
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

691 | P a g e

The Effect of Applying Software Design Patterns on
Real Time Software Efficiency

Muhammad Ehsan Rana
Faculty of Computer Science and Information Technology

Universiti Putra Malaysia, 43400
Serdang, Malaysia

ranaehsan@gmail.com

Wan Nurhayati Wan Ab. Rahman
Faculty of Computer Science and Information Technology

Universiti Putra Malaysia, 43400
Serdang, Malaysia

wnurhayati@upm.edu.my

Abstract—Real time applications are one of the fastest
growing applications in the market due to their popularity,
business value and the fact that web is their native environment.
As a result, enhancing the performance of these applications has
always been a concern for the IT industry. In this research, we
took a closer look on the effect of design patterns on the
performance of these applications using simulations as a research
method. Two of the design patterns used by the researchers,
namely, the Observer and the State design patterns, proved to be
more effective in terms of software efficiency.

Keywords—Design patterns; real time software; real time
applications; software performance; software efficiency

I. INTRODUCTION

Web-dependent applications are among the most popular
software applications in today’s IT industry. The available web
applications in the market outnumber the stand-alone
applications with a huge margin. Among various different
types of web-applications in the market, a category that stands
out in terms of popularity and usage is social media. These
internet based applications are growing faster than most of the
other applications, mainly due to their high number of users
and the strong linkage between the users of these applications
[1].

Real time programming is the core of these applications
(involving chatting, live commenting, gaming, photo and video
sharing, etc.) because of their high dependence on interactivity
[2]. The rise of the usage of real time programming took the
attention of many researchers to the best practices of
developing these types of applications. Hardware optimization,
cloud technologies and practices such as multi-processing were
some of the main areas of research for many companies. But
there are many limitations in applying these types of practices,
especially when it comes to hardware optimization, where cost
is the biggest issue.

The next solution for real-time programming that might
affect the way that they are being used is by considering the
programming practices, where it requires more skilled
programmers rather than optimized hardware, this will benefit
the companies since it will save them from the limitations
mentioned above. Using the right programming practices can
affect the performance of the real-time applications, both by
boosting the speed on the software level, and by using the

maximum capabilities of the underlying hardware. There are
various design pattern based solutions that can be used to
improve the performance of such applications, but possibly one
of the most well-known ones are the software design patterns
known as GoF (Gang of Four) patterns.

The undergoing research is an attempt to test the effect of
three of these GoF design patterns (viz. State, Strategy and
Observer) on the performance of real-time applications in
terms of software efficiency. This paper is organized as
follows: Section 2 analyzed the literature reviews, Section 3
described the research method, Section 4 discussed the findings
and Section 5 concluded the paper.

II. LITERATURE REVIEW

A. Real Time Programming

“Real time is a level of computer awareness that a user
senses as adequately immediate or that enables the computer to
keep up with some external process (for example, to present
visualizations of the weather as it constantly changes).” [3]
Real-time applications are nearly used in most of the major
software applications, in particular embedded systems, where a
specific behavior is required on a timely manner. They can also
be seen in GPS applications, chat rooms, mobile systems and
etc.

Web-based applications are similar to other real-time
applications, with one major difference that the response time
is critical here. As a result, there have been lots of attempts to
improve the performance and responsiveness of these
applications using different methods. Hardware optimization is
a primary response in these situations, but as they are not
entirely cost-effective, software optimization is the next step.
Software optimization can be done in different levels, starting
with refactoring the code using programming best practices, to
minimize the heavy processes by using certain policies.
Software design patterns are among these best practices that
are developed to enhance both the readability and the
performance of the applications. Very few well documented
simulation or researches on the effect of design patterns on
software performance are available, but they should logically
boost the performance due to their short syntax and their
effective way of handling requests.

Real time applications can be used in any industry or type
of programming, as long as the time factor is given due
importance and no delay is expected in responses [4]. However Fundamental Research Grant (FRGS) by Ministry of Higher Education

Malaysia under Project Title: “Architectural Patterns and Performance Anti-
Patterns for a Systematic Migration Framework for Moving Legacy
Applications to Cloud”.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

692 | P a g e

there are software and hardware considerations when it comes
to implementing these applications, since they have to deal
with a high volume of data and sometimes the sensitive nature
of the data they have to handle. There always has been an
argument over choosing the right programming language for
developing these applications. The argument has been on both
the performance of these sorts of applications and the level of
flexibility required programming these applications. Generally
speaking, they can be developed using most of modern
programming languages (although Java, C++, and Scala are the
popular choices for this type of programming), but as it’s
mentioned before, picking up the right programming language
actually depends on the purpose and scope of the application.
For developing more solid and stable versions, static languages
are preferred, while in some cases due to the nature of the
application, dynamic programming languages are more
suitable.

