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Abstract—New trends in software engineering are reshaping
the computing landscape – computation is increasingly portable,
storage is increasingly elastic, and data accessibility is increasingly
“always on” and “always available” to an exponentially increasing
variety of applications and devices. While the effects of these
trends in the larger “compute-verse” are profound, this paper will
discuss and consider how these trends are affecting specifically
healthcare informatics. Indeed, end users will experience this
trend in applications that are web-centric and mobile-friendly.
Such apps will be increasingly used as gateways to powerful
backend services (such as analytics and deep learning), while
offering local client-side specialization (rich, immersive visual-
izations and collaborations). The paper offers some perspectives
and presents some unmet needs in medical informatics and seeks
to provide a viewpoint into how the “next wave” of computing
might present itself. In particular the paper presents a web-
based medical image data and information management software
platform called CHIPS (Cloud Healthcare Image Processing
Service). This cloud-based service uniquely provides an end-to-
end service that can connect data from deep within a Hospital
securely to the cloud and allow for powerful collaboration – both
on medical image data but also on image processing pipelines,
allow for complex processing and enable computational research,
and provide a vision of decentralized, large-scale data analysis
that can fuel Big Data on medical bioinformatics.
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tainerization; telemedicine; cloud-storage

I. INTRODUCTION

Historically, the tides in the information processing “ocean”
have ebbed and flowed between centralization and de-
centralization – with current trends moving to decentralization
as offered by the cloud and away from traditional client heavy
or client-only processing [1]–[3]. A heavily client-centric ap-
proach, however, is still prevalent in healtchare informatics
– and the balkanization of data into disconnected silos is a
defining feature of the healthcare informatics landscape [4]–
[8]. Data silos are rarely interconnected, often the product of
different incompatible solutions provided by different vendors
with specific and sometimes limited scope – as a result
computation on medical data and informatics has been low
in comparison with many other technical and scientific fields.

The reasons for this are complex and also partially historical: a
combination of technical considerations, legacy deployments,
as well as regulatory issues. Arguably, some of the reasons
also stem from the basic cultural reality of medicine which
is intensely personal and based off a one-to-one relationship
between a single provider (i.e. a single physician) and a
patient. The scope is differential and not integrative – medical
practice is designed to focus primarily on a single patient
(i.e. a single data point) and differentiate symptomatically how
this patient fits in a larger picture of health. Clinical practice
conventionally is not one of integration, but differentiation.

Informatics in healthcare reflects this fundamental relation-
ship. Data repositories are not integrated and data processing
is geared to the single case. Hospital medical images are typ-
ically stored in a closed Picture Archive and Communication
System (PACS) with restricted accessibility and limited search
capability, as well as multiple structural incompatibilities with
new trends in data informatics [9]. Medical image processing
occurs inside hospitals that lack cutting edge computational re-
sources and deep computational expertise. The computational
tools that do exist are difficult to install and maintain in a
typical hospital environment. Finally, it is difficult to share
medical images between institutions or with interested third
parties who have deep computational expertise due to the
lack of standardized protocols for anonymization approved by
local ethics review boards. Therefore, people with the skills
to develop new computational tools do not have access to the
imaging data. Technologies that enable access to anonymized
medical images, provide platforms for sharing and support
complex image computations are desperately needed to fully
realize the promise of Big Data science on medical image data.

However, computation and devices are accelerating in a
trend to decentralizatoin and interconnectedness, with more
than 18 billion (and growing) devices projected to be ex-
changing information of some sort by 2020 [10] (see Fig.
1). The application of rich computational tools and Big Data
techniques to medical data, an in particular medical imaging
data has the potential to transform medicine. Imagine a world
where millions of anonymized images, along with rich clinical
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Fig. 1. Projected growth in interconnected devices.

data and massive computational resources are available to
researchers exploring different diseases or developing new
computational algorithms, available to clinicians from any
device, and controlled by patients themselves. Conceivably,
computational analytical techniques (such as machine learn-
ing, pattern classifiers, etc) mining this data could provide
more accurate diagnoses, optimize treatments or identify early
indicators of rare diseases. Although many researchers, have
focused on developing such computational approaches, there
is a pressing need to address fundamental platform issues.

