
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Systems Software for Fast Inter-Machine Page Faults

Joel Nider
IBM Research, Haifa

joeln@il.ibm.com

Mike Rapoport
IBM Research, Haifa
rapoport@il.ibm.com

Yiftach Binjamini
IBM Systems, Haifa
yiftachb@il.ibm.com

Abstract—Cloud computing abstracts the underlying hard-
ware details from the user. As long as the customer Service Level
Agreements (SLA) are satisfied, cloud providers and operators
are free to make infrastructural decisions to optimize business
objectives, such as operational efficiency of cloud data centers.
By adopting a holistic view of the data center and treating it as a
single system, a cloud provider can migrate application compo-
nents and virtual machines within the system according to policies
such as load balancing and power consumption. We contribute
to this vision by removing architectural barriers for workload
migration and reducing the downtime of migrating processes.
We combine the post-copy approach to workload migration with
a novel specialized low latency interconnect for handling resulting
remote page faults. In this work, we introduce a cross-architecture
workload migration system, specify the requirements towards the
specialized interconnect, discuss design trade-offs and issues, and
present our proposed SW-HW co-design.

Keywords—cloud; post-copy; migration; page fault; low latency;
interconnect

I. INTRODUCTION

We discuss the required characteristics of host software
to support low-latency page faults for use during post-copy
migration in a cloud data center. We enumerate the ideal
attributes of a specialized interconnect for transferring memory
pages between machines. Finally, we describe a prototype
interconnect currently under design, why the prototype differs
from the ideal, and the initial changes required in a specific
operating system (Linux) to support the new interconnect.
Since the solution relies on the virtual memory subsystem of
the operating system, it can be applied to several different
technologies that use the post-copy technique including virtual
machines, containers, and processes. As such, we refer to all
such technologies as execution contexts or contexts for short.

a) Context Migration: In the world of PaaS (Platform-
as-a-Service) and SaaS (Software-as-a-Service) clouds, con-
tainer migration can be used in the same ways that virtual
machine migration is used in IaaS (Infrastructure-as-a-Service)
clouds, and how process migration was used in past systems
such as MOSIX [1]. These uses include load balancing,
evacuation, optimization of system performance due to co-
location of workloads, optimizing for power consumption [2]
or migrating code to be closer to a data source to reduce
network traffic. Container migration has additional use cases
such as taking advantage of machines with particular hardware
configurations for short phases of execution [3].

b) Downtime: Execution contexts are migrated by using
a checkpoint-restore mechanism, which freezes the running
context, dumps all state to a set of files which are copied to
another machine for restoring [4]. The context is unresponsive

Fig. 1. Qualitative breakdown of time during checkpoint and restore of a
single-threaded process.

from the time it is frozen until the time it is restored on
the target machine [5], which is known as the downtime of
the context. As shown in Fig. 1, the downtime is largely
due to the dump and restore of the memory, and increases
linearly with the size of the memory image [5], [6]. Minimizing
the downtime of an execution context is often critical to the
performance and responsiveness of a cloud application.

c) Pre-copy: Downtime can be reduced by other meth-
ods such as pre-copy migration, as has been shown in virtual
machine migration [7]. However, this technique has several
drawbacks. First, the memory of a running application is
constantly changing, and that implies that at least some
memory pages will have to be copied multiple times (the
page must be recopied every time it changes) which can
increase the network traffic substantially. In order to know
which pages have changed, the migration manager must track
memory usage to identify which pages have changed since
they were last copied. VMs may rely on a hypervisor for
tracking memory changes since it has complete knowledge
of guest memory accesses. However, for memory intensive
applications such as databases, the set of changing pages may
never converge, causing endless rounds of copying without
ever completing the migration.

d) Post-copy: Post-copy migration drastically reduces
downtime by postponing copying the memory until the target
machine tries to access it [4]. This is more efficient than
restoring the entire memory image up front for two reasons.
Firstly, only pages that are actually required are copied, which
can be considerably less than the total [6]. Secondly, the
execution context can do an increasing amount of useful work
between page faults, amortizing the time required to serve the
faults over a longer period, effectively hiding the cost of the
migration. There as some drawbacks as well. Even though
only pages that are actually required are copied, each access
requires a round-trip over the network to retrieve the page

715 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

during which time the context must wait. Also, if the source
machine or network go down during migration the context may
be lost completely as some essential memory may become
unavailable.

