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Abstract—This paper addresses the convergence issues of the 
H∞ control algorithm by a matrix modulation technique on the 
mathematical generalized plant model of a system. This paper 
further presents a general solution to the robust control 
algorithm convergence problem of MIMO systems. The proposed 
controller is optimized for output error regulation by comparing 
the outputs of a higher order MIMO system to that of a slightly 
underdamped second order plant. The matrix modulation 
approach considers two singularities, viz., 1) control singularity; 
and 2) sensor singularity. The corresponding controller is tested 
on a laboratory model of helicopter, known as Twin Rotor 
MIMO System (TRMS) for its take off and hovering. 

Keywords—Matrix modulation; Twin Rotor MIMO System 
(TRMS); singularity; generalized plant; H∞ control; output error 
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I. INTRODUCTION 

In the recent decades, a trend of replacing mechanical 
(hydraulic and pneumatic) elements by more sophisticated 
electrical elements is being observed in rotorcraft technology. 
This change is necessitated because of the need to produce 
light weight maintenance free vehicles for unmanned 
autonomous flights. This move has lead to distinguished 
changes in flight dynamics of such vehicles leading to increase 
in its electrical complexity while reducing overall size and 
weight of the system. Thus, this transition is motivated by the 
effectiveness in weight, volume, fuel and maintenance. Due to 
light weight of these vehicles, new prototypes are replacing the 
traditional fossil fuel driven rotorcraft for catering specific 
tasks. Neo-models are driven by battery sources. Again, due to 
these alterations, control challenges have now acquired higher 
dimensions. Such modifications have lead to the revelation of 
new system dynamics projecting the need to address the 
control problems for this class of systems differently. Such 
systems find its importance from control perspective as they 
exhibit specific attributes that pose serious control challenges. 
These challenges are due to non-minimum phase dynamics, 
cross coupling, model uncertainties, sensitivity to exogenous 
disturbances, sensor singularities, control singularities, and 
resonances. The available robust control tools of mathematical 
solvers very well take care of the aforementioned attributes 

except the singularity issues in specific cases. Due to 
singularities in certain signals resulting in matrix singularities 
at particular frequencies, the robust control algorithms fail to 
converge in typical cases. The robust H∞ control design is 
based on the structure of a generalized plant (mathematical 
design) that subsumes all subsystems (except the controller) 
including the actual plant (the linear model). The present work 
proposes a modulation in the mathematical framework of the 
generalized plant, specially certain matrix representations, 
ensuring convergence of the algorithm. 

The Twin Rotor Multi Input Multi Output System (TRMS), 
developed by Feedback Instruments Ltd., is an ideal test bench 
in this experiment as it exhibits all such attributes as cited 
above. It is a laboratory model of helicopter with 2 Degrees of 
Freedom (DoF). Fig. 1 illustrates TRMS in the laboratory 
without excitation. Fig. 2 is the working model of TRMS in 
hovering mode. TRMS travels in two planes mutually 
perpendicular to each other. The two rotors of TRMS are in 
these planes and rotate with a comparatively faster dynamics as 
compared to the rigid body movements. So, rotor dynamics are 
decoupled from rigid body dynamics by design. 

The moment due to main rotor has strong impact on the 
yaw (angular displacement of tail around pivot axis) angle, 
while that due to tail rotor has weak effect on the pitch 
(elevation) angle of TRMS. This incorporates strong cross 
coupled dynamics. In addition, TRMS has RHP (Right Half 
Plane) zero dynamics and resonant modes, as in [1]-[4]. Due to 
model intricacy, the system acquires higher order. At the same 
time, critical dynamics are inadvertently ignored during linear 
modeling in most of the cases, as in [4]. Thus, model 
uncertainty is inevitable. Like other flying vehicles, 
atmospheric turbulence needs to be considered here as output 
disturbance. Hence, TRMS falls in the class of systems as 
considered in this paper. The control singularity at infinite 
(very high) frequency and sensor singularity at zero 
(infinitesimally small) frequency lead to yielding certain non-
invertible matrices at some intermediate stages while computer 
iteration of the control algorithms is executed. This issue is 
addressed in the present work. 
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Fig. 1. TRMS in the laboratory without excitation. 

