
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

571 | P a g e

Optimization of Multi-Dimensional Metrics through
Task Scheduling in Cloud Computing Systems

Sambit Kumar Mishra, Saurabh Kumar Choudhary, Bibhudatta Sahoo, Mahardhika Pratama, Mohammad S. Obaidat
Fellow of IEEE & Fellow of SCS and Deepak Puthal

National Institute of Technology, Rourkela, India
Nanyang Technological University, Singapore

Fordham University, USA and University of Jordan, Jordan
University of Technology Sydney, Australia,

Corresponding Email: m.s.obaidat@ieee.org and Deepak.Puthal@uts.edu.au

Abstract—Cloud-based data centers consume a considerable
amount of energy, which is an expensive system. The
virtualization technique helps to overcome various issues
including the energy issue. Because of the dynamic nature of
workload, task consolidation is an effective technique to decrease
the total number of servers and unnecessary migrations and
consequently optimize energy. Effective task allocation
techniques act as a key issue to optimize several performance
parameters in the cloud system. This paper presents a novel task
consolidation technique to achieve energy-makespan-throughput
optimally balanced in the cloud data center. We evaluate the
performance of our proposed algorithm using simulation analysis
in Java-based CloudSim simulator environments. Results of
performance evaluation certify that our proposed algorithm has
reduced the energy consumption as compared to existing
standard algorithms, and optimized the makespan and
throughput of the cloud data center.

Keywords—Cloud computing; task scheduling; energy
consumption; makespan; throughput; simulation

I. INTRODUCTION

Cloud Computing is such a trending technology that has
gained immense popularity and acceptance among users
worldwide. This gain has led to a considerable increase in the
number of data centers. A data center is a major component
of cloud computing. It includes shared resources whose
processing power can meet the requirements of many users’
computing. A cloud service provider (CSP) is a company that
is responsible for providing services such as Software as a
Service (SaaS), Infrastructure as a Service (IaaS), and
Platform as a Service (PaaS) [18]. A CSP constitutes of either
privately owned or third party owned data centers, which help
them in providing required services to their users. Cloud users
only have to obtain the required amount of resources from
cloud infrastructure for the execution of the task. These
services are provided by the CSP on a pay-per-use or rental
basis. The important activity behind the service delivery in the
cloud is the estimation of efficiency and effectiveness of the
system.

A constant intensity to enhance efficiency and
effectiveness of data centers has led to ignoring energy
consumption. A quick view of the energy consumption in data
centers for the year 2014 in the US, which was 70 billion

kilowatt-hours of electricity (which amounts to 4% gain in
total data center power consumption from 2010 to 2014),
clearly validates the fact that energy consumption parameters
have always been somehow neglected [1]. With the rise in
energy consumption by the datacenters, there is a rise in
operational cost. Apart from that, greater energy consumption
also leads to increase in temperature, reduction in reliability
and longevity of resources. These results in the increase in the
emission of CO2 and causes the greenhouse effect.

The energy consumption in a data center depends upon
various sources. These sources include CPU, RAM, storage,
network and many others. Among these sources, the energy
consumption of CPU amounts greater than 50%. Fig. 1 shows
a comparison of energy consumption among various sources
[2]. Keeping a future outlook in mind, while the concept of
energy consumption seems to be of great importance, the
efficiency and effectiveness of data center resources cannot be
compromised. Various researchers have identified the problem
of maintaining a balance between efficiency and energy
consumption, and have proposed various solutions [3], [10],
[12].

In this paper, in order to maintain a perfect balance
between efficiency and energy consumption, we have
presented a different approach as studied in the literature. This
paper uses the deadline as a major parameter, which helps in
setting the task priority. Our approach is to minimize task
failure rate and energy consumption along with maximizing
resource utilization while selecting the best possible resource
available in the data center for task processing.

Fig. 1. Power consumption by different sources.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

572 | P a g e

This work has the following key contributions:

 It presented a cloud system model that shows the
service delivery process.

 It proposed an energy-aware algorithm to increase the
stability of the system regarding the energy consumption,
makespan, and throughput of the system.