e) Containers: Containers have been around for years
in various forms (WPAR [8], pods [4], jails [9], etc.) but have
recently become popularized through tools such as Docker [10]
and LXC [11]. In their basic form, containers are simply a set
of one or more processes that have been isolated from the
rest of the operating system through some software mecha-
nisms (generally in the kernel). Due to this logical grouping,
containers are a convenient method of packaging software
components, and can be used for scaling cloud applications by
instantiating multiple instances of components (also known as
microservices). Pre-copy causes serious problems for container
migration that weren’t evident with VMs. For containers,
tracking memory involves quite a few interactions between the
kernel and migration manager since there is no hypervisor to
depend on [12]. Absolute migration time is also an issue [13]
(measured from the time the migration command is issued, not
just the downtime). In the case where program execution phase
is the purpose of the migration, it is important to migrate as
early as possible so as to maximize the benefit of the detected
phase.

f) Page Fault Latency: The largest cost of post-copy
migration is copying memory from the remote machine. A
common method to copy memory during post-copy migra-
tion is by on-demand paging, which is latency sensitive.
Commodity networking technology is not equipped to deal
with this kind of scenario, as networks are optimized for
high throughput bulk transfers over long links. In commonly
deployed networks, latency considerations are secondary to
guaranteed delivery and flexible routing options. More spe-
cialized solutions such as RDMA are known to be an order
of magnitude faster than the ubiquitous TCP/IP over Ethernet
[14], [15], but still 23x slower than local memory accesses[14].
The common handling of a page fault means loading content
from an I/O device into memory, which is what the operating
system is designed for. The slowest component on the datapath
is the I/O device, with reads from spinning disks in the 5-10ms
range, and flash-based devices being a order of magnitude
faster. Reading memory remotely over a commodity network is
considerably faster (30-100µs). Systems that use remote mem-
ory access over a network such as RamCloud [16] estimate that
latency may reach 5-10µs (3 orders of magnitude faster than a
spinning disk). However with new interconnect hardware that
is becoming available on the market, access latency is likely
to be less than 1µs [17], at which point software overhead
imposed by the operating system becomes a serious issue.

g) Required Modifications: We are targeting a system
composed of a rack of independent machines, all running the
same operating system. The operating system is not modified
to be single system image (like Popcorn Linux [18]), nor
does it have any direct communication between kernels (like
Barrelfish [19]). The only changes required in the operating
system are in the way that it handles page faults, and a small
driver for the new interconnect. That means minimal changes
to commodity off-the-shelf operating systems, and existing
data center installations. The changes to the operating system
are centered around taking advantage of new hardware to

supplement the existing page fault handling mechanism.

II. CONCEPT

a) Hardware/Software Co-Design: We realize the im-
portance of employing hardware/software co-design to ensure
maximum cooperation between the components. The most
effective way to ensure the lowest possible latency is to ensure
all the components of the system are working together in
harmony. Therefore we enumerate the requirements of the
host CPU and operating system to influence the design of the
interface exposed by the interconnect hardware. At the same
time, we must also take into consideration how to efficiently
handle the responses and error conditions in software that are
generated by the interconnect.

A. Interconnect Characteristics

To understand the implications on systems software, we
must first describe the required characteristics of the intercon-
nect. The purpose of the interconnect is to transfer one page
of memory from a remote machine to the local machine as
quickly as possible, in response to a page fault. Note that
during the time the system is resolving the page fault, the
process is not doing any work, which causes lags in processing
or external user requests to the application. The goal is to
resolve the page fault as quickly as possible so as to minimize
any impact it may have on application performance. In order
to do so, our proposed interconnect would ideally connect to
the platform’s system bus directly, very much the same as
the Remote Memory Controller described in soNUMA [20].
We expect that if this concept is proven useful, the controller
would be integrated directly into the chip in the same way
DDR or PCIe controllers are integrated today, precluding the
need for an external NIC.

a) Rack Scale: We expect the majority of container
migrations to take place at the rack-scale. Racks in a data
center are often viewed as a logical unit, share a top-of-rack
switch for network communication, and it has been shown that
most traffic inside a cloud data center is local to the rack [21].
That means we must have an interconnect that can operate
well with a node count of between 10 to 40. There are at least
two viable options as shown in the SCI (Scalable Coherent
Interface) spec [22], and any option that provides low latency
connectivity may be used.

