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Abstract—Cloud-based data centers consume a considerable 
amount of energy, which is an expensive system. The 
virtualization technique helps to overcome various issues 
including the energy issue. Because of the dynamic nature of 
workload, task consolidation is an effective technique to decrease 
the total number of servers and unnecessary migrations and 
consequently optimize energy. Effective task allocation 
techniques act as a key issue to optimize several performance 
parameters in the cloud system. This paper presents a novel task 
consolidation technique to achieve energy-makespan-throughput 
optimally balanced in the cloud data center. We evaluate the 
performance of our proposed algorithm using simulation analysis 
in Java-based CloudSim simulator environments. Results of 
performance evaluation certify that our proposed algorithm has 
reduced the energy consumption as compared to existing 
standard algorithms, and optimized the makespan and 
throughput of the cloud data center. 

Keywords—Cloud computing; task scheduling; energy 
consumption; makespan; throughput; simulation 

I. INTRODUCTION 

Cloud Computing is such a trending technology that has 
gained immense popularity and acceptance among users 
worldwide. This gain has led to a considerable increase in the 
number of data centers.  A data center is a major component 
of cloud computing. It includes shared resources whose 
processing power can meet the requirements of many users’ 
computing. A cloud service provider (CSP) is a company that 
is responsible for providing services such as Software as a 
Service (SaaS), Infrastructure as a Service (IaaS), and 
Platform as a Service (PaaS) [18]. A CSP constitutes of either 
privately owned or third party owned data centers, which help 
them in providing required services to their users. Cloud users 
only have to obtain the required amount of resources from 
cloud infrastructure for the execution of the task. These 
services are provided by the CSP on a pay-per-use or rental 
basis. The important activity behind the service delivery in the 
cloud is the estimation of efficiency and effectiveness of the 
system. 

A constant intensity to enhance efficiency and 
effectiveness of data centers has led to ignoring energy 
consumption. A quick view of the energy consumption in data 
centers for the year 2014 in the US, which was 70 billion 

kilowatt-hours of electricity (which amounts to 4% gain in 
total data center power consumption from 2010 to 2014), 
clearly validates the fact that energy consumption parameters 
have always been somehow neglected [1]. With the rise in 
energy consumption by the datacenters, there is a rise in 
operational cost. Apart from that, greater energy consumption 
also leads to increase in temperature, reduction in reliability 
and longevity of resources. These results in the increase in the 
emission of CO2 and causes the greenhouse effect. 

The energy consumption in a data center depends upon 
various sources. These sources include CPU, RAM, storage, 
network and many others. Among these sources, the energy 
consumption of CPU amounts greater than 50%. Fig. 1 shows 
a comparison of energy consumption among various sources 
[2]. Keeping a future outlook in mind, while the concept of 
energy consumption seems to be of great importance, the 
efficiency and effectiveness of data center resources cannot be 
compromised. Various researchers have identified the problem 
of maintaining a balance between efficiency and energy 
consumption, and have proposed various solutions [3], [10], 
[12]. 

In this paper, in order to maintain a perfect balance 
between efficiency and energy consumption, we have 
presented a different approach as studied in the literature. This 
paper uses the deadline as a major parameter, which helps in 
setting the task priority. Our approach is to minimize task 
failure rate and energy consumption along with maximizing 
resource utilization while selecting the best possible resource 
available in the data center for task processing. 

 
Fig. 1. Power consumption by different sources. 
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This work has the following key contributions: 

 It presented a cloud system model that shows the 
service delivery process. 

 It proposed an energy-aware algorithm to increase the 
stability of the system regarding the energy consumption, 
makespan, and throughput of the system. 

 A comparative analysis has been made between the 
proposed algorithm and major competing existing algorithms, 
(i.e., First Come First Serve (FCFS) algorithm, modified 
Round-Robin algorithm, and Random algorithm). 

The remaining of the paper is arranged as follows. 
Section II describes an overview of some related work. 
Section III presents the cloud system model along with service 
delivery process. Section IV illustrates our proposed work to 
model and minimize the energy consumption accompanying 
with makespan and throughput in a heterogeneous computing 
environment. Section V presents the performance evaluation 
and shows the effectiveness of our algorithm. Section VI 
concludes the paper. 