 A comparative analysis has been made between the
proposed algorithm and major competing existing algorithms,
(i.e., First Come First Serve (FCFS) algorithm, modified
Round-Robin algorithm, and Random algorithm).

The remaining of the paper is arranged as follows.
Section II describes an overview of some related work.
Section III presents the cloud system model along with service
delivery process. Section IV illustrates our proposed work to
model and minimize the energy consumption accompanying
with makespan and throughput in a heterogeneous computing
environment. Section V presents the performance evaluation
and shows the effectiveness of our algorithm. Section VI
concludes the paper.

II. RELATED WORK

There has been great progress in data center efficiency and
utilization over the recent years by researchers and IT
specialists to investigate various aspects of cloud. The
performance metrics of the cloud system are optimized
through various approaches like task consolidation [3]-[5],
VM consolidation [2], [7], and Dynamic Voltage Frequency
Scaling (DVFS) [6]. In this paper, we have optimized the
energy consumption, makespan, and threshold of the system
through task consolidation. Cao and Dong [7] have tried to
balance the relationship between energy and performance by
proposing a new energy-efficient framework for VM
consolidation. In the framework, they have defined an
algorithm for SLA violation to determine when a host is
overloaded by considering some performance metrics.

Zhao et al. [3] have proposed a Tree-to-Tree task
scheduling method based on Task Requirement Degree
estimation to enhance the energy performance of the cloud
system. This approach reduces the number of active machines,
thereby, decreasing the time expenditure in data transmission
and optimizing the utilization of its computing resources and
bandwidth. The authors in [8] have developed an algorithm to
estimate the performance gap between cloud and local
resources. The algorithm aims to prove the fact that even if a
cloud has a slower network speed than a local resource, the
cloud can still give better overall performance than the local
resource for bursty jobs. The algorithm focuses on three major
factors; these are job queue waiting time, execution time and
relative performance of the cloud compared to that of a local
resource. The algorithm predicts these factors and combines
them to make the allocation decision.

Keshanchi and Navimipour in [4] have proposed a task
scheduling algorithm using various priority chains and
memetic algorithms. The authors have used a genetic
algorithm besides hill climbing to designate priority to each
subtask and then, adopted a heuristic based earliest
termination time approach for the task to processor mapping.

The authors in [9] have aimed to reduce uncertainty
propagation in real-time workflow scheduling. The authors
have presented an uncertainty-aware scheduling design to
minimize the influence of uncertainty factor on the quality of
workflow schedules. They have presented a dynamic
workflow scheduling algorithm that can employ the proactive
and reactive scheduling methods dynamically.

Yassi et al. [6] have addressed the general optimization
problem of cloud workflow scheduling that requires
examining multiple criteria so as to meet a great number of
QoS (Quality of Service) requirements. The authors have
designed a hybrid PSO algorithm to optimize scheduling
performance along with the usage of DVFS technique to
depreciate energy usage. The authors in [5] have suggested a
task scheduling algorithm for mapping tasks to VMs in order
to improve the throughput of the data center without any
violation of Service Level Agreement (SLA).

TABLE I. SUMMARY OF RELATED WORKS

Task Scheduling
 Technique

Objective Resource Considered

[3] Energy consumption
CPU, Network
Bandwidth

[4] Makespan CPU, RAM
[6] Makespan, Cost, Energy CPU
[10] Makespan, Cost, and Energy CPU, RAM

 [11]
Makespan, Resource Cost,
preserving the fault tolerance

CPU, Memory

 [12]
Optimizing application,
Energy efficiency

CPU

[13]
Energy consumption. Increase
the performance

CPU

 [14] Makespan CPU

From this related work, we observe that most of the
researchers considered CPU time as the resource of the cloud
system to optimize various parameters as shown in Table 1.
Table 1 shows some specific related works and their primary
objectives with resource consideration briefly. In order to
address the limitations of existing standard scheduling
solutions, we proposed a new efficient algorithm. In summary,
the proposed algorithm: 1) has a well-organized structure to
efficiently map tasks to cloud resources (VMs), and 2) enables
cloud users to optimize the energy consumption, total
execution time (makespan) and throughput of the system.