b) Communication between nodes: When the host
copies a page of memory, we want to be sure that it arrives
intact. Therefore, we must assume that the communication pro-
tocol employs error detection (such as CRC) and guaranteed
delivery in the link layer. Since the communication is local, the
protocol should optimize for the best case (assumes delivery)
and any recovery (i.e. retransmits) can take a slower path.

c) Packet Format: Since there is no routing involved,
the packet format can be very simple, saving the overhead
of encoding and decoding many fields. For each process, We
are establishing a globally distributed virtual address space,
which means the page contents may exist on any machine in
the cluster, and the virtual address of the page can be used to
locate the data through a broadcast mechanism.

716 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

d) Virtual Addressing: Before each access by the inter-
face card to memory, the virtual address is translated by an
embedded MMU that enables the card to use an address space
of a particular process. Thus, the card effectively works in
the address space of the target application, and benefits from
the existing page tables that are maintained by the operating
system. This ‘built-in MMU’ makes setting up a shared region
trivial, as the entire virtual address space of the application is
automatically shared, once a process registers for migration.
Since the ASID (address space identifier) is added to each
request, the card can service page requests from multiple
address spaces simultaneously.

Using virtual addresses also allows us to relax the require-
ment for pinning memory before DMA accesses. Since each
virtual address is translated before access, it is possible that a
mapping does not exist (page not present) meaning the virtual
memory has been swapped out to disk, or (more likely) not
yet been mapped to a physical page by the operating system.
However, this relaxation requires hardware support on the card
to be able to notify the OS of the problem, and wait for
resolution. When a translation fails, the kernel is notified by
the card for resolution by way of an interrupt. The local host
(to which the card is attached) is responsible for handling this
fault by having the operating system map a page in exactly the
same manner as if the fault were caused by the CPU itself.
Only one additional step is required, which is to have the
kernel notify the card that the page fault has been resolved, and
should retry the memory access. In our implementation, the
local interface card will access the target address on purpose
before the operating system completes the mapping. This will
preload the mappings in the on-card cache, and put the card
into a wait state for the kernel to complete the mapping. As
soon as the mapping is complete, the kernel signals the card
by writing a register, and the memory page is copied.

B. Host Characteristics

a) Page Ownership: If the CPU were to only access
memory from a remote machine rather than transfer the page
to the local machine (as is done in disaggregated memory
architectures), the operating system would not need to be
involved in the access, so a page fault would not need to be
generated. However, all accesses would incur the penalty of
the interconnect’s latency, greatly increasing the overhead of
memory accesses, slowing application execution[23]. Trans-
ferring ownership of the page to the local machine avoids
communication overhead at the cost of a one-time page fault.
Since the operating system is responsible for maintaining the
list of free physical memory pages as well as virtual to physical
page mappings for each address space, it must be involved in
any changes requiring allocation or mapping of memory. That
means for each page that we wish to transfer, the operating
system must be responsible for the page fault resolution,
because a new physical page must be allocated to hold the
incoming data, and mapped to the correct virtual address.
Handling the fault causes the processor to change modes,
which can cost hundreds of cycles but that is an unavoidable
cost that is necessary to pay in order to involve the operating
system. We can reduce the cost by allocating pages to a page
pool before a page fault occurs. Then at the time of the page
fault, the kernel can take a page from the pool and map it to
the faulting virtual address.

System requirements for process migration are simpler than
general-purpose DSM (distributed shared memory) because
write transactions do not need to be supported [24]. Supporting
write transactions requires a much more complex protocol to
ensure coherency across all participating nodes in the cluster,
since multiple processors on multiple machines may write to
the same memory page at the same time. With migration,
a process can only be in a running state on one physical
machine at a time, and we do not support the execution
of different threads of the same process distributed across
multiple machines. The goal is to migrate the necessary data to
be close to the processors executing the process. We can then
optimize for read transactions which the FaRM system showed
to be 2x faster than writes[14]. That means all subsequent
accesses to that page (even from multiple threads) are to local
memory, at the full speed of the local memory bus.

