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Abstract—The paper presents a novel technique for 
determination of loss coefficients due to pressure by use of 
artificial neural network (ANN) in tee junctions. Geometry and 
flow parameters are feed into ANN as the inputs for purpose of 
training the network. Efficacy of the network is demonstrated by 
comparison of the ANN and experimentally obtained pressure 
loss coefficients for combining flows in a Tee Junction. Reynolds 
numbers ranging from 200 to 14000 and discharge ratios varying 
from minimum to maximum flow for calculation of pressure loss 
coefficients have been used. Pressure loss coefficients calculated 
using ANN are compared to the models from literature used in 
junction flows. The results achieved after the application of ANN 
agrees reasonably to the experimental values. 
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I. INTRODUCTION 

Due to industrialization and automation in almost every 
walk of life, energy consumption is on the rise and scientists 
are finding new alternatives to conserve the fossils reservoirs. 
In this regard, the sun is the sole largest source of energy that 
can provide enough energy to mankind without being explored 
like conventional energy. If only 0.1 % of solar energy 
reaching earth at a very low efficiency of 10% converts into 
useful energy, it has the potential to generate about 4 times the 
mankind electricity demands [1]. Solar energy based 
absorption refrigeration system uses a solar collector to 
harness the freely available solar energy to heat the working 
fluid. The hot working fluid circulates in the thermal loop of 
the cycle and runs absorption/desorption cycles. The 
efficiency of the solar refrigeration is highly dependent upon 
the efficiency of solar collector [2]. Efficiency of the system 
can be increased considerably through an efficient solar 
collector design. Absorption refrigeration and solar collector 
systems are shown in Fig. 1 and 2, respectively. 

The solar collector has a separate manifold for inflow and 
outflow. A side pipe identified in this work as riser connects 
both these manifolds in a parallel way such that an array of 
pipes is made. In a solar collector, loss of pressure occurs 
when working fluid flows through its pipes. These losses can 
be classified as minor and major losses. The major losses 
occur due to frictional resistance in the flow of fluid while the 
minor losses occur due to change in momentum of the fluid 
due to some restrictions in its way. Minor losses are not 

always lower than the major losses e.g. in the event of solar 
collector where riser tubes are connected in an array of few 
hundred tubes adding much higher resistances to flow of the 
working fluid and hence the momentum loss in the fluid flow 
occurs. Such situations decrease the efficiency of the solar 
collectors but proper designing of tee junction may avoid the 
situation and the system performance increases as a whole. 

 
Fig. 1. Solar absorption collector with solar collector as an integral part. 

 
Fig. 2. Geometry of solar collector. 

Back Propagation based artificial neural network, due to 
its guaranteed conversion in solutions of nonlinear equations, 
is put in use in this work. The multi-input and output nature of 
ANN and its less computational cost make it first choice for 
nonlinear equations solution [3]. 
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II. LITERATURE REVIEW 

Pressure loss coefficients (PLC) are ratio of stagnation 
pressure difference of upstream and downstream pipe in 
riser/straight pipes. It represents the energy loss in flow 
between upstream and downstream. Therefore, there will be 
two loss coefficients, one for riser and second for the straight 
pipe.  Mathematically it is given by the following formula: 

𝑘ᵢ ൌ ∆pᵢ ቂቀ஡୚మ

ଶ
ቁቃ

ିଵ
            (1) 

Whereas subscript  𝑖 ൌ 𝑠𝑡, 𝑠 

𝛥𝑃 ൌ Loss of stagnation pressure in ith pipe 

𝜌 ൌ    Heat transfer fluid density 

𝑉 ൌ    Velocity of flow in combined pipe 

𝐾௦௧ ൌ PLC in straight pipe 

𝐾௦ ൌ  PLC in riser 

In combining flow, energy loss in flow is dependent on 
flow ratios in riser ሺ𝑄ௌ/𝑄஼) and straight pipes ሺ𝑄௦௧/𝑄௖ሻ [15]. 
According to the frictionless Bernoulli theorem, the velocity 
and momentum of working fluid decreases as the fluid 
approaches the junction making an increase in the. But when 
the effects of frictions are considered at this point, the pressure 
decreases and hence pressure loss occurs [4]. In a converging 
flow, the losses in pressure and momentum occur due to fluid 
mixing from both the legs of the tee junctions as well as due to 
90-degree bend at the junction [5]. 

