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Abstract—The concept of microgrid has become more 
relevant due to the increase in the use of distributed energy 
resources. However, the important factors which are to be 
considered are their ability to control the power flow and 
stability of the system. Droop control strategy requires no 
communication system and realizes the “plug and play” function 
between source and load. Virtual impedance type droop control 
method is preferred to improve the transient response and power 
decoupling of conventional droop method.  In this paper a state 
space model of such a system is developed based on small signal 
disturbances. Eigenvalue analysis of the system is also done and 
the parameters which determine the stability of the system are 
identified. The optimum values of these parameters are found out 
by increasing the stability of the system using particle swarm 
optimization (PSO) technique. The simulation is done by 
MATLAB coding and the results show that the values of the 
optimized parameters will improve the stability of the system by 
shifting the eigenvalues away from the imaginary axis as far as 
possible on the left half of s plane. 

Keywords—Droop controller; microgrid; eigenvalue analysis; 
particle swarm optimization 

I. INTRODUCTION 

The concept of distribution generation is highly promoted 
and become more relevant due to environmental 
considerations and as an alternative to fossil fuels [1], [2]. The 
generation which are not centrally dispatched and controlled 
can be considered as distribution generation which is usually 
connected to the distribution part of the power system. The 
development of distributed generation leads to the concept of 
microgrid [3]. The multiple distributed resources in a 
microgrid operates in parallel and power converters associated 
will have different control objectives as in [4]-[6]. 

Different control strategies like multi agent control, master 
slave control and droop control are proposed in the literature 
[7], [8]. Among these, the droop control method has been 
identified as the popular method for controlling the operation 
of different DG units within the microgrid. The droop control 
method mimics the operation of conventional droop 
characteristics of alternator in which real and reactive power 
sharing is done by varying the magnitude of operating voltage 
and frequency. The significance to know the response of the 
system to various disturbances leads to the widespread use of 
small signal model [9], [10]. 

The inductance to resistance ratio of DG systems is usually 
low and because of that, there exist a coupling between active 
and reactive power when droop based control is used. Another 
problem with droop control method is its poor transient 
response. In order to compensate these limitations, virtual 
impedance is introduced in the control system of each DG 
unit. In this paper, a detailed model of inverter based 
microgrid is presented. Each DG inverter will have an outer 
power control loop based on droop control and inner voltage 
and current control loop. A small-signal state-space model is 
constructed on a synchronous reference frame whose rotation 
frequency is set by the power controller of individual inverter 
as in [11]. 

The analysis of eigenvalues can be done after obtaining the 
state space model of the microgrid from which the stability 
and dynamic performance is analyzed. The variation of 
eigenvalues with respect to the variation of different 
parameters in the control loops is also analyzed. After 
identifying the main parameters which will affect the stability 
and performance, these parameters are optimized. In [12] 
parameters are optimized based on the genetic algorithm by 
minimizing the difference between measured and reference 
values of active and reactive power in which adequacy is the 
main control objective. The stability analysis of the system by 
varying the position of eigenvalue is not done in this method. 
The feasible range and optimum value of virtual impedance is 
found out in [13]. But the analysis of the effect of the 
optimum impedance value on stability is not done. In this 
paper, the optimization is done by PSO taking the objective 
function as the minimization of the extreme right eigenvalue 
and thus stability of the system is improved. 

II. MICROGRID SYSTEM 

Fig. 1 shows the single-line diagram of the study system. It 
contains two DGs which are connected to its local loads 
through inverter, LC filter and coupling inductor. A common 
load is also connected through a line. When microgrid is 
operated in the autonomous mode, apart from meeting the load 
requirement, it has to maintain the voltage and frequency 
within the allowable limits. 
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Fig. 1. Microgrid study system. 

III. MICROGRID SMALL SIGNAL MODEL 

The model presented in this paper consists of three 
submodules which are inverter model, line model and load 
model. Each inverter is modeled in its individual reference 
frame and then transferred into a common reference frame. 

A. Inverter Model 

The droop controller of a Voltage source inverter consists 
of power sharing controller, voltage controller and current 
controller as in Fig. 2. 

 
Fig. 2. Inverter model. 

The reference values of voltage and frequency are set by 
the power sharing controller given in Fig. 3 according to the 
desired values of real and reactive power. 

 
Fig. 3. Power sharing controller. 