b) Low latency: Hardware for DSM addresses latency
by employing special-purpose I/O hardware (such as Dolphin
PXH830) to give direct access to various sized memory win-
dows of other physical machines. We believe future hardware
will reduce this latency by at least one order of magnitude by
using special purpose hardware designed for memory accesses
rather than I/O. To take advantage of the low latency, we
must modify the operating system to also support low latency
operations. Page fault resolution in existing operating systems
can take thousands of machine cycles to complete, depending
on TLB misses, cache misses, etc. For a machine running at
4 GHz, 4000 cycles is approximately 1µs, which is longer
than the time expected for the interconnect to retrieve the
remote page [17]. Therefore it is imperative to minimize the
operations performed by the operating system during remote
page resolution, and to hide the latency by performing actions
in parallel as much as possible.

c) Implicit communication: One of the drawbacks of
existing memory sharing models is that they are aimed at
solving the problem of distributed shared memory at the
application level, which requires the explicit involvement of
the application. For process migration, this is problematic for
three reasons: first we must write the application with explicit
knowledge of the communication; second, the further involve-
ment of software (calling a I/O function) hurts the latency as
compared to intrinsic memory load/store operations; and third,
lack of system support means each application must be set up
separately to use this mechanism. What we want is to have
all support for moving memory in the infrastructure, so any
application can be supported transparently without modifying
the application, or burdening the application programmer.

d) Cache Coherency: Cache coherency in a cc-NUMA
system ensures that all processors have a consistent view
of shared memory. In the case of process migration, cache
coherency can be used if a process is to be migrated back to its
original machine. It is an optimization that can further reduce
latency by invalidating pages on the source machine that
have been written on the target machine. After the migration
back, the pages that were transferred and modified must be
transferred again. Other pages that were unused or only read,
remain valid. Since physical pages are already mapped to these
virtual addresses, we note that the operating system no longer
needs to be involved in the transfer, which can be automatic.

717 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Fig. 2. Architecture diagram showing the cache coherent bus between CPU
cores and FPGA, and the prototype scalable interconnect between FPGAs.

III. DESIGN

The interconnect is designed to be an extension of the
system bus, for exclusive use by the operating system for the
purposes of container migration. Since the interconnect must
be involved during the handling of page faults by the operating
system, all code to manage the interconnect resides in the
kernel (at least, with a monolithic kernel design such as Linux).
We first describe a prototype interconnect that is currently
being designed to prove the concept and further develop the
page fault mechanism. Finally, we describe the details required
for setting up a process for migration, followed by the steps
taken when resolving a page fault.

A. Interconnect Prototype

A prototype of the NIC [25] is being built for evaluation
as part of the OPERA EU project. For simplicity, the initial
prototype involves only two machines connected with FPGA
equipped CAPI expansion cards (Nallatech 385A-SoC [26]).
The FPGA is used to implement the high-speed interconnect
logic. The local interface card is connected to the remote
interface card over a point-to-point 10Gb/s link using the
SerialLite protocol over fiber optics. The card is equipped
with two such ports, which allows for expansion into a ring
topology in the future (as shown in figure 2). All higher
level communication (network layer) is through a proprietary
protocol consisting of asynchronous requests and responses.
Memory read requests are initiated by the local interface card
(target) by sending a memory read message to the remote host.

a) Addressing: To handle a remote page fault, there
must be a common addressing scheme in place to be able to
identify the correct memory page that should be copied. The
two key pieces of information are the memory address and
the address space. The memory address is simply the virtual
address that caused the page fault. Since we are essentially
dealing with a single process that is distributed among multiple
servers for a short time, the virtual address can remain constant
across all servers. For a concrete example, if we know that a
migrated process on the target server generates a page fault
at address 0x10001000, then we must request this exact same
address on the source server. This realization is the key to being
able to offload nearly all support into hardware, and make the
system fast. So once the interface cards use virtual addresses,