II. RELATED WORK 

There has been great progress in data center efficiency and 
utilization over the recent years by researchers and IT 
specialists to investigate various aspects of cloud. The 
performance metrics of the cloud system are optimized 
through various approaches like task consolidation [3]-[5], 
VM consolidation [2], [7], and Dynamic Voltage Frequency 
Scaling (DVFS) [6]. In this paper, we have optimized the 
energy consumption, makespan, and threshold of the system 
through task consolidation. Cao and Dong [7] have tried to 
balance the relationship between energy and performance by 
proposing a new energy-efficient framework for VM 
consolidation. In the framework, they have defined an 
algorithm for SLA violation to determine when a host is 
overloaded by considering some performance metrics. 

Zhao et al. [3] have proposed a Tree-to-Tree task 
scheduling method based on Task Requirement Degree 
estimation to enhance the energy performance of the cloud 
system. This approach reduces the number of active machines, 
thereby, decreasing the time expenditure in data transmission 
and optimizing the utilization of its computing resources and 
bandwidth. The authors in [8] have developed an algorithm to 
estimate the performance gap between cloud and local 
resources. The algorithm aims to prove the fact that even if a 
cloud has a slower network speed than a local resource, the 
cloud can still give better overall performance than the local 
resource for bursty jobs. The algorithm focuses on three major 
factors; these are job queue waiting time, execution time and 
relative performance of the cloud compared to that of a local 
resource. The algorithm predicts these factors and combines 
them to make the allocation decision. 

Keshanchi and Navimipour in [4] have proposed a task 
scheduling algorithm using various priority chains and 
memetic algorithms. The authors have used a genetic 
algorithm besides hill climbing to designate priority to each 
subtask and then, adopted a heuristic based earliest 
termination time approach for the task to processor mapping. 

The authors in [9] have aimed to reduce uncertainty 
propagation in real-time workflow scheduling. The authors 
have presented an uncertainty-aware scheduling design to 
minimize the influence of uncertainty factor on the quality of 
workflow schedules. They have presented a dynamic 
workflow scheduling algorithm that can employ the proactive 
and reactive scheduling methods dynamically. 

Yassi et al. [6] have addressed the general optimization 
problem of cloud workflow scheduling that requires 
examining multiple criteria so as to meet a great number of 
QoS (Quality of Service) requirements. The authors have 
designed a hybrid PSO algorithm to optimize scheduling 
performance along with the usage of DVFS technique to 
depreciate energy usage. The authors in [5] have suggested a 
task scheduling algorithm for mapping tasks to VMs in order 
to improve the throughput of the data center without any 
violation of Service Level Agreement (SLA). 

TABLE I. SUMMARY OF RELATED WORKS 

Task Scheduling 
 Technique 

Objective Resource Considered 

[3] Energy consumption 
CPU, Network 
Bandwidth 

[4] Makespan CPU, RAM 
[6] Makespan, Cost, Energy CPU 
[10] Makespan, Cost, and Energy CPU, RAM 

 [11] 
Makespan, Resource Cost, 
preserving the fault tolerance 

CPU, Memory 

 [12] 
Optimizing application, 
Energy efficiency 

CPU 

[13] 
Energy consumption. Increase 
the performance 

CPU 

 [14] Makespan CPU 

From this related work, we observe that most of the 
researchers considered CPU time as the resource of the cloud 
system to optimize various parameters as shown in Table 1. 
Table 1 shows some specific related works and their primary 
objectives with resource consideration briefly. In order to 
address the limitations of existing standard scheduling 
solutions, we proposed a new efficient algorithm. In summary, 
the proposed algorithm: 1) has a well-organized structure to 
efficiently map tasks to cloud resources (VMs), and 2) enables 
cloud users to optimize the energy consumption, total 
execution time (makespan) and throughput of the system. 