This paper presents a discussion of some of these issues,
and then offers a specific compute architecture to help realize
the potential of this new trend in informatics, especially as
applied to imaging healthcare. We present a solution that
is “cloud-ready”, based on using the web as interface and
complex visualization, coupled with pervasive use of con-
tainerization technologies to distribute data and processing to
mutiple networks. To our knowledge, no web-based platform
currently exists that provides data and compute agnostic ser-
vices (some services, such as CBRAIN [11] and LONI [12]
provide conceptually similar approaches, but do not have
deep connectivity to typical hospital database repositories),
in particular collection, management, and real-time sharing
of medical data, as well as access to pipelines that process
that data. Our solution, CHIPS (Cloud Healthcare Image
Processing Service), is a novel web-based medical data storage
and data processing workflow service that provides strict data
security while also facilitating secure, real-time interactive
collaboration over the Internet and internal Intranets.

CHIPS is able to seamlessly collect data from typical
sources found in hospitals (such as Picture Archive and Com-
munications Systems, PACS) and easily export to approved
cloud storage. CHIPS not only manages data collection and or-
ganization, but it also provides a large (and expanding) library
of pipelines to analyze imported data, and the containerized
compute can execute in a large variety of remote resources.
CHIPS provides for persistent record and management of activ-
ity in feeds as well as for powerful visualization of data. In par-
ticular, it makes use of the popular XTK toolkit which was also
developed by our team at the Fetal-Neonatal Neuroimaging and

Developmental Science Center, Boston Childrens Hospital1 for
the in-browser rendering and visualization of medical image
data and can be freely downloaded from the web2 [13].

II. CHANGING TRENDS

To support new paradigms of analytics and Big Data
science in medical image research, technologies that enable
access to medical images, provide platforms for image sharing,
and provide access to infrastructures that support complex
image computations are needed.

1) The medical imaging future is demanding access to
large anonymized datasets. In order to develop novel
image processing applications that utilize machine
learning and Big Data analytics, access to sufficiently
large pools of anonymized medical imaging data is
required. However, access to image databases in most
medical institutions is extremely complex due to both
technical and policy reasons. It is also difficult to share
such databases among institutions and with image
processing experts due to the lack of standardized
procedures for anonymization and sharing. Therefore,
people with the skills to develop new computational
solutions do not have access to the imaging data. There
is need for frameworks that integrate natively and
securely with existing hospital services and provide
easy access to imaging data making sharing, collabo-
ration and development on imaging and relevant data
intuitive and simple.

2) Medical image processing infrastructures inside
medical institutions lack cutting edge computa-
tional resources. Novel image processing techniques
that exploit cutting edge computational hardware sys-
tems (e.g. GPUs, accelerators) and/or large-scale par-
allelism are difficult to develop within medical insti-
tutions since clinical establishment do not have the
expertise and economical incentive to set-up these spe-
cial infrastructures as they become available. Modern
technical solution to address these issues is to exploit
cloud computing platforms that offer computational
infrastructure on-demand. There is need for frame-
works that abstract-away and enable offloading of
the computational requirements of image processing
solutions to cloud computing platforms in order to
ease development/testing/adoption of new approaches.

3) Utilizing advanced healthcare solutions must be
made simpler. Effective usage of image process-
ing approaches may require a significant amount of
learning and effort on the side of the practitioners,
which prevents adoption of these solutions in clinical
settings. There is need for intuitive, user-friendly and
innovative interface designs to ease interaction with
image processing applications by offering them as
services and lowering their adoption barrier.

4) Medical institutions shy away from partnering with
large public cloud providers due to privacy consid-
erations associated with sharing patient health care

1http://fnndsc.babymri.org
2http://goxtk.com
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data with these entities and fears of being locked
into one commercial solution. There is need for
secure, non-commercial, and opensource frameworks
that enables sharing/collaboration on medical imag-
ing data over public cloud computing frameworks.