it is a relatively simple matter for us to be able to transfer a
particular virtual address, without modification, from the target
server to the source server to transfer the memory. The second
piece of information is a bit more challenging. The address
space refers to the virtual memory subsystem in which each
process has its own continuous range of memory addresses,
but is sparsely populated (i.e. not every address is mapped to
a physical memory location). In the operating system, each
address space is associated with a particular process and is
referenced by an address space identifier (ASID). The ASID is
primarily used by the processor for setting up and maintaining
page tables and caches. The assignment of the ASID to a
process is under the control of the operating system. In fact,
two local processes may share the same ASID (in which case
they share the same virtual memory) and are better known
as threads. The assignments are unique to a particular server,
and no server should know or should need to know how
ASIDs relate to processes on any other server. Even if we
were to decide that this knowledge could improve container
migration, it is not practical for each server to know about
all of the ASIDs of all of the other servers. The number of
ASIDs would grow exponentially with the number of servers,
and just the communication to manage them all would be
overwhelming even for a small number of servers. Luckily,
we can reduce the problem to include only ASIDs related to
processes that are currently migrating (i.e. all of the processes
of a particular container), and the number of servers that need
to know these ASIDs to only the set of servers involved in
the migration (which may be more than two as we will see
shortly). This leaves us with a relatively short list that needs to
be updated only when a migration begins or ends. This list can
be offloaded to the interface card as well, further simplifying
the software, and minimizing the latency of a given page fault.

b) Interface Card: Unfortunately, externally accessible
hardware that is directly attached to the system bus does
not exist in commodity servers. In order to build a working
prototype for testing with real hardware available today, we are
looking at the best option available, which is the CAPI protocol
as implemented in the IBM POWER8 R© and OpenPOWER
systems. CAPI is intended for providing a cache-coherent view
of system memory with attached accelerators over PCIe (I/O
bus). That means we can get the required functionality of
accessing memory through virtual addresses, but the physical
layer is less than ideal in terms of latency since it relies on
PCIe rather than being directly attached to the system bus. The
design of the FPGA on the expansion card (accelerator) can be
described as a combination of several hardware blocks in two
parts - The POWER Service Layer (PSL) and the Accelerator
Function Unit (AFU). The AFU is used to implement specific
functionality behind the PSL. The PSL, among other things,
provides memory address translation services to allow each
AFU direct access to user space memory.

B. Page Fault Mechanism

a) Setup: Before a process can be migrated, it must be
registered so that the interconnect is notified of the address
space used by the process. We will call this the local address
space identifer (local ASID). The local ASID is unique to that
particular host and is used by the local interface card when
accessing memory on the host by virtual address. When the
process is registered, the local interface card must translate

718 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

this local ASID to a globally unique ASID, and hold it in a
lookup table on the card. Any communication by the interface
cards over the interconnect must use the global ASID. Before
an interface card can initiate communication with a local host,
it must first look up the local ASID to know how to find the
correct page table for virtual-to-physical address translation.

b) Remote Page Fault Resolution: At a high level, the
page fault resolution is composed of two main actions: retrieval
of the remote page, and mapping the contents into the address
space of the faulting process. The mapping may take some
time, in fact it is likely to be longer than the round trip on the
interconnect to copy the missing page. To help hide the latency,
the two actions should be performed concurrently. Fig. 3 shows
the sequence of steps taken to copy a remote memory page.
(1) When a migrated process attempts to access a memory
location that has not yet been copied (but is otherwise valid),
the access generates a page fault. (2) The fault causes the
processor to switch to a privileged mode of execution which
gives the operating system an opportunity to handle the fault.
(5) For remote page faults, the kernel must first mark the
thread as blocked (pending page fault resolution), allocate a
new physical memory page (or draw from the page pool)
and map it to the virtual address that caused the fault. The
physical page must be mapped before the local interface card
can copy remote data into the host’s memory. (3) After the
local interface card receives notification of the missing page,
it sends a memory read request to the remote interface card,
specifying the virtual address, global ASID, and number of
pages to read. (4) The remote interface card looks up the
corresponding local ASID, and performs a DMA read on the
requested virtual address from the host’s memory. (6) When
the DMA read completes, the remote interface card fulfills the
request by returning the data with a sequence number to the
local interface card. (8) The local interface card performs a
DMA write to put the data in the memory of the local host,
and then notifies the local kernel of completion. (7) By this
time, the kernel should have finished mapping the physical
page into the destination address space. If the DMA write is
attempted before the kernel completes the mapping, the MMU
of the local interface card will not be able to translate the
virtual address for the DMA request, and instead will notify
the kernel and stall. The kernel can notify the local interface
card upon completion of the mapping, and the DMA transfer
will be retried. (9) When the local kernel receives notification
that the DMA write is complete, it can complete the page fault
resolution by setting the blocked thread as ready-to-run.