The corresponding equations are: 

𝑃 ൌ
௦

௦ାఠ೎
( 𝑣௢ௗ𝑖௢ௗ ൅ 𝑣௢௤𝑖௢௤     )                            (1) 

𝑄 ൌ
௦

௦ାఠ೎
ሺ𝑣௢ௗ𝑖௢௤ െ 𝑣௢௤𝑖௢ௗሻ                  (2) 

𝜔 ൌ 𝜔௡ െ 𝑘௣𝑃,        Ɵሶ =ω                                   (3) 

𝐸௢ௗ
∗ ൌ 𝑣௡ െ 𝑘௤𝑄,        𝐸௢௤

∗ ൌ 0                       (4) 

Ɵ ൌ 𝜔௡𝑡 ൅ δ                                                    (5) 

where, 

𝑃 : Fundamental component of real power, 

𝑄 : Fundamental component of reactive power, 

𝑣௢ :LC filter output voltage, 

𝑖௢ :LC filter output current, 

𝐸଴
∗ :Reference output voltage  of power controller 

𝜔௖ :Cut off frequency of Low pass filter, 

δ  :Angle of inverter reference frame with respect to the 
common reference frame 

The Reference input voltage of voltage controller is 
obtained by considering the virtual impedance as 

𝑉଴
∗ ൌ 𝐸଴

∗ െ 𝐼௢𝑍௢ ൌ 𝐸଴
∗ െ 𝐼௢ሺ𝑅௢ ൅ 𝑗𝑋௢ሻ     (6) 

where, 

𝑍௢ :Virtual impedance, 

𝑅௢ :Virtual resistance, 

𝑋௢ :Virtual inductance 

From equations(3) and (5), 

 𝛿ሶ     ൌ െ𝑘௣𝑃                    (7) 

Linearizing the above equations for small perturbation and 
rearranging, small signal model of power sharing controller is 
obtained as 

቎
𝛥𝛿ሶ
𝛥𝑃ሶ
𝛥𝑄ሶ

቏ = 𝐴ଵ ൥
𝛥𝛿
𝛥𝑃
𝛥𝑄

൩+𝐴ଶ ൥
∆𝑖௟
∆𝑣௢
∆𝑖௢

൩                 (8) 

൤
∆𝜔

∆𝑣଴
∗൨ = ൤

𝐵ଵ
𝐵ଶ

൨ ൥
𝛥𝛿
𝛥𝑃
𝛥𝑄

൩+𝐵ଷ ൥
∆𝑖௟
∆𝑣௢
∆𝑖௢

൩                     (9) 

where, 

∆𝑉଴
∗= ൤

∆𝑉௢ௗ
∗

∆𝑉௢௤
∗ ൨, ∆𝑉଴= ൤

∆𝑉௢ௗ
∆𝑉௢௤

൨,∆𝐼௟= ൤
∆𝐼௟ௗ
∆𝐼௟௤

൨, ∆𝐼଴= ൤
∆𝐼௢ௗ
∆𝐼௢௤

൨ 

In output voltage control loop, the output voltage is 
compared with the reference given by the power sharing 
controller and a feed forward gain is obtained to compensate 
for output current disturbances and generate the reference 
current vector as shown in Fig. 4. 

Let time derivative of ϕ be defined as 

ௗథ೏

ௗ௧
ൌ 𝑣௢ௗ

∗ -𝑣௢ௗ                                                             (10) 
ௗథ೜

ௗ௧
ൌ 𝑣௢௤

∗ -𝑣௢௤                                                   (11) 
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Fig. 4. Voltage controller. 

Corresponding state equations are 

 𝑖௟ௗ
∗ ൌ 𝐹𝑖௢ௗ െ 𝜔௡𝐶௙𝑣௢௤ ൅ 𝐾௣௩ሺ𝑣௢ௗ

∗ -𝑣௢ௗሻ ൅ 𝐾௜௩𝜙ௗ     (12) 