 
Fig. 2. TRMS in the laboratory while hovering. 

The solution to the H∞ control problem had been explored 
to its entirety during the last decades of 20th century. The 
control theory of H∞ optimization developed steeply but 
gradually during that period. Salient properties of sensitivity 
reducing scheme were presented by Zames [5]. Complete 
characterization of four block plant structure by algebraic 
Riccati equations was worked out by Zhou and Khargonekar 
[6]. Contemporary to this, a detailed derivation of output 
feedback H∞ controller was presented, as in [7]. Iwasaki and 
Skelton solved a general H∞ control problem by 
parameterization in state space using linear matrix inequality, 
as in [8]. Doyle presented Riccati equation based solution to 
the H∞ control problem, as in [9]. The modern day H∞ 
controller iteration tools refer to this work [9] for norm based 
optimization. In another work, it was established that finite 
order controller may be obtained only with redundant value of 
constraint [10], that is, the norm. In all contemporary works of 
that period, H∞ optimization algorithms were developed 
mathematically, starting from the basics. But, the limitation of 
the generalized plant in solving the systems with singularity 
issues was sparsely addressed. These issues are tackled in this 
paper by modulating the generalized plant matrix 
representation via suitable augmentation with certain signals. 
The control algorithms thus converge and stabilizing H∞ 
controllers are obtained and tested on TRMS in real time. 

Classical linear control of TRMS or this class of systems by 
pole zero cancellation is not suitable due to RHP zero 
dynamics and cross coupling issues, as in [11]-[13]. Toha and 
Tohki attempted to determine an inverse model based PID 
controller with limited performance indicators, as in [14]. In 
another attempt, hybrid robust control in conjunction with 
sliding mode control was tested on TRMS with less clear 
simulation results of real time tracking and control, as in [15]. 

In an erstwhile work by the authors of the present work, 
simulation results of robust control were presented using a 
simple state space model of TRMS emphasizing the need of 
gravity compensation, as in [16]. No details of generalized 
plant restructuring and real time application were provided in 
that work. Further, the physical plants characterizing this class 
of systems are nonlinear in nature, as in [17]. In another 
attempt, optimal control of decoupled SISO TRMS is 
presented, as in [18]. These facts, jointly with modeling 
uncertainties, make TRMS like systems hard to control by 
standard techniques. Due to model uncertainties and missing 
critical dynamics, there is marked difference between the 
actual plant and the corresponding Linear Time Invariant (LTI) 
models. Thus, H∞ robust control techniques are deemed fit to 
address the control problem in the present work. In this work, 
the LTI model is obtained from the nonlinear mathematical 
model of the system. Subsequently, the robust controllers are 
designed based on the derived nominal model. 

The present paper considers vector augmentation of the 
four block plant structure for certain mathematical correction to 
address the matrix singularity issues in the inclusive 
mathematical plant called as the generalized plant. Refer to a 
former work, as in [6]. Details of the matrix modulation 
technique in conjunction with the existing four block plant 
structure and robust control technique leading to a converging 
controller design approach are presented in this work. The 
mathematical modulation made to the four block generalized 
plant is validated by designing a robust H∞ controller and 
flying the TRMS in the closed loop mode. 

The control objective is to achieve the relative and absolute 
stability parameters and minimize the effects of disturbances at 
the plant outputs in the real time. In order to achieve these 
objectives a model matching problem is considered, where the 
relative and absolute stability specifications are stipulated 
using a second order reference plant. Simulation and real time 
experimental results of the closed loop TRMS illustrate 
reference tracking and robust stability during take off and 
hovering. 

LTI modeling of TRMS is presented in Section II. Details 
of generalized plant restructuring by mathematical modulation 
are presented in Section III. The restructured generalized plant 
is used in designing the H∞ controllers as revealed in 
Section IV. The simulation results are presented and discussed 
in Section V. Conclusion is given in Section VI. 