Pressure loss coefficients are usually calculated by 
experiments that require waste of resources [6]. Gardle 
calculates pressure losses due to the geometry of junctions by 
considering different discharge ratios in both the legs of the 
tee junctions by using an empirical formula. The empirical 
formula is not applicable to all types of flows [7]. Through an 
experimental study for both the combining and diving flow, 
Bingham and Blair studies the flow distribution and the 
pressure losses in a tee junction [8]. They developed a single 
equation from their experimental data. The disadvantage in 
work of Bingham is that data for dividing and combining flow 
has been mixed. Hagers investigate the effects of an area ratio 
of unity on the flow in a tee junction [9]. Flamang takes into 
account the effects of lateral angle for junction flow along 
with the area ratios effects [10]. But satisfactory correlation 
has not been made to all of the flow types in a junction pipe. 
For unsteady flow in engine manifolds, modeling have been 
done successfully by assuming that pressure loss in unsteady 
and steady flow is same [4]. The system of simultaneous 
equations has been solved by Weitbrecht et al. for flow 
distribution and pressure loss calculation [11]. For one riser 
pipe in a solar collector, the system contained 28 nonlinear 
equations. The work of Jones and Lior does not give many 
results and not much insight is given about effects of various 
flow parameters on flow. They investigated pressure losses for 
tee junctions by developing a discrete model using nonlinear 

algebraic equations [12]. Bajura and Jones studied different 
parameters for flow in junctions. Experimental results from 
their work show that flow distribution in laminar flow differs 
from that of a high Reynolds number flows [13]. Idelchik and 
Miller independently studied various parameters like area 
ratios, discharge ratios for different lateral pipe angles that 
affects loss coefficients of pressure in flow involving junctions 
[15], [16]. Both of the studies does not take the effects of 
Reynolds number into account. On a commercial CFD 
package, the idea of Weitbrecht et al. [11] has been used by 
Badar et al. for the estimation of loss in pressure due to 
change in momentum and flow distribution in a solar 
collector. He concludes that nonconformity in results and 
experiments is mainly due to incapability of the CFD package 
to capture the minute details of flow and boundary conditions 
that might not depicts the true nature of flow [14]. A 
comparative study of pressure loss in tee junction and elbows 
has been performed by Moujaes on Fluent- a CFD commercial 
software for a fixed discharge ratio of 0.5. Finding of the 
investigation is that tee junction offers more resistance to the 
flow through it as compared to elbow [15]. Bassett et al 
studied tee junction flow in combining and dividing flow. The 
flow is energized using shock wave for high Reynolds number 
flow and developed equations for all type of flows in junctions 
[17]. In [17] the flow reverses as soon as the energizing shock 
wave diminishes thus affecting the loss coefficients values and 
also it does not give any specific range of Reynolds number in 
which the equation holds true.  Similarly, Wahab et al used 
SIMPLE algorithm on CFD package to predict the pressure 
losses in junction flow [18]. The results achieved are higher 
than literature results for constant diameter pipes. More 
recently, Bawa determined numerically the total pressure loss 
in a solar collector [19]. But no information has been 
presented regarding loss of pressure in the collector due to 
geometry of the solar collector under consideration. 

III. PROPOSED METHOD 

We are suggesting a new novel technique, to the best of 
our knowledge, based upon ANN for evaluation coefficients 
of pressure loss in combining flow. The ANN evolved after the 
functioning of the human brain was studied. ANN are 
nonlinear statistical models. They do not compete in 
complexity to brain and central nervous system of human. 
Network is formed when neurons connects to each other 
through synaptic connections with the ability to convey data 
through various layers.  This network is capable of estimation 
of energy loss in flow in the form of pressure loss coefficients. 
These networks are regarded as highly efficient system due to 
their adaptive nature. In this network, information is 
transmitted through neurons as by giving them input feed, 
which is further connected through a specific activation 
function. Data transmission is done in layers of signals with 
weights exciting or inhibiting the signal and finally, the output 
is retrieved in the form of pressure loss coefficients. 