III. SYSTEM MODEL AND ARCHITECTURE

This section explores the proposed cloud system model
and architecture, which consists of data centers with hosts
which in turn contains multiple virtual machines as shown in
Fig. 2. All of these components and sub-components possess a
different level of hardware characteristics. Besides this, the
top layer of our model comprises users, who are responsible
for submitting their service request for processing. These
service requests are submitted to Task Manager (or CSP),
whose job is to process every task and map it to the best
performable virtual machine. The task manager after
completing its job submits the final mapped service request to
the broker. The broker then takes the responsibility of
submitting the mapped service request to the data center for
processing. Following this paragraph, we have briefly defined

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

573 | P a g e

every entity of the proposed model along with its
characteristics.

Fig. 2. Cloud system model.

A. User

Users are the top most layer of our system model. They are
responsible for submission of service requests along with their
deadline. These service requests require different amount of
resources for processing and all these service requests
constitute the tasks set T. Each task (Ti in T) is an independent,
individual task (Ti), which has its identification, length, and
deadline, i.e., T = {T1, T2, ..., Tm}, where m is the total number
of service requests or tasks.

B. Data Center

A data center is the composition of the network of
computers that allow storage and has the power to process
users’ service request. Every data center has its own
characteristics. These characteristics include an operating
system, virtual machine manager, host list, and much more.

C. Host

A data center can consist of one or more physical host.
These hosts are responsible for hosting the virtual machines in
a data center. Every host in a data center has an id, RAM
(main memory), bandwidth, storage, and a list of processing
elements depending upon the core of the machine. The host
set (H) in a data center can be defined as, H= {H1, H2, …, Hw},
where w is the finite number of hosts.

D. Virtual Machine

A set of virtual entities deployed in a data center over the
physical host is identified by the VM set V. The set V
represents the finite number of VMs, i.e., {VM1, VM2, …,
VMn}, where n is the total number of VMs. Every virtual
machine (VMi) present in the set (V) is hosted by some host in
H. These virtual machines are responsible for processing
service requests of users. Every virtual machine has its id,
speed (MIPS), RAM, bandwidth, a number of cores, and a
virtual machine manager (VMM).

E. Task Manager

The users’ task (with task length) and its corresponding
deadline once obtained, has to be mapped with the best
performable virtual machine available in VM set V. The task
manager is responsible for this mapping and hence it is
responsible for the success of the proposed algorithm.

F. Broker

Once every task in set T is mapped to its best performable
virtual machine in the set V, it is submitted to the broker. It is

the responsibility of broker to retrieve resource information
and assign every task Ti to its mapped VMi, and finally service
back to the end use. It has complete information about the
available resources of the system.

IV. PROPOSED WORK

An attempt to reduce the consumption of CPUs’ can
directly help in reducing the total energy consumption as
shown in Fig 1. The main focus of this paper is the utilization
of all virtual machines present in an activated host in order to
minimize task failure and maximize efficiency with the use of
minimum amount of energy or power. The proposed approach
takes deadline along with task length to set priorities for the
task. Once the tasks are sorted according to their priorities,
from high to low, the best possible virtual machine is chosen
for them whose processing power allows the task to meet its
deadline requirement (or SLA). The calculation of task
priority along with different performance metrics is described
in following sub-sections.

A. Task Priority

By task priority, we mean the importance of consideration
of a task. In order to determine the priority of a task, we
consider a task priority factor. A task with high priority
represents high concern and therefore must be processed first,
on the other hand, a task with low priority represents low
concern and must be processed after the completion of higher
priority tasks. A larger task with fewer deadlines has higher
priority value. Generally, the processing of these high
preference tasks is more productive for the service providers.

Task priority factor (Pi) is calculated as the ratio of task
length (Li) and deadline (di) as in (1).

𝑃௜ ൌ 𝐿௜
𝑑௜

ൗ (1)

Clearly, a task with higher task priority factor represents
higher priority, and sorting the tasks according to this factor
arranges the tasks from highest priority to lowest.