5) Solutions providing for Big Data should be general-
izable across medical data modalities. Infrastructure
that consolidates all types of health care data and pro-
vides for processing on this data should not be specific
to a single modality. There is a need for solutions that
allow for Big Data analytics irrespective of data type.
Systems that process image data, for example, should
be designed so that the same infrastructure can be
used for other health care data such as genetics and
other electronic health care records [14].

The basic premise of this paper is that, to unleash medical
imaging innovation, there is need for an end-to-end frame-
work that integrates securely with existing hospital image
storage services, enables sharing and collaboration on
image data, and interacts with cloud computing solutions
to process this data on rich off-site computing platforms.

INNOVATION

Medical image analysis research is facing challenges in
utilizing the innovation offered by Big Data science. This
is due to the difficulties and complexities associated with
accessing medical imaging data, and whenever such access
is available, obtaining access to cutting-edge computational
frameworks to be able to develop Big Data science solutions
for medical imaging. Cloud Healthcare Image Processing
Solution (CHIPS) is a fully integrated attempt to address
these challenges by offering a framework that leverages
cloud computing and social networking technologies to
enable Big Data analytics research for medical image
processing.

1) CHIPS is designed to drastically simplify the ability
to access anonymized image data securely from
within hospital data silos (such as PACS, pro-
viding more opportunity for Big Data science in
imaging research). CHIPS elevates data to first class
citizen status and uses modern web-based approaches
to collect, interact, and disseminate this data. CHIPS
integrates natively with existing hospital services, in
particular PACS databases, and provides services to
query/retrieve image data. In addition, privacy and
data-sharing are integrated in the very design of
CHIPS. User access as well as data and analysis result
access is only permitted under appropriate IRB provi-
sions. Where data is to be transmitted across compute
networks, CHIPS will by default strip any patient
identifying information from any image transmitted.

2) CHIPS is a pervasively container-based platform
that standardizes the development of applications
for medical image processing, allowing researchers
to develop new algorithms, deploy/test these on
powerful compute platforms such as public clouds
and make them available to a broad community.
CHIPS encourages the deployment and sharing of

new algorithms by providing a plug-and-play inter-
face inspired by container-based solutions developed
as part of cloud computing systems. This enables
testing over hardware configurations that may not be
available in the researcher’s host environment. Any
new application uploaded to CHIPS would in effect
be available to all users of the system. By building a
system that exposes a complete “end to end” workflow
and that intelligently combines a multitude of existing
tools, CHIPS will hopefully accelerate the usage of
advanced research-based techniques within clinical
workflows.

3) CHIPS is designed to provide a user interface for
Radiology workflows that mimics social networking
solutions. It transforms collaboration and interac-
tion with medical imaging systems and enables
real time collaboration/consultation through the
interface using social media metaphors. This aspect
of CHIPS will significantly reduce the barrier of entry
for medical image processing researchers and prac-
titioners while offering/using new solutions. CHIPS
front-end is web-based, and utilizes familiar social
networking metaphors to ease usage and collaboration.
Activity in the system is presented and logged persis-
tently in rich “feeds”, visual representations of user
activity streams, that also contain the data operated on.
Parameter choices in applications are automatically
tracked. Experimental notes and image acquisition
parameters can be added to feeds. Results and even
feeds can be shared with other users enabling easy
collaboration.

4) CHIPS supports core application plugins implement-
ing commonly used functionality in medical image
analysis research. CHIPS offers several neuroimag-
ing plugins by default, including tools such as
FreeSurfer (for volumetric segmentation and brain
surface reconstruction), Diffusion Toolkit (for white
matter tractography), and 3DSlicer components.