𝑖௟௤
∗ ൌ 𝐹𝑖௢௤ ൅ 𝜔௡𝐶௙𝑣௢ௗ ൅ 𝐾௣௩ሺ𝑣௢௤

∗ -𝑣௢௤ሻ ൅ 𝐾௜௩𝜙௤     (13) 

where, 

𝐶௙ : filter capacitance 

𝐾௣௩ : proportional constant of PI controller 

𝐾௜௩ : integral constant of PI controller 

Linearizing the above equations, we get 

    ∆𝜙ሶ ൌ ሾ0ሿሾ∆𝜙ሿ ൅ 𝐶ଵሾ∆𝑉଴
∗ሿ+𝐶ଶ ൥

∆𝑖௟
∆𝑣௢
∆𝑖௢

൩        (14) 

ሾ∆𝑖௟
∗ሿ ൌ 𝐶ሾ∆𝜙ሿ+𝐶ଷሾ∆𝑉଴

∗ሿ+𝐶ସ ൥
∆𝑖௟
∆𝑣௢
∆𝑖௢

൩         (15) 

where ∆𝜙 ൌ ൤
∆𝜙ௗ
∆𝜙௤

൨ 

Similar to voltage controller, current control loop uses a PI 
controller to compare the output filter current and reference 
value given by the voltage controller as shown in Fig. 5 and 
generate reference voltage for the pulse generator. 

 
Fig. 5. Current controller. 

Let time derivative of 𝛾 be defined as 

  
ௗఊ೏

ௗ௧
=𝑖௟ௗ

∗ -𝑖௟ௗ           (16) 

   
ௗఊ೜

ௗ௧
=𝑖௟௤

∗ -𝑖௟௤           (17) 

Corresponding state equations are 

𝑣௜ௗ
∗ ൌ െ𝜔௡𝐿௙𝑖௟௤ ൅ 𝐾௣௖ሺ𝑖௟ௗ

∗ -𝑖௟ௗሻ ൅ 𝐾௜௖𝛾ௗ      (18) 

  𝑣௜௤
∗ ൌ  𝜔௡𝐿௙𝑖௟ௗ ൅ 𝐾௣௖ሺ𝑖௟௤

∗ -𝑖௟௤ሻ ൅ 𝐾௜௖𝛾௤        (19) 

where,    𝐿௙ : filter inductance 

      𝐾௣௖ : proportional constant of PI controller 

      𝐾௜௖ : integral constant of PI controller 

Linearizing the above equations, we get 

∆𝛾ሶ ൌ ሾ0ሿሾ∆𝛾ሿ+൅𝐷ଵሾ∆𝑖௟
∗ሿ+𝐷ଶ ൥

∆𝑖௟
∆𝑣௢
∆𝑖௢

൩         (20) 

ሾ∆𝑣௜
∗ሿ =𝐷ሾ∆𝛾ሿ+𝐷ଷሾ∆𝑖௟

∗ሿ+𝐷ସ ൥
∆𝑖௟
∆𝑣௢
∆𝑖௢

൩                    (21) 

where ∆𝛾 ൌ ൤
∆𝛾ௗ
∆𝛾௤

൨ 

The voltage and current equations corresponding to the LC 
filter and coupling inductance can be represented as 

𝑣௜ െ 𝑣଴ ൌ 𝑟௙𝑖௟ ൅ 𝐿௙
ௗ௜೗

ௗ௧
          (22) 

  𝑖௟ െ 𝑖଴ ൌ 𝑐௙
ௗ௩బ

ௗ௧
           (23) 

𝑣଴ െ 𝑣௕ ൌ  𝑟௖𝑖௢ ൅ 𝐿௖
ௗ௜೚

ௗ௧
          (24) 

where  𝑣௕ : bus voltage 

𝐿௖ : coupling inductance 

Linearizing and rearranging the above equations after DQ 
transformation we get, 

቎
∆𝚤௟ሶ

∆𝑣௢ሶ

∆𝚤௢ሶ
቏ ൌE ൥

∆𝑖௟
∆𝑣௢
∆𝑖௢

൩+𝐸ଵሾ∆𝑣௜ሿ+ 𝐸ଶൣ∆𝑣௕ௗ௤൧+𝐸ଷሾ∆𝜔ሿ   (25) 

Output variables of each inverter are required to be 
converted into common reference frame for connecting it to 
the whole system. Corresponding equations are: 

𝑖ை஽ ൌ 𝑖௢ௗ𝑐𝑜𝑠𝛿 െ 𝑖௢௤𝑠𝑖𝑛𝛿                    (26) 