B. Throughput

Throughput is an important performance metric for any
system. The high throughput value of the cloud system results
in more profit for the service providers. The deadline
parameter that is input along with task also assists in
minimizing the number of failures, thereby maximizing the
throughput. A task is rejected only when the data center has no
resources, or the resources are busy with other tasks, and
hence the required deadline of the task cannot be met. The
throughput value of the system is calculated using (2).

𝜏 ൌ 𝑚 െ 𝑐 (2)

C. Makespan

Makespan of the system is the maximum time required to
complete all input service requests by the system as in (3).
Reducing the makespan has always remained a challenging
job for researchers, let alone maximizing throughput,
minimizing power consumption alongside minimizing
makespan. This paper presents an approach to meet all the
three desired constraints. The throughput maximization can be
achieved as discussed earlier. In order to minimize the

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

574 | P a g e

makespan, we consider a task and allow the best performable
resource to execute that task. It is an interesting fact that the
best performable resource is not the resource with the best
host or VM characteristics. The major reason behind this is
that the resource with best possible characteristic might be
busy in executing some other task of higher priority and hence
is not the best performable resource for the considered task.

ɱ ൌ 𝑀𝑎𝑥ሼ𝑆𝑇௜ሽ (3)

This approach of consistently providing the most efficient
resource to every task always helps us in improving the
makespan of a sequence of tasks.

D. Energy Consumption

There is no point in minimizing makespan and maximizing
the throughput if the energy consumption of a data center is
beyond control. The energy consumed by a resource (VM) in
an active state, which depends on the processing speed [15],
[16] and inactive (or idle) state can be calculated by using (4)
and (5), respectively.

𝜉௔೔
ൌ 10ି଼ ൈ §௜

ଶ (4)

𝜉௜௡೔
ൌ 0.6 ൈ 𝜉௔೔

 (5)

With the formula in (5), it is clear that even if a resource is
inactive, it still consumes 60% of the energy as it would have
consumed while remaining active [17]. Therefore, it is not
sufficient to keep few resources active and the remaining
inactive, as the inactive resources would also consume a
considerable amount of energy. The total energy consumption
of the system is the sum of energy consumption of all VMs
during the active and inactive state for the specified amount of
time as in (6).

𝜉 ൌ ∑ ሼ൫𝜉௔೔
ൈ 𝑆𝑇௜൯ ൅ ቀ𝜉௜௡೔

ൈ ሺɱ െ 𝑆𝑇௜ሻቁሽ௡
௜ୀଵ (6)

This being the case, the paper proposes an algorithm that
makes the best possible utilization of the maximum number of
available resources in a data center.

TABLE II. SYMBOL TABLE

Symbols Description
T A set of task.
Ti ith task of set T
m Total number of input task
Li Length of ith

 task

V A set of VM
VMi ith VM of set V
n Total number of VM
D A set of deadline
di Deadline of ith task
Mi VM allocated for ith task
ɱ Makespan of the system
ξ Total energy consumption of the system
τ Throughput of the system
Pi Priority of ith task
§i Speed of ith VM in MIPS
ξa Energy consumed by the VM in active state
ξ in Energy consumed by the VM in inactive (idle) state
sr Stores the VM that has been allocated to ith task

ST
An array of size n to store the schedule time ith VM
would take for the processing of allocated task.

LI Store Lowest Index
c A counter variable to store number of rejected tasks

E. Algorithm for Scheduling of Tasks

We have considered the cloud system has a sufficient
number of hosts. The VM set, V has multiple heterogeneous
VMs each of which is hosted by some host in the data center.
The task set, T, has heterogeneous resource requirements with
different task length. Every task in T has a deadline or the
maximum amount of time that it can wait before being
processed completely. The proposed algorithm also assumes
that if the deadline, di, of any ith task is not met, the task, Ti, is
never submitted to the broker. Those tasks are strictly rejected
due to the lack of time and SLA violation.