II. LINEARIZATION OF TRMS 

The mathematical model of TRMS, as presented in [19], is 
restated below for ease of reference. 

A. Moments in the vertical plane 

The moments and angular displacements of TRMS are 
illustrated in vector form in Fig. 3. The nonlinear equations in 
time domain pertaining to the pitch movement of TRMS are 
quoted from (1) through (6) below: 

 𝐼 . 𝜓 𝑀 𝑀 𝑀 𝜓 𝑀   (1) 
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Fig. 3. Illustration of angular displacements and moments of TRMS while 

hovering [19]. 

TABLE I. NOMENCLATURE 

Sl. 
No. 

Nomenclature and Definitions 

Terms Definition 

1. Ψ pitch (elevation) angle 

2. M1 nonlinear static momentum in horizontal plane 

3. MFG gravity momentum 

4. MBψ friction forces momentum in horizontal plane 

5. MG gyroscopic momentum in horizontal plane 

6. τM main motor torque 

7. uM main motor control input 

8. φ yaw (tail displacement) angle 

9. M2 nonlinear static momentum in vertical plane 

10. MBφ friction forces momentum in vertical plane 

11. MR cross reaction momentum in vertical plane 

12. τT tail motor torque 

13. uT tail motor control input 

TABLE II. COEFFICIENTS 

Sl. 
No. 

Coefficients and Values 

Coefficient Values 

1. I1 – moment of inertia of vertical rotor 6.8×10-2 kg.m2 

2. I2 – moment of inertia of horizontal rotor 2×10-2 kg.m2 

3. a1 – static characteristic parameter 0.0135 

4. b1 - static characteristic parameter 0.0924 

5. a2 – static characteristic parameter 0.02 

6. b2 - static characteristic parameter 0.09 

7. Mg – gravity momentum 0.32 N-m 

8. B1ψ – friction momentum function parameter 6×10-3 N-m-s/rad. 

9. B2ψ – friction momentum function parameter 1×10-3 N-m-s/rad. 

10. B1φ – friction momentum function parameter 1×10-1 N-m-s/rad. 

11. B2φ – friction momentum function parameter 1×10-2 N-m-s/rad. 

Sl. 
No. 

Coefficients and Values 

Coefficient Values 

12. Kgy – gyroscopic momentum parameter 0.05 sec/rad. 

13. k1 – motor 1 gain 1.1 

14. K2 – motor 2 gain 0.8 

15. T11 – motor 1 denominator parameter 1.1 

16. T10 – motor 1 denominator parameter 1 

17. T21 – motor 2 denominator parameter 1 

18. T20 – motor 2 denominator parameter 1 

19. Tp – cross reaction momentum parameter 2 

20. T0 – cross reaction momentum parameter 3.5 

21. Kc – cross reaction momentum gain -0.2 

 𝑀 𝑎 . 𝜏 𝑏 . 𝜏    (2) 

Important variables and terms used in (1) through (11) are 
defined in Table 1. Values assigned to different coefficients 
used in (1) through (11) are shown in Table 2. Main rotor of 
TRMS provides necessary thrust for pitch. Rest position of 
pitch rotor in vertical plane is balanced by a counter weight, 
which is modeled by choice, to set the angle of elevation as 
desired. The weight and position of counter weight provide 
necessary inputs for designing the gravity compensation block, 
to be used in feed forward compensation during flight [16]. 

 𝑀 𝑀 . sin 𝜓    (3) 

 𝑀 𝐵 . 𝜓 𝐵 . 𝑠𝑖𝑔𝑛 𝜓   (4) 

 𝑀 𝐾 . 𝑀 . 𝜑. cos 𝜓   (5) 

        𝑇 𝜏 𝑇 𝜏 𝑘 𝑢   (6) 

B. Moments in the horizontal plane 

The nonlinear equations in time domain pertaining to the 
yaw movement of TRMS are quoted from (7) through (11). 