IV. RELATED WORK

a) Hardware Developments: Recently, the GenZ[27]
specification has been drafted, which is intended to be a
architecture-agnostic, high-speed, low-latency interconnect for
attaching memory-mapped devices to the system bus. Such a
bus would make an excellent candidate for building a con-
troller for handling remote page faults between machines. The
GenZ consortium is composed of leading industrial companies,
which is a sign that there is a need for such an interconnect
in commercial systems. Similarly, specs for CCIX[28] and
OpenCAPI [29] have been drafted and announced. These both
specify ISA-agnostic cache coherency protocols for accel-
erators. We can envision building an interconnect interface
card that connects to the host using GenZ, and keeps cache

Fig. 3. Sequence diagram showing the high level steps when handling a page
fault.

coherency between its own host and other hosts through CCIX
or OpenCAPI to implement remote page reads. This may take
the form of a remote memory controller (RMC) as described
in soNUMA [20].

b) Distributed Memory: All DSM systems to date aim
to solve the problem of remotely accessing memory for the
purpose of multi-processing – that is, having multiple dis-
tributed threads share an address space across physical ma-
chines communicating over some interconnect. Disaggregated
memory [23] places RAM in a remote machine, which also
requires read and write accesses. While our goals are different,
the hardware developments may be mutually beneficial.

c) Migration: We have a lot in common with published
work on process migration in the past 30 years [6], [30], [5].
We keep 3 out of 4 requirements specified by Zap [4], only
breaking the 3rd which specifies the source machine should
not continue to serve the target machine. This is an artifact of
post-copy migration, which can have a bounded time (i.e. we
can force movement of all memory pages if needed).

V. CONCLUSION

Post-copy context migration is a powerful tool that data
center operators can use to balance server load at run-time. The
main issue with post-copy migration is the latency incurred
when serving remote page faults. Architectural developments
may soon allow us direct access to the system bus, allowing
communication between machines at speeds approaching that
of the memory bus. The ability of the operating system to be
able to handle page faults with very low latency is becoming
important in order to take full advantage of new interconnects
so that we can build scalable, composable systems.

ACKNOWLEDGEMENTS

This project received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 688386.

719 | P a g e



Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

REFERENCES

[1] A. Barak, A. Shiloh, and L. Amar, “An organizational grid
of federated mosix clusters,” in Proceedings of the Fifth IEEE
International Symposium on Cluster Computing and the Grid -
Volume 01, ser. CCGRID ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 350–357. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1169222.1169488

[2] C. Isci, J. Liu, B. Abali, J. O. Kephart, and J. Kouloheris, “Improving
server utilization using fast virtual machine migration,” IBM J. Res.
Dev., vol. 55, no. 6, pp. 365–376, Nov. 2011. [Online]. Available:
http://dx.doi.org/10.1147/JRD.2011.2167775

[3] A. Venkat and D. M. Tullsen, “Harnessing isa diversity: Design of
a heterogeneous-isa chip multiprocessor,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ser. ISCA
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 121–132. [Online].
Available: http://dl.acm.org/citation.cfm?id=2665671.2665692

[4] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design
and implementation of zap: A system for migrating computing
environments,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 361–376,
Dec. 2002. [Online]. Available: http://doi.acm.org/10.1145/844128.
844162

[5] A. Reber, “Process migration in a parallel environment,” Ph.D.
dissertation, 2016. [Online]. Available: http://dx.doi.org/10.18419/
opus-8791

[6] E. Zayas, “Attacking the process migration bottleneck,” SIGOPS Oper.
Syst. Rev., vol. 21, no. 5, pp. 13–24, Nov. 1987. [Online]. Available:
http://doi.acm.org/10.1145/37499.37503

[7] “Vmware vsphere vmotion architecture, performance and best
practices in vmware vsphere,” 2011. [Online]. Available:
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/
techpaper/vmware-vsphere51-vmotion-performance-white-paper.pdf

[8] Workload Partitioning (WPAR) in AIX 6.1, 2008. [Online]. Available:
https://www.ibm.com/developerworks/aix/library/au-wpar61aix/

[9] P. H. Kamp and R. N. M. Watson, “Jails: Confining the omnipotent
root,” in In Proceedings of the 2nd International SANE Conference,
2000. [Online]. Available: http://phk.freebsd.dk/pubs/sane2000-jail.pdf

[10] Docker - Build, Ship, Run. [Online]. Available: https://www.docker.com/
[11] LinuxContainers.org Infrastructure for container projects. [Online].