Algorithm 1: Proposed Algorithm
Input: V, T, D
Output: M, ɱ, ξ, τ

1. for i←1 to m do
2. Pi ← Li / di

3. end
4. T ← sort (T using Pi)
5. c ← 0
6. for i ←1 to m do
7. for j ←1 to n do
8. STj ← STj + Li / §j

9. end
10. lowest ← Min(ST)
11. LI ← IOM(ST)
12. reset ST
13. if lowest <= di then
14. sr ← LI
15. Mi ← sr
16. STsr ← STsr + Li / §sr

17. else do
18. c ← c +1
19. remove Ti

20. remove di

21. end
22. end
23. ɱ ← Max{ST}
24. τ ← m - c
25. for i←1 to n do
26. ξa ← 10-8 × §i

2 × STi

27. ξin ← 0.6 × 10-8 × §i
2 × (ɱ - STi)

28. ξ ← ξ + ξa + ξin

29. end

Our algorithm for maximization of throughput and
alongside minimization of makespan and energy assumes that
VM has already been created in the data center. It takes users’
service request or task set, T, and its corresponding deadline
(D) as input. For every ith task in T, the algorithm calculates
priority factor, Pi, which helps us in determining the priority
of a task. Any task, Ti, with higher Pi, is considered to have
higher priority and must be attended first. Similarly, a task, Ti,
with lower Pi, must be attended after all tasks with higher Pi
have been attended.

We maintain a schedule time array, ST, of size n, which
stores the running time of all VMs required for the processing
of all higher priority tasks that have been allocated to it. For

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

575 | P a g e

every jth VM in V, we update the value of STj, signifying the
total amount of time jth VM would take for the completion of
the ith task. We calculate the minimum value in ST (using Min
function in step-10 of the algorithm), which indicates the
minimum amount of time the data center requires for the
processing of the ith task. We also calculate the index of the
minimum value of ST (using IOM function in step-11 of the
algorithm). If this minimum time does not meet the deadline,
the task is rejected and consequently removed from the task
set T. If the minimum time meets the deadline, then the
previously updated schedule time array is reset, and only the
schedule time of lowest index VM is updated. After every task
has been allocated, the array schedule time is consequently
updated, and hence the maximum of ST gives us the value of
makespan. For the calculation of throughput, we maintain a
counter (c) that counts the total number of rejected task.
Hence, throughput is measured using (2) in step-24 of the
algorithm. The energy parameter can be calculated using (6)
from step-25 to step-29 of the algorithm.

V. PERFORMANCE EVALUATION

We have simulated our proposed algorithm in CloudSim
3.0.3 simulator environment. During the simulation, the cloud
resources (VMs), as well as the user requests, are considered
heterogeneous. A comparison has been made among our
proposed algorithm, First Come First Serve (FCFS), Random,
and Modified Round-Robin algorithm. The explanations of all
other compared algorithms are as follows.

In FCFS we have allowed the task scheduling on the basis
of the order of task input by the users. Every task or service
request that is given as input by the user is checked in the VM
set (V), from least VM speed to the most. If any VM is found
to meet the tasks’ deadline, the task is allocated to that VM,
and the next task is allowed to perform the check operation. In
case no VM in V is able to meet the deadline of the task, that
task is strictly rejected.

For the Random algorithm, we have performed task
allocation in order of task input by the user except that instead
of searching the VM from least speed to most, we randomly
choose a VM from set V and check if that VM is able to meet
the deadline of the task. If it meets the deadline, then the task
is allocated to that VM; else it is checked for another VM in
the set V. In case all the VMs in V have been checked and
there is no VM that can meet the deadline of a particular task,
then that task is strictly rejected.

In the case of modified Round-Robin, priority factors are
determined for every task, and the task set (T), is sorted
according to its priority, arranging from highest priority factor
to lowest. The task set (T) is then passed to scheduling
algorithm, which takes the help of learning automata to
allocate tasks to VMs. A probability array of size n is defined,
initially containing equal probabilities for each VM in set V,
signifying the chance of any VM being allocated to the task.
For each task in the arranged set T, a VM is selected at
random and is checked whether the deadline for that particular
task can be met or not. If the deadline is met, that particular
VM is rewarded while the other VMs in the set V is penalized;
else if the deadline is not met, that particular VM is penalized
and other VMs are rewarded. This process is continued until

the probability of a VM is equal to 1 or there is no VM in the
set V that can meet the deadline of the task. In case we find a
VM suitable for a task, we allocate the task to that VM, and in
case there is no VM suitable, the task is strictly rejected.