B. Issues Associated with Real Time Applications

Developing real time applications can be challenging since
it deals with the real world entities, and these can cause real
challenges to the programmers who need to develop the code
in such a way that it can handle all different scenarios
appropriately [5]. Another source of complexity comes from
the fact that real-time applications are generally handling
massive traffic that has to be handled efficiently to keep the
program up and running, and responds to the request on a
timely fashion. Below is a brief discussion on some of the main
issues in developing real-time applications:

1) Software Architecture Suitability
It is important to develop the system in a way which is

capable to take advantage of queuing systems and minimizing
the number of nodes. These strategies help the system to
maximize the performance and recover faster in case of any
failure.

2) Synchronous vs. Asynchronous
Developing real-time applications using synchronous

methods can cause application performance issues, as any new
request will hold an open session until the response is
provided, that will put the system on a heavy pressure.
Asynchronous calls, on the other hand, will not require any
open session, so they can be a better alternative for real-time
programming.

3) Compatible Hardware Resources
As it’s been discussed before, most of the real-time

applications are handling heavy-loads of requests, so they
require a powerful hardware infrastructure to handle this load.
It is also important to use the elastic technologies, like cloud,
which enable the companies to scale and expand as needed.

4) Choosing the Right Operating System
Choosing the right operating system is as important as

choosing the right hardware, as the hardware capabilities
should be supported by the operating system to allow the
application for taking advantage of the entire hardware
capabilities.

5) Failure Recovery
It often happens that real-time applications crash due to the

load of traffic, therefore it is important to have a proper
recovery plan (both on the software and hardware level) to
minimize the damage to the user-experience.

C. Software Design Patterns

According to [6], “In software development, a pattern
(or design pattern) is a written document that describes a
general solution to a design problem that recurs repeatedly in
many projects.” Design patterns are well-known and well-
defined solutions to some of the common design problems.
Using these solutions makes it a lot easier for other
programmers to read the code and understand the logic behind
it, on the other hand they also help in improving the usability
and easing the maintenance of the code [7].

In 1991, Gamma and Helm together with Ralph Johnson
and John Vlissides published their famous book of Gang of
Four (GoF), which until now (with some modifications) is
considered as one the main reference books for design patterns.
[8] Software design patterns are categorized under three main
categories, creational, behavioral and structural [9]. Most of the
performances issues in real-time programming are directly
related to the behavior of the objects and not particularly with
the application architecture or structure, researchers have
narrowed down their focus on behavioral design patterns that
affect the performance of the applications comparatively more
significantly. For the sake of this research, researchers have
selected three design patterns under the category of behavioral
design patterns to test the hypothesis. The three selected design
patterns are State, Strategy and Observer. Following is a brief
description of these three design patterns.

State design pattern allows an object to alter its behavior
when it’s internal state changes. The object will appear to
change its class [9] (Fig. 1).

Strategy design patterns allows applications to implement
multiple algorithms and use them interchangeably, this gives
the developers the ease and flexibility to choose their preferred
method [9] (Fig. 2).

Fig. 1. State design pattern implementation.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

693 | P a g e

Fig. 2. Strategy design pattern implementation.

The Observer pattern defines a one-to-many dependency
between objects so that when one object changes state, all its
dependents are notified and updated automatically. The
Observer pattern assumes that the object containing the data is
separate from the objects that display the data, and that these
display objects observed changes in that data [9] (Fig. 3).

Fig. 3. Observer design pattern implementation.

D. Measuring Software Performance

Real time programs are dissimilar from other applications
by the fact that the performance and as a result the response
time of many of these applications are mission-critical where
failure in responding can cause catastrophic damage. It is
important to mention, that responding in a timely fashion
doesn’t necessary means fast, but it means delivering on the
promised time period [10].

E. Performance Testing

When it comes to measuring the performance of
applications, there are different performance testing techniques
available that relies on various factors such as speed,
scalability, stability, memory consumption, etc. Although
depending on the requirements, other types of performance
testing are also conducted in which we target the availability,
response time and flexibility of applications, however what is
important in performance testing is to find out the true nature
of the application and its expected results, so that the right set
of performance tests can be designed and performed.

F. Real-Time Systems’ Performance Testing

As it’s been described before, when it comes to real-time
applications, the response time (getting the job done in a

promised time period) is the most important factor; therefore
most of the performance testing should be done with this idea
in mind.