A number of technologies try to address certain seg-
ments of what CHIPS proposes, such as the GIFT-cloud [15],
LORIS [16] and others [17]–[19] that ease presentation and
sharing of imaging data by integrating with clinical systems,
but do not provide mechanisms to link these systems with
cloud solutions. Other frameworks such as Gadgetron [20] and
SQUAREMR [21] try to harness the power of cloud computing
systems for improving the performance of specific imaging
applications such as MRI reconstruction, but do not tackle the
core problems of data access or general computational infras-
tructure requirements. Pipelining solutions such as LONI [22]
exist that are designed for planning, executing, monitoring
and sharing scientific workflows, but are not directly com-
patible with hospital or cloud systems. Finally, large cloud
providers cloud providers such as Amazon [23], IBM [24]
and Microsoft [25] offer generic HIPAA compliant services
that aim to attract medical applications to their platforms but
do not offer open source, cross-cloud applicable solutions.
Currently, there are no solutions that service all the needs
highlighted above in one single end-to-end solution. CHIPS
is the only system that is designed to offer a free and open,
publicly accessible, cloud-based and completely integrated and
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managed experience for medical image data analysis that offers
mechanisms for collecting data, consulting and collaborating
with other researchers over the data, as well as processing,
analyzing, visualizing and returning new data, all through
intuitive and modern web interfaces.

III. APPROACH

Modern web browsers are becoming powerful platforms for
advanced application development [26], [27]. New advances
in core web application technologies such as the modern web
browsers’ universal support of ECMAScript 5 (and 6) [28],
CSS3 and HTML5 APIs have made it much more feasible to
implement powerful middle-ware platforms for data manage-
ment and powerful graphical rendering, as well as real-time
communication purely in client-side JavaScript [29], [30]. The
last decade has seen a slow, but steady, shift to fully distributed
solutions using web-standards [11], [31]–[33], closely tracked
by expressiveness of the JavaScript programming language.
Web-based solutions are especially appealing as they do not
require the installation of any client-side software other than
a standard web browser which enhances accessibility and
usability.

Unrelated to rise of web-technologies, a new emerging
trend is the rapid adoption of containerization technologies.
These have enabled the concept of compute portability in a
similar sense to data portability. Just as data can be moved
from place to place, containerization allows for operations on
that data to also be moved from place to place.

CHIPS is able to seamlessly collect data from typical
sources found in hospitals (such as Picture Archive and Com-
munications Systems, PACS) and easily export to approved
cloud storage. CHIPS not only manages data collection and or-
ganization, but it also provides a large (and expanding) library
of pipelines to analyze imported data, and the containerized
compute can execute in a large variety of remote resources.
CHIPS provides for persistent record and management of activ-
ity in feeds as well as for powerful visualization of data. In par-
ticular, it makes use of the popular XTK toolkit which was also
developed by our team at the Fetal-Neonatal Neuroimaging and
Developmental Science Center, Boston Childrens Hospital3 for
the in-browser rendering and visualization of medical image
data and can be freely downloaded from the web4 [13].

IV. ARCHITECTURAL OVERVIEW

A. Scope

The creation of CHIPS has been motivated by both clinical
and research needs. On the clinical side, CHIPS was built to
provide clinicians with easy access to large amounts of data
(especially from PACS), to provide for powerful collaboration,
and to allow for easy access to a library of analysis processes or
pipelines. On the research side, CHIPS was designed to allow
computational researchers to test and develop new algorithms
for image processing across heterogeneous platforms, while
allowing life science researchers to focus on their research
protocols and data processing, without needing to spend time
on the minutiae of performing data analysis.

3http://fnndsc.babymri.org
4http://goxtk.com

Fig. 2. CHIPS connects multiple input PACS sources to multiple “cloud”
compute nodes.

Fig. 3. The internal CHIPS logical architecture.

The system design is highly distributed, as shown in Fig.
2, which shows a CHIPS deployment connected to multiple
input sources and multiple compute sources. Though the figure
suggests a single, discrete central point, components of CHIPS
do reside on each input (PACS) and compute location.
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B. Distributed Component Design

Architecturally CHIPS is not a single monolithic system,
but a distributed collection of interconnected components,
including a front-end webserver and web-based UI; a core
RESTful back-end central server that provides access to all
data, feeds, users, etc; a DICOM/PACS interface; a set of
independent RESTful microservices that handle inter-network
data IO and also remote process management, and a core
cloud-based computational platform that orchestrates offload-
ing of image processing pipelines to some remote cloud-based
compute – see Fig. 3.

The top the red box of Fig. 3 contains the PACS node and
represents the Hospital image data repository. The second blue
box, labeled Web-entry point and data hosting node contains
the main CHIPS backend and is presented as being in a “cloud”
(i.e. some resource that is accessible from the Internet). Finally,
the bottom yellow box is shown on a separate “cloud” to
emphasize that it is topologically distinct from the Web-entry
point.