 𝐼 . 𝜑 𝑀 𝑀 𝑀   (7) 

 𝑀 𝑎 . 𝜏 𝑏 . 𝜏    (8) 

 𝑀 𝐵 . 𝜓 𝐵 . 𝑠𝑖𝑔𝑛 𝜑   (9) 

 𝑇 𝑀 𝑘 𝑇 𝜏 𝑘 𝜏 𝑀   (10) 

 𝑇 𝜏 𝑇 𝜏 𝑘 𝑢   (11) 

Equations (1) through (11) completely determine the 
nonlinear behavior of TRMS. The coefficients in Table 2 are 
determined from the design time estimates of TRMS. 

A nominal model of TRMS is obtained by linearizing the 
nonlinear dynamic mathematical model of TRMS presented in 
(1) through (11). The nonlinear model of TRMS is linearized 
around an equilibrium point (the origin) by finding its 
Jacobians. Partial time derivative terms in the mathematical 
expressions are considered for first order differentiation. 
Second and higher order terms are neglected in state space 
modeling due to nominal values. One distinct advantage of 
robust control approach is that the controller design is least 
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affected by the marked difference between the nominal model 
and the actual plant. Thus, the missing dynamics of the system 
are taken care of by the controller algorithm. The given system 
(TRMS) yields seven state variables. The state vector is 
defined as ‘X’. In this paper, all variables are in SI units except 
the presentation of angular displacements (illustrated 
pictorially in degrees for ease of interpretation). 

The state space model may be obtained as: 

  𝑋 𝐴𝑋 𝐵𝑈   (12) 

  𝑌 𝐶𝑋 𝐷𝑈   (13) 

Where, 

 𝑋 𝜓 𝜑 𝜓 𝜑 𝜏 𝜏 𝑀  (14) 

i.e.,     𝑋 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥         (15) 

where 𝜓 is rate of change of pitch angle, and 𝜑 is rate of 
change of yaw angle. (Other variables are defined in Table 1.) 
The variables x1 – x7 are the corresponding state variables. 

The input vector is given as 𝑈 𝑢 𝑢  (16) 

The output vector is defined as 𝑌 𝜓 𝜑  (17) 

The matrices A, B, C and D in (12) and (13) may be given 
as, 

𝐴
𝐴 𝐴
𝐴 𝐴 , 𝐵

0 0 0 0 0

0 0 0 0 0 0
 

𝐶 1 0 0 0 0 0 0
0 1 0 0 0 0 0

, 𝐷 0 0
0 0

 

𝐴

0             0
0             0

1                          0
0                          1

𝑀 𝐼⁄ 0
0           0

𝐵 /𝐼 2𝐵 /𝐼 0           
𝐵 /𝐼    𝐵 /𝐼   

  

𝐴

0            0          0
0            0         0
𝑏 𝐼⁄     0          0

      0        𝑏 𝐼⁄   1 𝐼⁄

, 𝐴
0 … 0
⋮ ⋱ ⋮
0 … 0

 

𝐴
𝑇 𝑇⁄ 0 0

0 𝑇 𝑇⁄ 0
𝑘 𝑇⁄ 1 𝑇 𝑇 𝑇⁄ 0 1 𝑇⁄

 

      (18) 

The state space representation of the plant is made use of in 
defining the generalized plant. A general form of the 
generalized plant is presented in the following section. 

III. GENERALIZED PLANT RESRTUCTURING BY MATRIX 

MODULATION 

Interconnection of the generalized plant, P(s) (to be 
formulated) with controller, K(s) and Inputs/Outputs (I/O’s) is 

illustrated in Fig. 4. With the availability of state space model 
of a given system like TRMS, structuring of the generalized 
plant (four block) is the next step in H∞ robust controller 
design. The input vectors W(s) and U(s) stand for the 
exogenous/disturbance inputs and control inputs, respectively. 
The output vectors Z(s) and Y(s) are the regulated error signals 
and generalized plant outputs, respectively. By definition, I/O’s 
of the generalized plant may differ from those of the physical 
plant. Refer to Skogestad and Postlethwaite in [20] for a 
detailed account on the generalized plant formulation. 