ANN performs its function in the following steps (Fig. 3): 
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Fig. 3. Design stages of an artificial neural network. 

A. Data Collection and Preprocessing 

For training purpose, an artificial neural network needs a 
set of data. Before the training process begins, data set 
refinement and preprocessing is done. In the current work, 
experimental data has been gathered from a tee-junction setup 
as shown in Fig. 4. Sensors are installed at points a, b and c 
that records stagnation pressure and from which loss 
coefficients of pressure are calculated using (1). 

Geometry specifications for experimental setup are as 
under (Table 1): 

TABLE I. GEOMETERY SPECIFICATION OF TEE JUNCTION SET UP 

Parameter  Specifications 
Diameter of manifold, D 16.6 mm 
Diameter of riser, d 7.2 mm 
Entry length of inlet pressure sensor, a 560 mm 
Entry length of outlet pressure sensor, b 990 mm 
Length of riser pressure sensor from outlet, c 17 mm 
Riser angle, α 90° 

 
Fig. 4. Geometry specification of tee junction used. 

The experimental results obtained are processed for ANN 
training. It is pertinent to mention that water is used as heat 
transfer fluid with constant density neglecting the effects of 
buoyancy. 

The 30 features are recorded while performing 
experiments on the tee junction set up. Among them only 
relevant features that affect the pressure loss coefficients are 
selected using Relief algorithms for ANN training [20] as 
shown in Table 2. Feature relevancy obtained after application 
of relief is shown in Table 3. 

TABLE II. EXPERIMENTAL CONDITIONS FOR COLLECTION OF DATA 

Factors ISO 9086 Conditions Experimental 
condition 

Temperatur
e range (°C) 

18 -22 18 -22 

Fluid  Water or mixture of water/glycol (60/40) Water  

TABLE III. FEATURE RELEVANCY OBTAINED AFTER APPLICATION OF 
RELIEF 

Name of feature Score of feature (%) 
Penetration depth  30 
Mass flow rate  20 
Volume flow rate 20 
Reynolds number 12.5 
Velocity of flow 12.5 
Entry length 5 

B. Network Architecture Selection 

Architecture selection for training purpose of the network 
has been done by hit and trial method because there is no fix 
rule available for network architecture specifications [21]. 
This work uses a network architecture of 6-30-2 neurons in 
input-hidden-output layers. 

C. Training 

The selected network is trained using learning rule known 
as Marquardt-Levenberg back propagation rule. The layers 
and neurons are interconnected using tan-sigmoid function as 
an activation function. Training stoppage criterion is also 
chosen that includes maximum number of epochs, mean 
square error and time. This training criterion helps in 
preventing the network from overfitting and thus the ability to 
predict the unseen conditions improves. 

D. Testing 

The network trained is tested upon the unseen data. The 
efficacy of the network can be seen when the ANN and 
experimental data are compared to each other for different 
situations of flow as shown in the next section. 

IV. RESULTS AND DISCUSSION 

Reynolds number starts from a very low laminar region 
(Re =200) to a very turbulent region (Re=14000) for the 
current work. The discharge ratios range from 0 to 1 for 
combining flow in tee junction. Much focus has been on the 
laminar flow region due to the scant literature which has been 
identified by [5], [12], [13], [16].  For combining flows, the 
junction has two inlets pipes and one outlet pipe. A number of 
data points are tested and results are plotted in Fig. 5 for both 
manifold and riser of tee junction. 