Available: https://linuxcontainers.org/
[12] P. Emelyanov, “Live migrating a container: Pros, cons and

gotchas,” 2015. [Online]. Available: https://www.slideshare.net/Docker/
live-migrating-a-container-pros-cons-and-gotchas

[13] “Combining pre-copy and post-copy migration,” 2016. [Online].
Available: https://lisas.de/∼adrian/?p=1253

[14] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “Farm:
Fast remote memory,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA:
USENIX Association, 2014, pp. 401–414. [Online]. Available: https:
//www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{\’c}

[15] C. Mitchell, Y. Geng, and J. Li, “Using one-sided rdma reads to build
a fast, cpu-efficient key-value store,” in Presented as part of the 2013
USENIX Annual Technical Conference (USENIX ATC 13). San Jose,
CA: USENIX, 2013, pp. 103–114. [Online]. Available: https://www.
usenix.org/conference/atc13/technical-sessions/presentation/mitchell

[16] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for
ramclouds: Scalable high-performance storage entirely in dram,”
SIGOPS Oper. Syst. Rev., vol. 43, no. 4, pp. 92–105, Jan. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1713254.1713276

[17] Dolphin PXH830 Host Adapter, 2015. [Online]. Available: http:
//www.dolphinics.com/products/PXH830.html

[18] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran,
C. Kendir, A. Murray, and B. Ravindran, “Popcorn: Bridging the
programmability gap in heterogeneous-isa platforms,” in Proceedings
of the Tenth European Conference on Computer Systems, ser. EuroSys
’15. New York, NY, USA: ACM, 2015, pp. 29:1–29:16. [Online].
Available: http://doi.acm.org/10.1145/2741948.2741962

[19] A. Baumann, S. Peter, A. Schüpbach, A. Singhania, T. Roscoe,
P. Barham, and R. Isaacs, “Your computer is already a distributed
system. why isn’t your os?” in Proceedings of the 12th Conference
on Hot Topics in Operating Systems, ser. HotOS’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 12–12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855568.1855580

[20] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-out
numa,” SIGARCH Comput. Archit. News, vol. 42, no. 1, pp. 3–18, Feb.
2014. [Online]. Available: http://doi.acm.org/10.1145/2654822.2541965

[21] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’10. New
York, NY, USA: ACM, 2010, pp. 267–280. [Online]. Available:
http://doi.acm.org/10.1145/1879141.1879175

[22] 1596-1992 - IEEE Standard for Scalable Coherent Interface (SCI).
IEEE, 1992. [Online]. Available: http://ieeexplore.ieee.org/document/
347683/references

[23] B. Abali, R. J. Eickemeyer, H. Franke, C. Li, and M. Taubenblatt,
“Disaggregated and optically interconnected memory: when will it be
cost effective?” CoRR, vol. abs/1503.01416, 2015. [Online]. Available:
http://arxiv.org/abs/1503.01416

[24] R. F. Lyerly, “Popcorn linux: A compiler and runtime for
state transformation between heterogeneous-ISA architectures,” Ph.D.
dissertation, 2016. [Online]. Available: http://www.ssrg.ece.vt.edu/
theses/PhdProposal Lyerly.pdf

[25] J. Nider, Y. Binyamini, and M. Rapoport, “Remote page faults
with a capi based fpga,” in Proceedings of the 10th ACM
International Systems and Storage Conference, ser. SYSTOR ’17.
New York, NY, USA: ACM, 2017, pp. 20:1–20:1. [Online]. Available:
http://doi.acm.org/10.1145/3078468.3078489

[26] Nallatech 385A-SoC System on Chip FPGA Accelerator Card. [Online].
Available: http://www.nallatech.com/store/fpga-accelerated-computing/
pcie-accelerator-cards/nallatech-385a-soc/

[27] “The GenZ consortium,” 2016. [Online]. Available: http:
//genzconsortium.org/about/

[28] “Cache coherent interconnect for accelerators (ccix),” 2016. [Online].
Available: http://www.ccixconsortium.com/

[29] “Opencapi consortium,” 2016. [Online]. Available: http://opencapi.org/
[30] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and

B. B. Welch, “The sprite network operating system,” Computer,
vol. 21, no. 2, pp. 23–36, Feb. 1988. [Online]. Available:
http://dx.doi.org/10.1109/2.16

720 | P a g e