The logical relationships between data (represented as the
rectangles with a tree structure) and compute elements denoted
by the named hexagons is shown by either data connectors
(thick blue arrows) or control connections (single line arrows).
In the syntax of the diagram, the stylized cloud icon touching
some of the boxes denotes that these compute elements are
controlled by a REST API, while the sphere icon denotes web-
access.

An remote compute is denoted by plugin, which is
controlled by a manage component. In the most abstract
sense, the plugin processes an input data structure, and
outputs a transformed data structure (the two tree graphs as
shown). File transfer between the data cloud and compute
cloud is performed by the file IO handler component. A
query/retrieve process in the data cloud connects to an
authentication process, auth in the Hospital network, while
on-the-fly anonymization of DICOM images is handled by
process anonymizer anon. Finally the dispatcher is a
component that determines what compute node (or cloud) is
best suited for the data analysis at hand. The circle icon at-
tached to the manage and plugin icons implies the attached
process and can provide real-time feedback information to
other software agents about the controlled process via its own
REST interface.

C. Pervasive Containerization

CHIPS is designed as a distributed system, and the under-
lying components are containerized (currently using docker5).
Docker is a rapidly maturing technology that is offered as a
first-class citizen on many commercial cloud offerings such
as Amazon Web Services, Microsoft Azure, Google Compute
Engine and IBM Softlayer among others. It is designed to
be an infrastructure level technology for managing and de-
ploying software at scale [34]. Docker’s main components
are a command-line program, a background daemon, and
a set of remote services that together simplify installing,
running, publishing, upgrading and removing software. This
is accomplished by using Linux containers which provide a

5https://www.docker.com

sandboxed environment for running software applications and
all of its dependencies. These containers are at the heart of the
strong security features provided by Docker as they isolate a
process from all computer resources except where explicitly
allowed. Docker also includes several ways to package and
distribute software through Docker images. A Docker image
is a bundled snapshot of all the files that should be available
to a program running inside a container. Many containers can
be created from the same image but they do not share changes
to their file system [35]. Software within docker containers
see the same execution environment and initial state regardless
of underlying hardware, operating system or computer state.
CHIPS will use docker containers for all its plugins as its
secure application distribution model.

In Fig. 3, the Main CHIPS web interface and associated
backend database is housed within a single container6. Input
data and processed results are accessible in the hosting node
and volume mapped as appropriate to this back end. Other
components of CHIPS in the web-entry node are similarly
containerized. This includes the manage7 block, which is
responsible for spawning processes on the underlying system.
Not only does manage provide the means to start and stop
processes, but it also tracks the execution state, termination
state, and standard output/error streams of the process. The
manage component has a REST interface through which
clients can start/stop and query processes.

Also containerized is the IO8 component that can transfer
entire directory trees across network boundaries from one
system to another as well as the dispatch9 component
that can orchestrate multiple processing jobs as handled by
manage. The plugin container houses the particular com-
pute to perform on a given set of data, and is spawned by the
manage component under direction of the dispatch. Since
the compute typically occurs on a separate system to the data
hosting node, the IO containers perform the necessary transmit
of data to this compute system, as well as the retrieve of
resultant data back to the data node, allowing the web container
to present (and visualize) results to the user.

A critical part of CHIPS’s architecture is the means by
which plugins are shipped to and run on the remote compute
resource. We propose two main mechanisms for this: 1) allow
external parties to create their own docks which then are
added to the backend system by CHIPS development team
after vetting of the plugin’s suitability; and 2) develop a
sandboxed/automated docker build system for low-dependency
plugins, where an external developer uploads the source code
of their plugin using an “upload” feature of the web front end.
This upload will capture sufficient information to allow the
build/execution of the plugin on the remote resource, and will
then create a simple dock for the plugin which in turn will
be automatically added to the library of available docks. We
propose to sandbox such auto-created plugins in an isolated
filesystem and even on an isolated compute environment (such
as a virtual machine) for a period of evaluation and testing of
such auto-generated plugins. Also important is the ability for
CHIPS (via the manage container) to support automatically

6https://github.com/FNNDSC/ChRIS ultron backEnd
7https://github.com/FNNDSC/pman
8https://github.com/FNNDSC/pfioh
9https://github.com/FNNDSC/swarm
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Fig. 4. CHIPS home page with a “cards” organization.