Fig. 5 shows the variations in loss coefficients due to 
pressure and its dependency on another non dimensional 
quantity-Reynolds number.  Velocity of fluid in tee junction is 
kept as low as .01 m/s to 0.2 m/s in the laminar flow region.  
For the case of turbulent region, Reynolds number has been 
kept high so that it may be investigated on a highly turbulent 
flow and it ranges from 7000 to 14000 in pipe outlet with a 
lower velocity in combined pipe ranging from 0.3 m/s to 0.9 
m/s. In the same figure, the same property i.e. Reynolds 
number has been studied for side pipe (riser) which is shown 
by subscript ‘s’. For side pipe, the values of pressure loss 
coefficients are higher than straight pipe due to the fact the 
there is greater loss of pressure resulting from mixing of two 
the streams as well as from the bending of pipe at an angle of 
90 degrees. Few values of pressure loss coefficients are 
negative for riser portion of the tee junction. This situation 
arises when the volume flow rate and Reynolds number are 
kept high in side pipe, the pressure difference becomes 
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Preprocessing  

Deciding 
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 Training   
Testing the 

trained 
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negative giving a negative value for loss coefficients. For 
combining flow, Fig. 5 shows a trend of decrease in values of 
loss coefficients considerably as the Reynolds number 
increases. 

The second important parameter is flow ratio in both the 
manifold and riser pipes. The discharge ratios in both the 
pipes of the tee junction are varying from 0 to a maximum of 
1. Fig. 6 shows plot of manifold and riser pipes for the 
junction flow with respect to discharge ratios for pressure loss 
coefficients comparison between ANN and experimental 
values 

The observed trend for pressure loss coefficients in 
manifold is that for increasing discharge ratio the pressure loss 
coefficients decreases significantly while for the case of riser, 
it is exactly opposite. The pressure loss coefficients increase 
as the discharge ratio increases from zero to 1. 

Fig. 5 and 6 shows that proposed method of ANN is 
following the experimental results for both parameters of 
Reynolds number and discharge ratios. Few of the models 
discussed in the literature are used for comparison in Fig. 7, 8 
and 9. Fig. 7 shows the comparison of ANN with experimental 
values, Bassett’s [18], Idelchik’s [5] and Badar’s [16] 
equations for manifold pressure loss coefficients plotted 
against the discharge ratios. It is evident that ANN and 
experimental values are close to each other while the rest are 
following the trend of decreasing pressure loss coefficients 
values as the discharge ratio increase from minimum to 
maximum. 

 
Fig. 5. Pressure Loss coefficient comparison between experiment and ANN 

for different Reynolds numbers. 

 
Fig. 6. Pressure loss coefficient comparison between experiment and ANN 

for different discharge ratios. 

In Fig. 9, the comparison has been done for pressure loss 
coefficients in riser pipe of the tee junction. Here, the 
literature models and the proposed model along with the 
experimental values are reasonably close to each other and 
trend of increasing pressure loss coefficient is followed as the 
discharge ratio increases in the riser portion of tee junction. In 
Fig. 8, Badar’s equations [16] for the pressure loss coefficient 
in riser are compared but the trend of experiment and other 
literature is not followed. 

 
Fig. 7. Literature models comparison in manifold of solar collector’s tee 

junction. 
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Fig. 8. Literature model comparison for riser of a solar collector’s tee-

junction. 
 

 
Fig. 9. Literature model comparison for riser of a solar collector’s tee-

junction. 

V. CONCLUSION 

In this paper, effect of Reynolds number along with 
varying discharge ratio from zero to maximum has been 
studied for both the riser and manifold of tee junction for 
combining flow loss coefficients. Loss coefficients due to the 
pressure change in manifold have lower values then riser pipe 
due to large volume flow rate and straightness. The general 
trend observed is that with an increase in Reynolds number 
and discharge ratio in the manifold, the values of loss 
coefficients decreases. The relationship for loss coefficients in 
the riser with discharge ratios and Reynolds number is 
complex. The values increase with Reynolds number while 
decreases with discharge ratios in the riser. Plots show that 
ANN is determining pressure loss coefficients reasonably with 
an average error value of 4 % in pressure loss coefficient for 
straight pipe and error value of 2.24% in side pipe pressure 
loss coefficient between experimental and proposed method. 
The ANN model proposed agrees satisfactorily with the 
experimental values and thus demonstrating the ability to 
replace the expensive experimental and other analytical 
techniques requiring high performance and large memory 
computers. 
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