It is important to mention that response time relies on
various variables, memory consumption is possibly one of
them as every server (the machine that hosts the application)
has a limited memory, and using this memory efficiently will
increase the performance tremendously. Another important
thing to state is that the performance of any application is the
aggregate result of the performance of all functions in that
application, and it is not relying only on a single component or
a portion of the software.

G. Difficulties and Challenges

The overall performance of any application is the result of
various different factors that include software, hardware,
coding style, etc. Therefore measuring the performance of the
application accurately is quite challenging.

Another difficulty in measuring the performance of an
application, especially for a real-time application, is to create
enough data load for this application, so that the results of
testing are tangible.

III. RESEARCH METHOD

To evaluate the performance of the application, the
designed simulation is implemented. Each test is performed
twice, first by using the stated design pattern and secondly by
running the code that simulates the same behavior without
using the design pattern. The response time is measured using
Google Chrome’s developer kit, which measures the response
time for each request in real time application. The average
response time for each implementation is calculated and
compared with its counterpart.

A. Simulation

“In its narrowest sense, a computer simulation is a program
that is run on a computer and that uses step-by-step methods to
explore the approximate behavior of a mathematical model.
Usually this is a model of a real-world system.” [11]

In [12], author states the following key considerations for
software simulations:

 Timing: Timing is an important factor to take into
consideration when simulations are involved. By
considering the timing factor, it is much easier to
evaluate the effect of the developed system on different
parts of the whole system.

 Matching to Reality: In order to get as realistic results
as possible, it is important to get the simulations to
work in scenarios as close as possible to the real-world
ones, although in most cases this might not be fully
achievable due to the limitations of the testing
environments.

 Effective Testing: Selection of the testing methods is
crucial in simulations. It is important to take into
consideration different factors, such as the environment
in which the testing is being done together with the

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

694 | P a g e

right testing methods, to get the results as precise as
possible.

B. Using Instant Messaging System as a Simulation for Real-
Time Applications

There are numerous real-time applications but possibly the
most well-known are the chatting software. Chatting
applications are among the most popular and typical real-time
applications which are still widely used in the market. Chatting
applications nowadays are not limited to the text messages
only. The response time for these applications is almost instant,
but there are various factors involved in the performance of
these applications that include network traffic, latency and for
the high graphical contents, the system memory. Since instant
messaging applications, are well-known and common, they are
perfect to be used for the real-time simulations, as these are as
pretty close to the real world scenarios.

Due to the popularity of these applications, they are great to
be used in real-time simulations. They are particularly good for
the purpose of this research, as each design pattern has its own
unique usage in these applications. For instance, the State
design pattern can be used to play the multimedia content in
these applications, the pattern can be helpful to determine the
status of the media player.

C. Use of Design Patterns in the Simulated Application

For the purpose of this research, we developed an instant
messing application, in which the three discussed designed
patterns (Observer, State and Strategy) could be implemented.
By estimating the response time using each of these patterns as
well as their equivalent simpler solutions, the results are easily
comparable.

Observer design pattern is used to keep track of certain
objects and provide response to the changes that might happen
to them. The idea is to think of the Observer object as an event,
which occurs while the chatting system is working, this event
can be a right click, left click, or any other event. The system
works in a way that it repeatedly changes the status of the
objects and prints them to the browser’s console. The same
behaviors are coded using its simpler solution (without using
design patterns) so that the difference in the performance of
application can clearly be seen on console.

State design pattern is used to simulate the media player
that has three states, play, pause and stop. Like the previous
design pattern, once the program is running on its periodical
way, the state will continuously change from one to another,
and the results will be printed out to the console of the web
browser. The equivalent simpler version of the application
achieves the same results.

Strategy design pattern is applied to simulate the use of
emoji in the chat application. The emojies are displayed based
on certain types of string inputs. The idea behind using
Strategy pattern here is to minimize the code complexity by
having separate methods for different types. Here the
simulation is designed in a way that it will repeatedly printout
the wordings for three different signs, using Strategy design
pattern. Similarly its equivalent simpler solution is
implemented without the use of design patterns.

D. Simulation Environment

As mentioned before that the result of each simulation is
strongly under influence of the environment in which the
simulation is done. Changing the environment of the
application may affect the results of the simulation. Table 1
demonstrates the environment in which the simulation is
performed.

TABLE I. SYSTEM SPECIFICATIONS

OS HDD CPU Memory
Time
Interval

Windows
8.1, 64 bit

SATA
Intel i3,
2.7 GHz

4 GB 200 ms

E. Performance Measurement

The program simulates a simple chatting application where
by typing in the chat window and clicking on the send button,
the application will send the message. In order to run the
simulation, the application is designed to send a message
continuously on a specific interval that has been set for this
purpose. This way a certain word or phrase will be typed in the
message box and send to the application continuously. In order
to do so, following steps are followed:

 Enter a word or phrase in the messaging console and
click outside of the box (focus out) so that the program
captures the word or phrase.