Consider a plant with m1 exogenous inputs, 
𝑤 , 𝑤 , 𝑤 , … , 𝑤  and m2 control inputs, 𝑢 , 𝑢 , 𝑢 , … , 𝑢 . 
Similarly, consider this plant with p1 regulated outputs, 
𝑧 , 𝑧 , 𝑧 , … , 𝑧  and p2 measured outputs, 𝑦 , 𝑦 , 𝑦 , … , 𝑦 . 

That is 

 𝑊 𝑡 𝑤 𝑤 𝑤 ⋯ 𝑤  (19) 

 𝑈 𝑡 𝑢 𝑢 𝑢 ⋯ 𝑢  (20) 

 𝑍 𝑡 𝑧 𝑧 𝑧 ⋯ 𝑧  (21) 

 𝑌 𝑡 𝑦 𝑦 𝑦 ⋯ 𝑦  (22) 

The p×m generalized plant system may be presented in 
state space as 

 𝑋 𝑠 𝐴𝑋 𝑠 𝐵 𝑊 𝑠 𝐵 𝑈 𝑠  (23) 

 𝑍 𝑠 𝐶 𝑋 𝑠 𝐷 𝑊 𝑠 𝐷 𝑈 𝑠  (24) 

 𝑌 𝑠 𝐶 𝑋 𝑠 𝐷 𝑊 𝑠 𝐷 𝑈 𝑠  (25) 

The generalized plant, P(t) in packed form may be given as  

 𝑃 𝑡
𝐴 𝐵 𝐵
𝐶
𝐶

𝐷 𝐷
𝐷 𝐷

  (26) 

⎯⎯ 𝑃 𝑠
𝐶
𝐶 𝑠𝐼 𝐴 𝐵 𝐵

𝐷 𝐷
𝐷 𝐷  (27) 

Singularity of the sub-matrices is an unavoidable cause of 
premature termination of control algorithms. As we consider 
sensor singularity at zero frequency and control singularity at 
infinite frequency, the matrices D21 and D12 need special 
attention. In case, D12 has dependent columns, full columns 
rank (m2) cannot be retained. This fact leads to control 
singularities as one or more control signal(s) is/are prohibited 
from affecting the state. Similarly, when D21 has dependent 
rows, full row rank (p2) may fall short. Thus, sensor 
singularities occur because one or more output(s) is/are not 
measurable during estimation. In the present work, such 
singularities are taken care of by considering mathematical 
augmentations in the generalized plant leading to correction in 
the conventional structure. The H∞ controller optimization 
algorithm is not affected by this correction. 
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Fig. 4. Control configuration of the generalized plant. 

 
Fig. 5. Singularity treated general structure. 

A second order reference plant, G0(s) with slightly 
underdamped responses is considered to specify the desired 
responses. Thus, output error regulation approach is used to 
optimize the control algorithms. A singularity treated general 
structure of the generalized plant along with the controller is 
presented in Fig. 5. The four exogenous input vectors are 
illustrated, viz. measurement noise, output disturbance, 
weighted measurement noise, and reference input. The other 
input is the control vector, U(s). The output error between the 
reference plant and the actual plant is considered as vector Z(s), 
to be regulated. The difference between the measured output 
and the reference input is considered as the generalized plant 
output, E1(s). Control singularity is mitigated by augmenting 
the weighted control signal, [εu]U(s) to the output signal, Z(s) 
by regulation. [εu] is a m2×m2 diagonal matrix. Similarly, 
sensor singularity is mitigated by augmenting the weighted 
measured output, [εy]YN(s) to the control signal U(s). [εy] is a 
m2×p2 diagonal non-square matrix. Orders of the matrices and 
vectors are shown in Table 3. Thus, we have 

𝑊 𝑠 𝑊 , 𝑈 𝑠 𝑈 , 

𝑍 𝑠 𝑍 , 𝑌 𝑠 𝑌 . 