𝑖ைொ ൌ 𝑖௢ௗ𝑠𝑖𝑛𝛿 ൅ 𝑖௢௤𝑐𝑜𝑠𝛿                         (27) 
where, 

𝑖ை஽: Direct axis component of current in common    
reference frame 

𝑖ைொ: Quadrature axis component of current in common 
reference frame 

Linearizing the above equations, we get 

ൣ∆𝑖௢஽ொ൧ ൌ 𝑇௦ሾ∆𝑖଴ሿ+𝑇௖ሾ∆𝛿ሿ               (28) 

where, 

𝑇௦ ൌ ൤
𝑐𝑜𝑠𝛿଴ െ𝑠𝑖𝑛𝛿଴
𝑠𝑖𝑛𝛿଴ 𝑐𝑜𝑠𝛿଴

൨, 𝑇௖ ൌ ൤
െ𝐼௢ௗ𝑠𝑖𝑛𝛿଴െ𝐼௢௤𝑐𝑜𝑠𝛿଴

𝐼௢ௗ𝑐𝑜𝑠𝛿଴െ𝐼௢௤𝑠𝑖𝑛𝛿଴
൨ 
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Similarly bus voltage on individual inverter reference 
frame can be represented using reverse transformation as 

ൣ∆𝑣௕ௗ௤൧ ൌ ሾ𝑇௦
ିଵሿ ൣ∆𝑣௕஽ொ൧+ሾ𝑇௩

ିଵሿ ሾ∆𝛿ሿ           (29) 

where, 

𝑇௩
ିଵ=൤

െ𝑉௕஽𝑠𝑖𝑛𝛿଴൅𝑉௕ொ𝑐𝑜𝑠𝛿଴

െ𝑉௕஽𝑐𝑜𝑠𝛿଴െ𝑉௕ொ𝑠𝑖𝑛𝛿଴
൨ 

𝑉௕஽ is the direct axis component of voltage in common 
reference frame and 𝑉௕ொis the quadrature axis component of 
voltage in common reference frame 

From (8), (9), (14), (15), (20), (21), (25), (28) and (29): 

       ൣ∆𝑥ప௡௩ ప൧
ሶ ൌ 𝐺ଵ ௜ ൣ∆𝑥௜௡௩ ௜൧+𝐺ଶ ௜ൣ∆𝑣௕஽ொ ௜൧        (30)    

൤
∆𝜔௜

∆𝑖௢஽ொ௜
൨ ൌ ቈ

𝐺ଷ ௜

𝐺ସ ௜
቉ ൣ∆𝑥௜௡௩ ௜൧                 (31) 

where, 

ሾ∆𝑥௜௡௩ ௜ሿ ൌ ሾ∆𝛿௜ ∆𝑃௜ ∆𝑄௜    ∆𝜙௜    ∆𝛾௜ ∆𝑖௟௜ ∆𝑣଴௜    ∆𝑖௢௜ሿ 

Since there are two inverters in the microgrid system, 

ൣ∆𝑥௜௡௩ ൧=ሾ∆𝑥௜௡௩ଵ ∆𝑥௜௡௩ଶሿ் 

B. Network Model 

The voltage difference between adjacent buses 𝑗 and 𝑘 as 
shown in Fig. 6 is given by 

𝑣௕௝ െ 𝑣௕௞ ൌ 𝑖௟௜௡௘ ௜𝑟௟௜௡௘ ௜ ൅ 𝐿௟௜௡௘ ௜

ௗ௜೗೔೙೐ ೔

ௗ௧
            (32) 

 
Fig. 6. Network and load model. 

Taking DQ transformation and linearization, 

∆𝚤௟ప௡௘ ప
ሶ =𝐻ଵ ௜ൣ∆𝑖௟௜௡௘ ௜൧+𝐻ଶ ௜ൣ∆𝑣௕஽ொ ௜൧+𝐻ଷ ௜∆𝜔        (33) 

For given network with 2 lines and 3 nodes, equation 
become, 

∆𝚤௟ప௡௘ 
ሶ =𝐻ଵ ൣ∆𝑖௟௜௡௘ ൧+𝐻ଶ ൣ∆𝑣௕஽ொ ൧+𝐻ଷ ∆𝜔               (34) 

where, 

ൣ∆𝑖௟௜௡௘ ൧=ሾ∆𝑖௟௜௡௘ଵ∆𝑖௟௜௡௘ଶሿ் 

ൣ∆𝑣௕஽ொ൧=ൣ∆𝑣௕஽ொଵ∆𝑣௕஽ொଶ ∆𝑣௕஽ொଷ൧
்
 

C. Load model 

Equation of RL load connected at 𝑖௧௛ node is, 

𝑣௕௝ ൌ 𝑖௟௢௔ௗ ௜𝑅௟௢௔ௗ ௜ ൅ 𝐿௟௢௔ௗ ௜

ௗ௜೗೚ೌ೏ ೔

ௗ௧
     (35) 