III. SYSTEM MODEL AND ARCHITECTURE 

This section explores the proposed cloud system model 
and architecture, which consists of data centers with hosts 
which in turn contains multiple virtual machines as shown in 
Fig. 2. All of these components and sub-components possess a 
different level of hardware characteristics. Besides this, the 
top layer of our model comprises users, who are responsible 
for submitting their service request for processing. These 
service requests are submitted to Task Manager (or CSP), 
whose job is to process every task and map it to the best 
performable virtual machine. The task manager after 
completing its job submits the final mapped service request to 
the broker. The broker then takes the responsibility of 
submitting the mapped service request to the data center for 
processing. Following this paragraph, we have briefly defined 
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every entity of the proposed model along with its 
characteristics. 

 
Fig. 2. Cloud system model. 

A. User 

Users are the top most layer of our system model. They are 
responsible for submission of service requests along with their 
deadline. These service requests require different amount of 
resources for processing and all these service requests 
constitute the tasks set T. Each task (Ti in T) is an independent, 
individual task (Ti), which has its identification, length, and 
deadline, i.e., T = {T1, T2, ..., Tm}, where m is the total number 
of service requests or tasks. 

B. Data Center 

A data center is the composition of the network of 
computers that allow storage and has the power to process 
users’ service request. Every data center has its own 
characteristics. These characteristics include an operating 
system, virtual machine manager, host list, and much more. 

C. Host 

A data center can consist of one or more physical host. 
These hosts are responsible for hosting the virtual machines in 
a data center. Every host in a data center has an id, RAM 
(main memory), bandwidth, storage, and a list of processing 
elements depending upon the core of the machine. The host 
set (H) in a data center can be defined as, H= {H1, H2, …, Hw}, 
where w is the finite number of hosts. 

D. Virtual Machine 

A set of virtual entities deployed in a data center over the 
physical host is identified by the VM set V. The set V 
represents the finite number of VMs, i.e., {VM1, VM2, …, 
VMn}, where n is the total number of VMs. Every virtual 
machine (VMi) present in the set (V) is hosted by some host in 
H. These virtual machines are responsible for processing 
service requests of users. Every virtual machine has its id, 
speed (MIPS), RAM, bandwidth, a number of cores, and a 
virtual machine manager (VMM). 

E. Task Manager 

The users’ task (with task length) and its corresponding 
deadline once obtained, has to be mapped with the best 
performable virtual machine available in VM set V. The task 
manager is responsible for this mapping and hence it is 
responsible for the success of the proposed algorithm. 

F. Broker 

Once every task in set T is mapped to its best performable 
virtual machine in the set V, it is submitted to the broker. It is 

the responsibility of broker to retrieve resource information 
and assign every task Ti to its mapped VMi, and finally service 
back to the end use. It has complete information about the 
available resources of the system. 

IV. PROPOSED WORK 

An attempt to reduce the consumption of CPUs’ can 
directly help in reducing the total energy consumption as 
shown in Fig 1. The main focus of this paper is the utilization 
of all virtual machines present in an activated host in order to 
minimize task failure and maximize efficiency with the use of 
minimum amount of energy or power. The proposed approach 
takes deadline along with task length to set priorities for the 
task. Once the tasks are sorted according to their priorities, 
from high to low, the best possible virtual machine is chosen 
for them whose processing power allows the task to meet its 
deadline requirement (or SLA). The calculation of task 
priority along with different performance metrics is described 
in following sub-sections. 

A. Task Priority 

By task priority, we mean the importance of consideration 
of a task. In order to determine the priority of a task, we 
consider a task priority factor. A task with high priority 
represents high concern and therefore must be processed first, 
on the other hand, a task with low priority represents low 
concern and must be processed after the completion of higher 
priority tasks. A larger task with fewer deadlines has higher 
priority value. Generally, the processing of these high 
preference tasks is more productive for the service providers. 

Task priority factor (Pi) is calculated as the ratio of task 
length (Li) and deadline (di) as in (1). 

𝑃௜ ൌ  𝐿௜
𝑑௜

ൗ                     (1) 

Clearly, a task with higher task priority factor represents 
higher priority, and sorting the tasks according to this factor 
arranges the tasks from highest priority to lowest. 