 Set the time interval (default setting is 200
milliseconds), select the checkbox and click on
continuously running.

By following the above steps, the program continuously
send the saved word or phrase to the console on the given time
interval.

By using Google Chrome’s Developer Tools, the results of
the simulation can be seen. In order to activate the Google
Chrome’s Developer’s Toolkit, the below steps should be
taken:

 Right click on the browser’s screen and choose
“Inspect”.

 Select Console tab.

We need to make sure that Google Chrome’s timer option
is activated. In order to activate the timer, in Developer’s
Toolkit, click “Console settings” and check the option “Show
timestamps”.

Google Chrome’s timestamp setting shows the response
times up to three digits in milliseconds, which is good enough
to demonstrate the speed difference between different types of
implementations.

F. Challenges and Constraints

There are some challenges and constraints when it comes to
test the performance of the application.

 One of the major challenges is to produce enough loads
of data to show the performance difference between
different implementations of the code, as the difference

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

695 | P a g e

might not be that great in small data loads, and it will
only show up in heavy traffic.

 As there are many different factors that might affect the
results of the test, it is important to ensure that factors
such as the network speed, hard-disk rate remains the
same throughout the entire testing period.

 Another challenge is the small factor of change shown
in the system performance for every request. It is
important to mention that although the effect of the
used design patterns might be minimal in a small scale,
however at large scales, it will be significant.

IV. FINDINGS

In this research, the performance of the codes for each
design pattern is tested using the designed simulation. The time
difference between the responses times are the unit of measure
for testing the performance of each code. Fig. 4 demonstrates
the results of running the State design pattern timestamps. By
applying the below calculation to every pair of timestamps, the
minimum and the maximum values can be calculated and by
dividing the accumulative values of the calculation to the
number of pairs, the average result can be identified.

For example how the time response for a single send and
receive can be calculated by using above timestamps is
illustrated in Fig. 5. These values represent the first pair of
state design pattern timestamp results.

The time difference between two requests can be calculated
as follows:

 The response time from the first request: 22:29:07.644

 The response time from the second request:
22:29:07.942

 Time difference: 07.942 - 07.644 = 0.298 ms

Therefore, the time difference between two requests is
about 0.298 milliseconds.

TABLE II. STATE PATTERN: PAIR RESULTS

Pairs Upper Value Lower Value Results

1st 07.644 07.942 0.298

2nd 07.942 08.241 0.299

3rd 08.241 08.546 0.305

4th 08.546 08.847 0.301

5th 08.847 09.151 0.304

6th 09.151 09.453 0.302

7th 09.453 09.753 0.300

8th 09.753 10.054 0.301

9th 10.054 10.355 0.301

10th 10.355 10.657 0.302

Fig. 4. Timestamps for state design pattern based solution.

Fig. 5. First two timestamp for state design pattern.

TABLE III. STATE PATTERN: OVERALL RESULTS

Status Interval Min Max Average

successfully
run

200 298 305 302

Table 2 above shows the State design pattern pair results
whereas Table 3 shows the Minimum value (which is the least
value in the pairs of state design patterns timestamps results),
Maximum value (which is the highest value in the pairs of state
design patters timestamps results) and the Average (which
shows the average value of the total pairs of the state design
patterns timestamps results). Interval is fixed for all the
simulations.

Later we implemented the same functionality using the
traditional coding methods without implementing the State
design pattern. Fig. 6 demonstrates the performance of the
equivalent solution without using the State design pattern.

Table 4 shows the State equivalent simpler solution pair
results whereas Table 5 shows the calculated Minimum value,
Maximum value and the Average. Interval is fixed for all the
simulations.

In Fig. 7, the bar chart represents the timestamps results of
state design patterns compared to the timestamps results of its
equivalent simpler solution.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

696 | P a g e

Fig. 6. Timestamps for equivalent simpler solution without using state

design pattern.

TABLE IV. STATE EQUIVALENT SIMPLER SOLUTION PAIRS

State Simpler Equivalent Pairs Upper value Lower Value Results

1st 13.188 13.504 0.316

2nd 13.504 13.823 0.319

3th 13.823 14.137 0.314

4th 14.137 14.455 0.318

5th 14.455 14.771 0.316

6th 14.771 15.088 0.317

7th 15.088 15.404 0.316

8th 15.404 15.720 0.316

9th 15.720 16.034 0.314

10th 16.034 16.353 0.319

TABLE V. STATE EQUIVALENT SIMPLER SOLUTION: OVERALL RESULTS

Status Interval Min Max Average

Successfully run 200 314 319 316

TABLE VI. DESIGN PATTERN BASED SOLUTION VS. SIMPLER EQUIVALENT

 Interval Min Max Avg.