Taking DQ transformation and linearization, 

∆𝚤௟௢௔ௗ 
ሶ =𝐿ଵൣ∆𝑖௟௢௔ௗ ൧+𝐿ଶ ൣ∆𝑣௕஽ொ ൧+𝐿ଷ∆𝜔                   (36) 

where ሾ∆𝑖௟௢௔ௗሿ=ሾ∆𝑖௟௢௔ௗଵ∆𝑖௟௢௔ௗଶ∆𝑖௟௢௔ௗଷሿ் 

D. Complete microgrid model 

Considering the model equations (30), (31), (34) and (36) 
we get overall state space model as 

቎
∆𝑥ప௡௩ሶ

∆𝚤௟ప௡௘ሶ

∆𝚤௟௢௔ௗሶ
቏=𝐴௠ ൥

∆𝑥௜௡௩
∆𝑖௟௜௡௘
∆𝑖௟௢௔ௗ

൩+൥
𝐺ଶ
𝐻ଶ
𝐿ଶ

൩ ൣ∆𝑣௕஽ொ൧              (37) 

where, 𝐴௠ ൌ ൥
𝐺ଵ 0 0

𝐻ଷ𝐺ଷ 𝐻ଵ 0
𝐿ଷ𝐺ଷ 0 𝐿ଵ

൩ 

To establish the node voltage, a virtual resistor 𝑟ே is 
assumed at each node of the network. Hence, the voltage of 
𝑖௧௛ node is given by 

𝑉௕ ௜ ൌ 𝑟ேሺ𝑖௢ ௜ െ 𝑖௟௢௔ௗ ௜ ൅ 𝑖௟௜௡௘ ௜ሻ      (38) 

For the selected network with two nodes, 

ൣ∆𝑣௕஽ொ൧ ൌ 𝑅ேሺ𝑀ଵሾ∆𝑖 ௢஽ொሿ+ 𝑀ଶൣ∆𝑖 ௟௢௔ௗ஽ொ൧ ൅ 𝑀ଷሾ∆𝑖 ௟௜௡௘ሿ) (39) 

where, matrix 𝑅ே is of size 6×6, whose diagonal elements 
are equal to 𝑟ே. The matrix 𝑀ଵ is of size 4×2s, which maps the 
inverter connection points onto network nodes. Similarly, 𝑀ଶ 
of size 6×4 maps load connection points onto the network 
nodes. Matrix 𝑀ଷ of size 6×4 maps the connecting lines onto 
the network nodes. 

Based on (37) and (39), 36 order state space model is 
obtained as 

቎
∆𝑥ప௡௩ሶ

∆𝚤௟ప௡௘ሶ

∆𝚤௟௢௔ௗሶ
቏=𝐴௠௚ ൥

∆𝑥௜௡௩
∆𝑖௟௜௡௘
∆𝑖௟௢௔ௗ

൩         (40) 

IV. EIGEN VALUE ANALYSIS 

The complete eigenvalue spectrum of the linearized small 
signal model can be calculated under the initial condition 
given in Table 1. The parameters of the system are given in 
Table 2. From the eigenvalue plot shown in Fig. 7, it is 
observed that the eigenvalues are distributed in three different 
regions and stability is determined by the low frequency 
eigenvalues near the imaginary axis. 

In order to find out the effect on stability due to the 
variation of control parameters 
𝑘௣, 𝑘௤, 𝑘௣௩, 𝑘௣௖, 𝑘௜௩ 𝑘௜௖, 𝑅଴ 𝑎𝑛𝑑 𝑋଴ eigenvalue spectrum is 
plotted by varying each of these parameters and keeping 
others constant. From Fig. 8 it can be concluded that as the 
value of 𝑘௣increases, the dominant eigenvalues move away 
from the real axis and closer to the imaginary axis which 
decreases the stability. 
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Fig. 7. Eigenvalue spectrum in S plane. 