B. Throughput 

Throughput is an important performance metric for any 
system. The high throughput value of the cloud system results 
in more profit for the service providers. The deadline 
parameter that is input along with task also assists in 
minimizing the number of failures, thereby maximizing the 
throughput. A task is rejected only when the data center has no 
resources, or the resources are busy with other tasks, and 
hence the required deadline of the task cannot be met. The 
throughput value of the system is calculated using (2). 

𝜏 ൌ 𝑚 െ 𝑐                          (2) 

C. Makespan 

Makespan of the system is the maximum time required to 
complete all input service requests by the system as in (3). 
Reducing the makespan has always remained a challenging 
job for researchers, let alone maximizing throughput, 
minimizing power consumption alongside minimizing 
makespan. This paper presents an approach to meet all the 
three desired constraints. The throughput maximization can be 
achieved as discussed earlier. In order to minimize the 
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makespan, we consider a task and allow the best performable 
resource to execute that task. It is an interesting fact that the 
best performable resource is not the resource with the best 
host or VM characteristics. The major reason behind this is 
that the resource with best possible characteristic might be 
busy in executing some other task of higher priority and hence 
is not the best performable resource for the considered task. 

ɱ ൌ 𝑀𝑎𝑥ሼ𝑆𝑇௜ሽ                   (3) 

This approach of consistently providing the most efficient 
resource to every task always helps us in improving the 
makespan of a sequence of tasks. 

D. Energy Consumption 

There is no point in minimizing makespan and maximizing 
the throughput if the energy consumption of a data center is 
beyond control. The energy consumed by a resource (VM) in 
an active state, which depends on the processing speed [15], 
[16] and inactive (or idle) state can be calculated by using (4) 
and (5), respectively. 

𝜉௔೔
ൌ 10ି଼ ൈ  §௜

ଶ                        (4) 

𝜉௜௡೔
ൌ  0.6 ൈ  𝜉௔೔

                         (5) 

With the formula in (5), it is clear that even if a resource is 
inactive, it still consumes 60% of the energy as it would have 
consumed while remaining active [17]. Therefore, it is not 
sufficient to keep few resources active and the remaining 
inactive, as the inactive resources would also consume a 
considerable amount of energy. The total energy consumption 
of the system is the sum of energy consumption of all VMs 
during the active and inactive state for the specified amount of 
time as in (6). 

𝜉 ൌ ∑ ሼ൫𝜉௔೔
ൈ 𝑆𝑇௜൯ ൅ ቀ𝜉௜௡೔

ൈ ሺɱ െ 𝑆𝑇௜ሻቁሽ௡
௜ୀଵ         (6) 

This being the case, the paper proposes an algorithm that 
makes the best possible utilization of the maximum number of 
available resources in a data center. 

TABLE II. SYMBOL TABLE 

Symbols Description 
T A set of task. 
Ti ith task of set T 
m Total number of input task 
Li Length of ith

 task 

V A set of VM 
VMi ith VM of set V 
n Total number of VM 
D A set of deadline 
di Deadline of ith task 
Mi VM allocated for ith task 
ɱ Makespan of the system 
ξ Total energy consumption of the system 
τ Throughput of the system 
Pi Priority of ith task 
§i Speed of ith VM in MIPS 
ξa Energy consumed by the VM in active state 
ξ in Energy consumed by the VM in inactive (idle) state 
sr Stores the VM that has been allocated to ith task 

ST 
An array of size n to store the schedule time ith VM 
would take for the processing of allocated task. 

LI Store Lowest Index 
c A counter variable to store number of rejected tasks 

E. Algorithm for Scheduling of Tasks 

We have considered the cloud system has a sufficient 
number of hosts. The VM set, V has multiple heterogeneous 
VMs each of which is hosted by some host in the data center. 
The task set, T, has heterogeneous resource requirements with 
different task length. Every task in T has a deadline or the 
maximum amount of time that it can wait before being 
processed completely. The proposed algorithm also assumes 
that if the deadline, di, of any ith task is not met, the task, Ti, is 
never submitted to the broker. Those tasks are strictly rejected 
due to the lack of time and SLA violation. 