Fig. 5. Visualizing pulled and processed data.

middleware functionalities such as service discovery, queueing,
and routing once a cloud platform has been tied to CHIPS. By
enforcing distribution and management of individual plugin
applications in their own Docker images and containers, we
open the path to leveraging existing scheduling and manage-
ment tools aimed at solving those specific problems such as
the Docker Swarm or OpenShift10 and Kubernetes.

V. UI CONSIDERATIONS

Fig. 4 shows the home page view on first logging into the
system. Studies that have been “sent” to CHIPS appear in their
own “cards” on the user’s home page with a small visualization
of a represented image set of the study. Various control on
this home page allow users to organize/tag “cards” in specific
projects (or folders), remove cards, bookmark for easy access,
etc. New cards can be generated by clicking on the +© icon and
choosing an activity (such as PACS Query/Retrieve), and any
card can be seamlessly shared with other users of the system.

On selecting a given feed, the core image data in that
feed is visualized in a rich, web-based viewer – see Fig. 5.
Various tabs and elements of the feed view provide different
perspectives on the data, and also provide the ability to
annotate notes, or add comments. As in the feed view, a
+© icon is also present, and if selected, opens a ribbon of

10https://github.com/FNNDSC/openshiftmgr

Fig. 6. Big data pre-processing.

“plugins” (or “apps”) to run on the data contained in the
feed. For example, certain plugins might perform a surface
reconstruction of the brain surface with tissue segmentation
(for example, a FreeSurfer plugin).

The interface semantics within a feed are straightforward:
a user clicks on the feed and enters the top level data view.
Once a plugin from the +© is applied, the feed data is processed
accordingly. When the plugin is completed, its output files are
also organized in the feed in a logical tree view (accessible
via the left “Data” tab) in a manner akin to an email thread.
In this manner, the thread of execution from data→ plugin→
data is defined – in effect building a workflow.

Any image visualized can also be shared in real-time
using collaboration features built into the viewer library and
leveraging the Google Drive API and Google Realtime API
[30].

VI. BIG DATA INFRASTRUCTURE

An important component of CHIPS lies in creating a foun-
dation suitable for future support of “data mining”. Recently,
the term Big Data has come into common parlance, especially
in the context of informatics [36]–[38]. Despite the term and
the use of Big, the concept often refers to the use of predictive
analytics and other advanced data analytics tools that extract
meaning from sets of data and does not necessarily to the
particular size of the data set.

In healthcare, big data analytics has impacted the field in
very specific areas such as clinical risk intervention, waste and
care variability reduction, and automated reporting. However,
as a field, biomedical imaging has not especially benefited
from big data approaches due to the unstructured nature of
image data, complexity of results from analysis in terms of
data formats (again usually unstructured), simple quality issues
such as noise in image acquisitions, etc.

CHIPS constructs a framework to allow big data methods to
be used in this image space. Consider that the incoming source
data to CHIPS are DICOM images that by their nature contain
a large amount of meta information, most of which is non PHI
and will be left unchanged by the anonymization processes.
Information about the scanning/imaging protocol, acquisition
parameters, as well as certain non-PHI demographics such as
patient sex and age can be meaningfully databased. Moreover,
the application of an analysis pipeline to an image data-set can
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in turn result in large amounts of meaningful data that can be
databased and associated with the incoming source data. For
example, FreeSurfer, which is dockerized as a plugin in the
CHIPS system produces volumetric segmentations and surface
reconstructions on raw input MRI T1 weighted data [39]–[41].

