algorithm some links becomes
congested preventing higher throughput to be produced in this
scheme. This observation confirms the fact that traffic locality
and burstiness have a noticeable impact on the performance
of the interconnection network of SpiNNaker as reported in
[15].

V. CONCLUSION

This work evaluates fault-aware mapping strategies to
achieve high reliability for general purpose applications run-
ning as task graphs. The resulting map is targeted on a
SpiNNaker many-core neuromorphic platform, which can be
considered as a non-standard high performance computing
platform. The SpiNNaker machine, which is designed for
hosting a million ARM processors, was used as the platform,
and the task graph mappings resulting from the evolutionary
algorithm (EA) used in [9] were used for test cases.

In this paper, we utilize the low-level SpiNNaker kernel that
provides direct access to the SpiNNaker hardware resources,
especially its network-on-chip (NoC) component. We devel-
oped a framework with a hybrid parallelism scenario that fully
utilized the multi-mode parallelism protocols of SpiNNaker:
from shared-memory based to message passing mechanism.

Our experiment with the intrinsic latency (see Sec-
tion IV-B1) demonstrates that SpiNNaker machine reliably
supports the implementation of a parallelized application run-
ning as a task graph with slight caution. As in many conven-
tional high performance computing platforms, the communi-
cation overhead creates delays that get longer by the increas-
ing distance between corresponding processing units. In the
experiment, running a single task graph produces a negligible
latency. However, running several overlapping networks on the
same SpiNNaker machine produces a noticeable impact on the
performance. In our current work, however, this problem can
be easily solved by running several task graph networks on
several SpiNNaker boards. Those boards can be easily isolated
in the SpiNNaker machine, thus rendering the task graph
networks independent of each other. From this experiment,
we are confident that SpiNNaker is a reliable platform to
implement our fault tolerance task graph framework.

We have also conducted an experiment that evaluates the
impact of bidirectional hexagonal links in SpiNNaker chips on
previously generated and optimized maps. In the experiment,
first we modified the existing routing topology of the SpiN-
Naker machine to mimic a conventional 2D rectangular mesh,
and then applied some mapping scenarios on it. Secondly,
we reverted to the default original SpiNNaker 2D triangular
mesh topology, and applied the same mapping again. From this
experiment, we observe that as the number of communication
links increases, the number of dropped packets also increases.
This happens because the SpiNNaker’s NoC router does not
manage traffic pattern of the running application. This result
can lead to larger investigations that deal with an adaptive
power and traffic management system for online optimization
in the SpiNNaker system. We regard this as our future work.

ACKNOWLEDGMENTS

The authors would like to thank Engineering and Physical
Sciences Research Council (EPSRC) for supporting our work

569 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

through the Graceful project grant (EP/L000563/1). The design
and construction of the SpiNNaker machine was also supported
by EPSRC under grants EP/D07908X/1 and EP/G015740/1.
Ongoing development of the software is supported by the EU
ICT Flagship Human Brain Project (FP7-604102).

REFERENCES

[1] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: Determinacy, termination, queueing,” SIAM Journal on
Applied Mathematics, vol. 14, no. 6, pp. 1390–1411, 1966. [Online].
Available: http://dx.doi.org/10.1137/0114108

[2] M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, and
L. Benini, “A fast and accurate technique for mapping
parallel applications on stream-oriented mpsoc platforms with
communication awareness,” International Journal of Parallel
Programming, vol. 36, no. 1, pp. 3–36, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10766-007-0032-7

[3] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for
allocating directed task graphs to multiprocessors,” ACM Comput.
Surv., vol. 31, no. 4, pp. 406–471, Dec. 1999. [Online]. Available:
http://doi.acm.org/10.1145/344588.344618

[4] J. Kurzak and J. Dongarra, “Fully dynamic scheduler for numerical
computing on multicore processors – lapack working note 220,” 2009.
[Online]. Available: http://www.netlib.org/lapack/lawnspdf/lawn220.pdf

[5] Y. Robert, Task Graph Scheduling. Boston, MA: Springer US,
2011, pp. 2013–2025. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-09766-4 42

[6] J. Navaridas, S. Furber, J. Garside, X. Jin, M. Khan, D. Lester,
M. Lujn, J. Miguel-Alonso, E. Painkras, C. Patterson, L. A.
Plana, A. Rast, D. Richards, Y. Shi, S. Temple, J. Wu, and
S. Yang, “Spinnaker: Fault tolerance in a power- and area-
constrained large-scale neuromimetic architecture,” Parallel Computing,
vol. 39, no. 11, pp. 693 – 708, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819113001051

[7] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. N.
Houstis, J. R. Rice, R. Sakellariou, D. J. Sundaram-Stukel, P. J.
Teller, and M. K. Vernon, “Poems: end-to-end performance design of
large parallel adaptive computational systems,” IEEE Transactions on
Software Engineering, vol. 26, no. 11, pp. 1027–1048, Nov 2000.

[8] P. Burmester Campos, N. Dahir, C. Bonney, M. Trefzer, A. Tyrrell, and
G. Tempesti, “XL-STaGe: A cross-layer scalable tool for graph gener-
ation, evaluation and implementation,” in International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XVI), Samos, Greece, May 2016.

[9] C. Bonney, P. Campos, N. Dahir, and G. Tempesti, “Fault tolerant task
mapping on many-core arrays,” in 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), Athens, Greece, Dec 2016, pp. 1–
8.

[10] T. Nguyen, P. Cicotti, E. Bylaska, D. Quinlan, and S. B. Baden,
“Bamboo – translating MPI applications to a latency-tolerant, data-
driven form,” in High Performance Computing, Networking, Storage
and Analysis (SC), 2012 International Conference for, Nov 2012, pp.
1–11.

[11] J. Hoeflinger, B. Kuhn, W. Nagel, P. Petersen, H. Rajic1, S. Shah,
J. Vetter, M. Voss, and R. Woo, An Integrated Performance
Visualizer for MPI/OpenMP Programs. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 40–52. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-44587-0 5

[12] C. Terboven, D. a. Mey, D. Schmidl, and M. Wagner, First
Experiences with Intel Cluster OpenMP. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 48–59. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-79561-2 5

[13] J. Navaridas, M. Luján, L. Plana, J. Miguel-Alonso, and S. Furber, “An-
alytical assessment of the suitability of multicast communications for
the spinnaker neuromimetic system,” in IEEE International Conference
on High Performance Computing and Communications (HPCC 2012),
Liverpool, United Kingdom, Jun 2012, pp. 1–8.

[14] I. Sugiarto, G. Liu, S. Davidson, L. A. Plana, and S. B. Furber,
“High performance computing on spinnaker neuromorphic platform: A
case study for energy efficient image processing,” in 2016 IEEE 35th
International Performance Computing and Communications Conference
(IPCCC), Dec 2016, pp. 1–8.

[15] J. Navaridas, L. A. Plana, J. Miguel-Alonso, M. Luján, and S. B.
Furber, “Spinnaker: Impact of traffic locality, causality and burstiness
on the performance of the interconnection network,” in Proceedings of
the 7th ACM International Conference on Computing Frontiers, ser.
CF ’10. New York, NY, USA: ACM, 2010, pp. 11–20. [Online].
Available: http://doi.acm.org/10.1145/1787275.1787278

570 | P a g e