 
Fig. 8. Variation of eigenvalues with 𝑘௣ in S plane. 

TABLE I. INITIAL OPERATING VALUES 

Parameter Values Parameter Values 

𝑉௢ௗ [311.2 311.6] V 𝐼௟௜௡௘ ௗଵ -7.8A 

𝑉௢௤ [0 0]V 𝐼௟௜௡௘ ௤ଵ 1.4A 

𝐼௢ௗ [21.2 21.2]A 𝐼௟௜௡௘ ௗଶ -5.3A 

𝐼௢௤ [-.34 -1.05]A 𝐼௟௜௡௘ ௤ଶ 0.7A 

𝐼௟ௗ [21.2 21.2]A 𝑣௕ௗ [308.7 308.5 308]V 

𝐼௟௤ [-14.3 -11.3]A 𝑣௕௤ [-2.8 -1.3 -1.5]V 

𝛿଴ [-14.3 -11.3]A 𝜔଴ 314rad/s 

TABLE II. SYSTEM PARAMETERS OF MICROGRID 

Parameter Values Parameter Values 

𝐿௙ 1.5mH 𝑘௣ 1.03 e-5 

𝑅௙ 0.15Ω 𝑘௤ 2.95 e-4 

𝐶௙ 1500μF 𝐾௣௩ 10.11 

𝐿௖ 0.15mH 𝐾௜௩ 100 

𝑅௖ 0.05Ω 𝐾௣௖ 10 

𝑅௟௜௡௘ଵ 0.147Ω 𝐾௜௖ 0.12 

𝐿௟௜௡௘ଵ 1.63mH       F 0.7 

𝑅௟௜௡௘ଶ 0.11Ω 𝜔௖ 31.4rad/s 

𝐿௟௜௡௘ଶ 1.25mH 𝑅଴ 0.05Ω 

  𝑋଴ 0.2Ω 

 
Fig. 9. Variation of eigenvalues with 𝑘௤in S plane. 

Similarly as 𝑘௤ increases, dominant eigenvalues move 
towards unstable region as shown in Fig. 9. Similar variation 
is obtained when 𝑘௣௩,  𝑘௜௖, 𝑅଴ 𝑎𝑛𝑑 𝑋଴ are changed as shown in 
Fig. 10 to 13, respectively and the variation is less when 
𝑘௣௖ 𝑎𝑛𝑑 𝑘௜௩ are changed. So it can be concluded that the main 
parameters which determine the stability of the system 
are 𝑘௣, 𝑘௤, 𝑘௣௩,  𝑘௜௖, 𝑅଴ 𝑎𝑛𝑑 𝑋଴. 

 
Fig. 10. Variation of eigenvalues with  𝑘௜௖ in S plane. 

 
Fig. 11. Variation of eigenvalues with 𝑘௣௩ in S plane. 

 

Fig. 12. Variation of eigenvalues with 𝑅଴ in S plane. 
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Fig. 13. Variation of eigenvalues with 𝑋଴ in S plane. 

V. DROOP CONTROL OPTIMIZATION USING PSO 

From the analysis given in Section IV, it is clear that the 
values of the parameters 𝑘௣, 𝑘௤, 𝑘௣௩, 𝑘௜௖, 𝑅଴ 𝑎𝑛𝑑 𝑋଴ decide the 
stability of the system. Hence the optimum values of the 
parameters are to be sought so that the system is stable. The 
objective of the optimization problem is to improve the 
stability of the system by controlling the position of 
eigenvalues. System will become stable when the eigenvalues 
are on the left side of imaginary axis and stability increases as 
the distance from imaginary axis increases. 

Let eigenvalues be represented as 𝜆௜ ൌ 𝑅𝑒௜ ൅ 𝑗 𝐼𝑚௜, where 
𝑅𝑒௜ is the real part and 𝐼𝑚௜ is the imaginary part of the 𝑖௧௛ 
eigenvalue. So the objective function is 

Min J=maximum of (𝑅𝑒௜) such that 
𝑘௣, 𝑘௤, 𝑘௣௩,  𝑘௜௖, 𝑅଴ 𝑎𝑛𝑑 𝑋଴ are within the limit. 