In Fig. 6 input raw DICOM (purple block) and output
processed data from the DICOMs (green block) are shown.
A DICOM tag extraction process removes the image
meta data and associates this information with the particular
image record. DICOM data is regularly formatted and easily
extracted. Importantly, for the output data, and assuming the
output data is a 3D surface reconstruction and tables of brain
parcellation volume values, a structured analysis pro-
cess regularizes all this information into meta data that will be
added to the space of data pertaining to this image record. This
processing will lay the ground work on which data analytics
can explore and mine for relations between (for example) input
acquisition parameters and pipeline output results, or simply
mine across output results for hidden trends in data trajectories
(for example volumetric changes with age or sex).

VII. PRIVACY HANDLING AND PATIENT-CENTRIC
TRENDS

Medical data, like financial data, is subject to regulatory
constraints governing its dissemination on computer networks.
While for the most part medical data is usually generated,
consumed, and stored within a single institution, it is important
to consider the patient’s position in data ownership [42], [43].
Complex issues such as regulatory forces, historical inertia,
incompatible data formats, etc. all contribute to placing “lag”
or barriers to the flow of data to distributed locations such as
the cloud and the ability for distributed compute to perform
analytics on data.

Nevertheless, it is reasonable to assume that the over-
whelming trend of computing is towards portable data, and in
healthcare this can lead to changes in the concept of ownership.
While this might contribute to a delay in healthcare data
systems to be more integrative and distributed, the movement
of the computing industry and expectations of patients arguably
make such an outcome very likely.

While in this paper concerned itself primarily with com-
puting trends in general and technical considerations of an-
ticipating these trends in healthcare informatics, and while
privacy issues are complex and should not be underestimated,
our position is that data will move fluidly across networks and
compute and that the patient himself/herself will become a
primary role-player in the portability and access to their own
data. To this end, in CHIPS data privacy as understood by
HIPAA is paramount, and addressed by specific modules that
authenticate to, and anonymize and image data received from
a PACS.

The anonymization component of Fig. 3 is shown in more
detail in Fig. 7. In Fig. 7, the receipt of DICOM data by a
listener process triggers a cascade of events. When a user has
been authenticated as being allowed to perform a PACS Q/R,
a listener process, listen is informed by the authorize
process of the user and the data that has been queried and
subsequently tagged for retrieval. As data arrives at listen,
it logs all incoming files as well as the original CHIPS user

Fig. 7. CHIPS authorization to PACS and dynamic anonymization engine.

that is performing this Q/R. Data is parsed and packed out
to the filesystem of the host computer which is receiving the
PACS data.

Once unpacked, anonymization on the received data tree is
performed by the anon process – note that multiple off-the
shelf and opensource DICOM anonymization applications are
available. On successful anonymization, the process manager,
manage, will invoke a transmission process, send, that will
read the anonymized files and transmit to the CHIPS cloud.
Note that as shown in the figure, all components of this
pipeline log all activity.

VIII. CONCLUSION AND FUTURE DIRECTIONS

With an expected exponential increase in connected de-
vices, an accelerating trend to distributed-but-centralized com-
puting across multiple environments, the informatics landscape
in healthcare is at the cusp of fundamental changes. We
anticipate that data and services on data in healthcare will
migrate every increasingly to cloud environments, both for
storage of data and also for group-based analytics (providing
data for more accurate group-based models, deep learning and
Big Data) as well as single patient specific processing (for
example, process a single patient image data for tumors).

In this paper, we discussed some of these larger trends,
as well as very specific needs in healthcare, and presented
a system called CHIPS that is one possible platform that is
designed for being future-ready. CHIPS is a distributed system
that provides a single, cloud-based, access point to a large
family of services. These include: 1) accessing medical image
data securely from participating institutions with authenticated
access and built-in anonymization of collected image data;
2) organizing collected data in a modern UI that allows for
easy data management and sharing; 3) performing processing
on images by dispatching data to remote clouds and control-
ling/managing remote execution on these resources; 4) power-
ful real-time collaboration on images using secure third party
services (such as the Google RealTime API); and intuitively
constructing medical image processing workflows. CHIPS is
not only a medical data management system, but strives to
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improve the quality of healthcare by allowing clinical users the
ability to easily perform value added processing and sharing of
data and information. Current and future directions for CHIPS
include facilitating the construction of big-data frameworks
and allowing for users to simply construct experiments for
data analytics and various machine learning pipelines.
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