The simulation for a specific result runs for 20 times and
the average of those are shown as the result. We have two
separate simulation scenarios to estimate the behavior of all
four algorithms including our proposed one as follows.

Scenario-1: In this scenario, the number of tasks is fixed
to be 100, and the number of virtual machines varies from 10
to 50 in the interval of 5. The comparison graphs for the
calculation of energy consumption, makespan, and throughput
are shown in Fig. 4, 6, and 7, respectively. From the figures, it
is inferred that the optimization parameters in Y-axis for the
three cases is less in the case of our proposed algorithm.

Scenario-2: In the second scenario, the number of VMs is
fixed to be 50, and the number of service requests or tasks is
varied from 20 to 100 in the interval of 10. The comparison
graphs for the calculation of energy consumption, makespan,
and throughput are shown in Fig. 3, 5, and 8, respectively. It is
observed that the optimization parameters in Y-axis for the
three cases are less in the case of our proposed algorithm.

Fig. 3. Comparison graph of algorithms for energy consumption where the

number of VM is fixed, and task varies.

Fig. 4. Comparison graph of algorithms for energy consumption where the

number of tasks is fixed and number of VM varies.

From Fig. 3 and 4, it is clearly evident that our proposed
algorithm performs the best when it comes to energy

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

576 | P a g e

consumption, among all three other competing algorithms.
This is due to the fact that our algorithm tries to minimize the
number of inactive VMs, as it would also consume a
considerable amount of energy. Making use of every possible
VM in the set V makes our proposed algorithm perform better.

For the purpose of minimization of makespan, the
proposed algorithm turns out to be a better alternative than the
other three of them. This is so because, every task in set T is
allowed to map with the best performable VM in set V, thus
making every task time efficient. This approach of ours’ thus
helps us in reducing the makespan.

When throughput is the matter of concern, our algorithm
does not prove itself to be the best among the three, but
certainly, has the capability of achieving around 90% of
maximum throughput. This lag can be acceptable, because of
the alongside optimization of energy consumption and
makespan of the system. Moreover, it is clearly understood the
fact that if the deadline of the rejected tasks is increased, then
the throughput of the algorithm can also be increased. Up to
80 numbers of tasks, the number of VMs or cloud resources is
enough for all algorithms as shown in Fig 8.

Fig. 5. Comparison graph of algorithms for makespan where the number of

VM is fixed, and task varies.

Fig. 6. Comparison graph of algorithms for makespan where the number of

tasks is fixed, and number of VM varies.

Fig. 7. Comparison graph of algorithms for throughput where the number of

tasks is fixed, and number of VM varies.

Fig. 8. Comparison graph of algorithms for throughput where the number of

VM is fixed, and task varies.

VI. CONCLUSION

To maximize the benefits of the service providers, it is
necessary to reduce the energy consumption of the system
without any degradation in the QoS. The optimal allocation of
heterogeneous tasks to computing resources is one of the most
important and basic problems to optimize various parameters
in cloud computing. Based on the earlier works on task
consolidation, this paper introduces a new model considering
the task priorities and after that suggests an efficient
algorithm. The simulation results show that our proposed
algorithm is significantly better in performance metrics such
as energy, makespan, and throughput of the system over the
other competing algorithms. The derived results of this paper
will be valuable in dimensioning of cloud systems. Future
work incorporates an intensive study on dynamic task
consolidation in cloud system considering all other resources
like main memory, bandwidth, and others.

REFERENCES

[1] Data Center Knowledge:
http://www.datacenterknowledge.com/archives/2016/06/27/heres-how-
much-energy-all-us-data-centers-consume/ 2016.