In PSO, each particle is a real valued vector with 
dimension equal to the number of parameters to be optimized. 
Each particle is a solution to the optimization problem and 
such P particles will be there where P is the size of the 
population. Initially a random solution is taken with in the 
parameter limit which is nothing but position in the search 
space. The position of each particle is updated based on its 
inertia, personal best and group best according to the equation 
given below: 

𝑥௜ሺ𝑘 ൅ 1ሻ ൌ 𝑥௜ሺ𝑘ሻ ൅ 𝑣௜ሺ𝑘 ൅ 1ሻ   (41) 

vi(k൅1) ൌ wvi(k)൅r1C1[Pi(k) െ xi(k)]൅r2C2[g(k)-xi(k)] (42) 

where, 

𝑥௜ሺ𝑘ሻ : position of 𝑖௧௛ particle in 𝑘௧௛ iteration 

𝑣௜ሺ𝑘ሻ : velocity of 𝑖௧௛ particle in 𝑘௧௛iteration 

w : inertia coefficient 

𝐶ଵ, 𝐶ଶ : acceleration coefficient 

𝑃௜ሺ𝑘ሻ : local best position of 𝑖௧௛ particle in 𝑘௧௛ 
iteration 

𝑔ሺ𝑘ሻ : global best position among particles in 𝑘௧௛ 
iteration 

By conducting this updating process for velocity and 
position, at the end of a few iterations the optimum value is 
obtained. For the optimization problem discussed earlier, the 
parameters are given in Table 3. 

By varying the microgrid control parameters 
X=[𝑘௣, 𝑘௤, 𝑘௣௩, 𝑘௜௖, 𝑅଴, 𝑋଴ሿ, the solution is obtained as 
X=[0.0045,5.32e-4,16.83,411.28,0.4,0.96] and J=-32.53. The 
convergence curve of objective function is given in Fig. 14. 

The variations of dominant eigenvalues before and after 
optimization are given in Fig. 15 and 16. In Fig. 15, the real 
part of extreme right eigenvalue is at -0.012 and it is shifted to 
-32.53 after optimization as shown in Fig. 16. 

 
Fig. 14. Convergence curve of objective function. 

TABLE III. PARAMETERS OF PSO 

Parameter Values 

Number of iteration 200 

Population size 50 

Inertia coefficient 1 

Damping ratio of inertia coefficient, 0.99 

Individual acceleration coefficient, 𝐶ଵ 2 

Global  acceleration coefficient, 𝐶ଶ 2 

Unknown variables [𝑘௣, 𝑘௤, 𝑘௣௩, 𝑘௜௖, 𝑅଴, 𝑋଴] 

Lower limit of unknown variables [1e-7, 1e-7,0,0,0,0] 

Upper limit of unknown variables [0.1,0.1,500,500,1,1] 

 

Fig. 15. Dominant eigenvalues before optimization in S plane. 

 

Fig. 16. Dominant eigenvalues after optimization in S plane. 
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Therefore, stability can be improved by the optimal setting 
of control parameters 𝑘௣, 𝑘௤, 𝑘௣௩,  𝑘௜௖, 𝑅଴ 𝑎𝑛𝑑 𝑋଴ . 

VI. CONCLUSION 

The small signal based state space model is used for 
analyzing the stability and dynamic performance of the 
microgrid system. From the eigenvalue analysis, it is observed 
that as 𝑘௣ increases, the dominant eigenvalues move away 
from the real axis improving system performance while move 
closer to the imaginary axis deteriorating the stability.  𝑘௤ has 
little influence on the dynamic performance of the system, but 
when the value is too large, the dominant roots move towards 
unstable region. The proportional parameter of voltage 
loop, 𝑘௣௩ and integral parameter of current loop, 𝑘௜௖ also have 
a great influence on the dominant eigenvalues whereas the 
integral parameters of voltage loop , 𝑘௜௩ and proportional 
parameter of current loop, 𝑘௣௖ do not affect the dominant roots 
significantly. The value of virtual impedance 𝑍଴ ൌ 𝑅଴ ൅ 𝑗𝑋଴, 
also affects the stability. Therefore the key parameters 
affecting the microgrid stability and dynamic performance are 
𝑘௣, 𝑘௤, 𝑘௣௩, 𝑘௜௖,𝑅଴ and 𝑋଴. By performing the particle swarm 
optimization, the optimum values of these parameters are 
found. 
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