Algorithm 1: Proposed Algorithm 
Input: V, T, D 
Output: M, ɱ, ξ, τ 
 

1. for i←1 to m do 
2.  Pi ← Li / di 

3. end 
4. T ← sort (T using Pi) 
5. c ← 0 
6. for i ←1 to m do 
7.  for j ←1 to n do 
8.   STj ← STj + Li / §j 

9.  end 
10.  lowest ← Min(ST) 
11.  LI ← IOM(ST) 
12.               reset ST 
13.  if  lowest <= di then 
14.   sr ← LI 
15.   Mi ← sr 
16.   STsr ← STsr + Li / §sr 

17.  else do 
18.   c ← c +1 
19.   remove Ti 

20.   remove di 

21.  end 
22. end 
23. ɱ ← Max{ST} 
24. τ ← m - c 
25. for i←1 to n do 
26.  ξa ← 10-8 × §i

2 × STi 

27.  ξin ← 0.6 × 10-8 × §i
2  × (ɱ - STi) 

28.  ξ ← ξ + ξa + ξin 

29. end 

Our algorithm for maximization of throughput and 
alongside minimization of makespan and energy assumes that 
VM has already been created in the data center. It takes users’ 
service request or task set, T, and its corresponding deadline 
(D) as input. For every ith task in T, the algorithm calculates 
priority factor, Pi, which helps us in determining the priority 
of a task. Any task, Ti, with higher Pi, is considered to have 
higher priority and must be attended first. Similarly, a task, Ti, 
with lower Pi, must be attended after all tasks with higher Pi 
have been attended. 

We maintain a schedule time array, ST, of size n, which 
stores the running time of all VMs required for the processing 
of all higher priority tasks that have been allocated to it. For 
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every jth VM in V, we update the value of STj, signifying the 
total amount of time jth VM would take for the completion of 
the ith task. We calculate the minimum value in ST (using Min 
function in step-10 of the algorithm), which indicates the 
minimum amount of time the data center requires for the 
processing of the ith task. We also calculate the index of the 
minimum value of ST (using IOM function in step-11 of the 
algorithm). If this minimum time does not meet the deadline, 
the task is rejected and consequently removed from the task 
set T. If the minimum time meets the deadline, then the 
previously updated schedule time array is reset, and only the 
schedule time of lowest index VM is updated. After every task 
has been allocated, the array schedule time is consequently 
updated, and hence the maximum of ST gives us the value of 
makespan. For the calculation of throughput, we maintain a 
counter (c) that counts the total number of rejected task. 
Hence, throughput is measured using (2) in step-24 of the 
algorithm. The energy parameter can be calculated using (6) 
from step-25 to step-29 of the algorithm. 

V. PERFORMANCE EVALUATION 

We have simulated our proposed algorithm in CloudSim 
3.0.3 simulator environment. During the simulation, the cloud 
resources (VMs), as well as the user requests, are considered 
heterogeneous. A comparison has been made among our 
proposed algorithm, First Come First Serve (FCFS), Random, 
and Modified Round-Robin algorithm. The explanations of all 
other compared algorithms are as follows. 

In FCFS we have allowed the task scheduling on the basis 
of the order of task input by the users. Every task or service 
request that is given as input by the user is checked in the VM 
set (V), from least VM speed to the most. If any VM is found 
to meet the tasks’ deadline, the task is allocated to that VM, 
and the next task is allowed to perform the check operation. In 
case no VM in V is able to meet the deadline of the task, that 
task is strictly rejected. 

For the Random algorithm, we have performed task 
allocation in order of task input by the user except that instead 
of searching the VM from least speed to most, we randomly 
choose a VM from set V and check if that VM is able to meet 
the deadline of the task. If it meets the deadline, then the task 
is allocated to that VM; else it is checked for another VM in 
the set V. In case all the VMs in V have been checked and 
there is no VM that can meet the deadline of a particular task, 
then that task is strictly rejected. 