[2] A. Kansal, F. Zhao, J. Liu, N. Kothari, A. Bhattacharya, “Virtual
Machine Power Metering and Provisioning,” Proceedings of the 1st
ACM symposium on Cloud computing, pp. 39-50, 2010.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

577 | P a g e

[3] Q. Zhao, C. Xiong, C. Yu, C. Zhang, & X. Zhao, “A new energy-aware
task scheduling method for data-intensive applications in the
cloud,” Journal of Network and Computer Applications, 59, pp. 14-27,
2016.

[4] B. Keshanchi, & N. J. Navimipour, “Priority-Based Task Scheduling in
the Cloud Systems Using a Memetic Algorithm,” Journal of Circuits,
Systems and Computers, 25(10), pp. 1650119, 2016.

[5] A. V. Lakra, & D. K. Yadav, “Multi-objective tasks scheduling
algorithm for cloud computing throughput optimization,” Procedia
Computer Science, 48, pp. 107-113, 2015.

[6] S. Yassa, R. Chelouah, H. Kadima, & B. Granado, “Multi-objective
approach for energy-aware workflow scheduling in cloud computing
environments,” The Scientific World Journal, 2013.

[7] Z. Cao, & S. Dong, “An energy-aware heuristic framework for virtual
machine consolidation in Cloud computing,” The Journal of
Supercomputing, 69(1), pp. 429-451, 2014.

[8] R. L. Cunha, E. R. Rodrigues, L. P. Tizzei, & M. A. Netto, “Job
placement advisor based on turnaround predictions for HPC hybrid
clouds,” Future Generation Computer Systems, 67, pp. 35-46, 2017.

[9] H. Chen, X. Zhu, D. Qiu, & L. Liu, “Uncertainty-Aware Real-Time
Workflow Scheduling in the Cloud,” In IEEE 9th International
Conference on Cloud Computing (CLOUD), pp. 577-584, 2016.

[10] S. K. Panda, & P. K. Jana, “A multi-objective task scheduling algorithm
for heterogeneous multi-cloud environment,” In IEEE International
Conference on Electronic Design, Computer Networks & Automated
Verification (EDCAV), pp. 82-87, 2015, January.

[11] F. Zhang, J. Cao, K. Li, S. U. Khan, & K. Hwang, “Multi-objective
scheduling of many tasks in cloud platforms,” Future Generation
Computer Systems, 37, pp. 309-320, 2014.

[12] J. J. Durillo, V. Nae, & R. Prodan, “Multi-objective workflow
scheduling: An analysis of the energy efficiency and makespan
tradeoff,” In 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 203-210, (2013, May).

[13] J. Mei, & K. Li, “Energy-Aware Scheduling Algorithm with Duplication
on Heterogeneous Computing Systems,” ACM/IEEE 13th International
Conference on Grid Computing, pp. 122-129, 2012.

[14] K. B. Bey, F. Benhammadi, A. Mokhtari, & Z. Guessoum, “Independent
task scheduling in heterogeneous environment via makespan refinery
approach,” International Conference on Machine and Web Intelligence,
pp. 211-217, 2010.

[15] E. Grochowski, & M. Annavaram, “Energy per instruction trends in
Intel microprocessors,” Technology@ Intel Magazine, 4(3), pp. 1-8,
2006.

[16] T. Shi, M. Yang, X. Li, Q. Lei, & Y. Jiang, “An energy-efficient
scheduling scheme for time-constrained tasks in local mobile clouds,”
Pervasive and Mobile Computing, 27, pp. 90-105, 2016.

[17] S. M. Sampaio, J. G. Barbosa, & R. Prodan, PIASA: “A power and
interference aware resource management strategy for heterogeneous
workloads in cloud data centers,” Simulation Modelling Practice and
Theory, 57, pp. 142-160, 2015.

[18] D. Puthal, B. Sahoo, S. Mishra, and S. Swain. "Cloud computing
features, issues, and challenges: a big picture." In Computational
Intelligence and Networks (CINE), 2015 International Conference on,
pp. 116-123, 2015.