State 200 298 305 302

State simpler equivalent 200 314 319 316

Observer 200 296 305 302

Observer simpler equivalent 200 306 312 307

Strategy 200 314 318 317

Strategy simpler equivalent 200 313 318 316

Similarly the values for Observer design pattern and
Strategy design pattern were calculated. Table 6 demonstrates
the performance rate of each design pattern, compared to its
equivalent code.

Table 6 demonstrates that State design pattern increases the
performance rate by average 0.012 seconds compared to its
traditional equivalent code. By using the Observer design
pattern, we also managed to get improved results as compared
to its equivalent simpler solution, which is an average of 0.005
seconds higher in performance. But by using the Strategy
pattern, the effect of the pattern on the performance application
code seems almost none (about 0.001 only). However the
Strategy design pattern is primarily meant to increase the code
readability and enhancing the development process, rather than
affecting the performance of the application.

Fig. 8 and 9 represent the comparison of timestamp results
of Observer and Strategy design pattern based solutions with
their equivalent simpler solutions.

Fig. 7. State results vs. Its simpler equivalent results.

Fig. 8. Observer results vs. Its simpler equivalent results.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

697 | P a g e

Fig. 9. Strategy results vs. Its simpler equivalent results.

V. CONCLUSION

Due to the increasing demand for fast-responding
applications, real-time applications play an important role in
current IT industry. There has been attempts to enhance the
performance of these type of applications by using various
solutions, namely hardware and software optimization.
However as software optimization is less tangible, there is a
dire need for further research in this area to find out more
suitable and effective methods. The current research is an
attempt to study the importance of design patterns in order to
improve the performance of real-time applications. Two of the
design patterns used by the researchers, namely the Observer
and State design patterns, proved to be more effective in terms
of software efficiency.

This research provides the basis for future work on this
topic which might involve an assessment of other design
patterns as well as judging their performance on various other
real-time application scenarios.

REFERENCES

[1] Hein Pattyn. (2015). 3 Keys to Improving Enterprise Application
Performance and the Business User Experience. Available:

http://www.infovista.com/2015/09/10/3-keys-to-improving-enterprise-
application-performance-and-the-business-user-experience/. Last
accessed 05/09/2015.

[2] Lisa Phifer. (2012). Optimizing Network Performance for WLAN Real-
time Applications. Available:
http://searchnetworking.techtarget.com/tip/Optimizing-network-
performance-for-WLAN-real-time-applications. Last accessed
05/09/2015.

[3] John Huntington. (2006). Real Time. Available:
http://whatis.techtarget.com/definition/real-time. Last accessed
09/01/2015.

[4] Stephen Gilmore (2013). Trends in Functional Programming, Volume 4.
Chicago: University of Chicago Press. 2-3.

[5] EventHelix.com Inc. (2015). Issues in Real-time System Design.
Available:
http://www.eventhelix.com/RealtimeMantra/IssuesInRealtimeSystemDe
sign.htm#.VgA1G9-qqkp. Last accessed 05/09/2015.

[6] Margaret Rouse. (2007). Pattern (Design Pattern) Definition. Available:
http://searchsoftwarequality.techtarget.com/definition/pattern. Last
accessed 12/09/2015.

[7] Ali, M. & Elish, M. O. (2013). A Comparative Literature Survey of
Design Patterns Impact on Software Quality, p.1-7.

[8] Jeff Friesen . (2012). Design patterns, the big picture, Part 1: Design
pattern history and classification. Available:
http://www.javaworld.com/article/2078665/core-java/design-patterns--
the-big-picture--part-1--design-pattern-history-and-classification.html.
Last accessed 09/01/2015.

[9] Gamma, E., Helms, R., Johnson R. & Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Reading,
MA: Addison-Wesley.

[10] Nat Hillary. (2005). Measuring Performance for Real-Time
Systems.Freescale Semiconductor, 14 (2), 3-5.

[11] stanford.edu. (2015). Computer Simulations in Science. Available:
http://plato.stanford.edu/entries/simulations-science/#WhaComSim. Last
accessed 10/02/2015. Last accessed 10/02/2015.

[12] simul8. (2015). What is Simulation?. Available:
http://www.simul8.com/products/what_is_simulation.htm. Last accessed
03/10/2015.