In the case of modified Round-Robin, priority factors are 
determined for every task, and the task set (T), is sorted 
according to its priority, arranging from highest priority factor 
to lowest. The task set (T) is then passed to scheduling 
algorithm, which takes the help of learning automata to 
allocate tasks to VMs. A probability array of size n is defined, 
initially containing equal probabilities for each VM in set V, 
signifying the chance of any VM being allocated to the task. 
For each task in the arranged set T, a VM is selected at 
random and is checked whether the deadline for that particular 
task can be met or not. If the deadline is met, that particular 
VM is rewarded while the other VMs in the set V is penalized; 
else if the deadline is not met, that particular VM is penalized 
and other VMs are rewarded. This process is continued until 

the probability of a VM is equal to 1 or there is no VM in the 
set V that can meet the deadline of the task. In case we find a 
VM suitable for a task, we allocate the task to that VM, and in 
case there is no VM suitable, the task is strictly rejected. 

The simulation for a specific result runs for 20 times and 
the average of those are shown as the result. We have two 
separate simulation scenarios to estimate the behavior of all 
four algorithms including our proposed one as follows. 

Scenario-1: In this scenario, the number of tasks is fixed 
to be 100, and the number of virtual machines varies from 10 
to 50 in the interval of 5. The comparison graphs for the 
calculation of energy consumption, makespan, and throughput 
are shown in Fig. 4, 6, and 7, respectively. From the figures, it 
is inferred that the optimization parameters in Y-axis for the 
three cases is less in the case of our proposed algorithm. 

Scenario-2: In the second scenario, the number of VMs is 
fixed to be 50, and the number of service requests or tasks is 
varied from 20 to 100 in the interval of 10. The comparison 
graphs for the calculation of energy consumption, makespan, 
and throughput are shown in Fig. 3, 5, and 8, respectively. It is 
observed that the optimization parameters in Y-axis for the 
three cases are less in the case of our proposed algorithm. 

 
Fig. 3. Comparison graph of algorithms for energy consumption where the 

number of VM is fixed, and task varies. 

 
Fig. 4. Comparison graph of algorithms for energy consumption where the 

number of tasks is fixed and number of VM varies. 

From Fig. 3 and 4, it is clearly evident that our proposed 
algorithm performs the best when it comes to energy 
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consumption, among all three other competing algorithms. 
This is due to the fact that our algorithm tries to minimize the 
number of inactive VMs, as it would also consume a 
considerable amount of energy. Making use of every possible 
VM in the set V makes our proposed algorithm perform better. 

For the purpose of minimization of makespan, the 
proposed algorithm turns out to be a better alternative than the 
other three of them. This is so because, every task in set T is 
allowed to map with the best performable VM in set V, thus 
making every task time efficient. This approach of ours’ thus 
helps us in reducing the makespan. 

When throughput is the matter of concern, our algorithm 
does not prove itself to be the best among the three, but 
certainly, has the capability of achieving around 90% of 
maximum throughput. This lag can be acceptable, because of 
the alongside optimization of energy consumption and 
makespan of the system. Moreover, it is clearly understood the 
fact that if the deadline of the rejected tasks is increased, then 
the throughput of the algorithm can also be increased. Up to 
80 numbers of tasks, the number of VMs or cloud resources is 
enough for all algorithms as shown in Fig 8. 

 
Fig. 5. Comparison graph of algorithms for makespan where the number of 

VM is fixed, and task varies. 

 
Fig. 6. Comparison graph of algorithms for makespan where the number of 

tasks is fixed, and number of VM varies. 

 
Fig. 7. Comparison graph of algorithms for throughput where the number of 

tasks is fixed, and number of VM varies. 

 
Fig. 8. Comparison graph of algorithms for throughput where the number of 

VM is fixed, and task varies. 

VI. CONCLUSION 

To maximize the benefits of the service providers, it is 
necessary to reduce the energy consumption of the system 
without any degradation in the QoS. The optimal allocation of 
heterogeneous tasks to computing resources is one of the most 
important and basic problems to optimize various parameters 
in cloud computing. Based on the earlier works on task 
consolidation, this paper introduces a new model considering 
the task priorities and after that suggests an efficient 
algorithm. The simulation results show that our proposed 
algorithm is significantly better in performance metrics such 
as energy, makespan, and throughput of the system over the 
other competing algorithms. The derived results of this paper 
will be valuable in dimensioning of cloud systems. Future 
work incorporates an intensive study on dynamic task 
consolidation in cloud system considering all other resources 
like main memory, bandwidth, and others. 
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