From (27), the generalized plant may be obtained as a four 
block plant as shown below: 

𝑃 𝑠
𝑃 𝑃
𝑃 𝑃 , where 𝑃

𝑃 𝑃
𝑃 𝑃 , 

𝑃 𝑃 𝑃 , and 𝑃 𝑃 𝑃   (28) 

Further, defining each sub-matrices, 

TABLE III. ORDERS – VECTORS AND MATRICES 

Sl. No. 
Vector and Matrix Order 

Vector/Matrix Name Order 

1. No. of  states of G(s) n 

2. No. of  states of G0(s) n0 

3. No. of exogenous inputs m1 

4. No. of control inputs m2 

5. No. of regulated outputs p1 

6. No. of measured outputs p2 

7. Order of A (n + n0)×(n + n0) 

8. Order of B1 (n + n0)×(m1 + m2) 

9. Order of B2 (n + n0)×(m2) 

10. Order of C1 (p1 + m2 )×(n + n0) 

11. Order of C2 p2×(n + n0) 

12. Order of D11 (p1 + m2)×(m1 + m2) 

13. Order of D12 (p1 + m2)×m2 

14. Order of D21 p2×(m1 + m2) 

15. Order of D22 p2×m2 

*p1 = p2 + m2; m1 = p2 +m2 

𝑃

⎣
⎢
⎢
⎢
⎡
𝐺 0 ⋯ 0 0

0
…
0

𝐺 0 ⋯
0 ⋯ 0
⋯ 0 ⋯

0
⋯
0

0 0 ⋯ 0 𝐺 ⎦
⎥
⎥
⎥
⎤

 

𝑃

⎣
⎢
⎢
⎢
⎡

𝐺 𝜀 𝐺 𝜀 ⋯ ⋯ 𝐺 𝜀
𝐺 𝜀

⋯
⋯

𝐺 𝜀
⋯
⋯

⋯
⋯
⋯

⋯
⋯
⋯

𝐺 𝜀
⋯
⋯

𝐺 𝜀 𝐺 𝜀 ⋯ ⋯ 𝐺 𝜀 ⎦
⎥
⎥
⎥
⎤

 

𝑃 0 , 𝑃 0  

𝑃

⎣
⎢
⎢
⎢
⎡

𝐺 𝐺 ⋯ ⋯ 𝐺
𝐺
⋯
⋯

𝐺 ⋯ ⋯
⋯       ⋯ ⋯
⋯        ⋯ ⋯

𝐺
⋯
⋯

𝐺 𝐺 ⋯ ⋯ 𝐺 ⎦
⎥
⎥
⎥
⎤

 

𝜀

⎣
⎢
⎢
⎢
⎡
𝜀 0 ⋯ 0 0
0
⋯
0

𝜀 0 ⋯
0 ⋯ 0
⋯ 0 ⋯

0
⋯
0

0 0 ⋯ 0 𝜀 ⎦
⎥
⎥
⎥
⎤

, 𝑃 𝜀  

     (29) 

𝑃 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑀𝑎𝑡𝑟𝑖𝑥 , 𝑃 𝑃 , 𝑃 𝑃   
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𝜀

⎣
⎢
⎢
⎢
⎡
𝜀 0 ⋯ ⋯ ⋯ ⋯ 0 0
0 𝜀 0 ⋯
⋯ 0 ⋯ 0
0 ⋯ 0 ⋯

⋯ ⋯ ⋯ 0
⋯ ⋯ ⋯ ⋯
0 ⋯ ⋯ 0

0 0 ⋯ 0 𝜀 0 0 0⎦
⎥
⎥
⎥
⎤

∀𝑚 𝑝  

   (30) 

𝐺 𝑠 𝑃 , 𝐺 𝑠 𝐺 𝜔 𝑠 2𝜉 𝜔 𝑠 𝜔⁄  

Where,  𝑘 1,2,3, … 𝑝 .           (31) 

The plant transfer function, 𝐺 𝑠 𝑃         (32) 

IV. DESIGNING OF H∞ CONTROLLER 

The objective of H∞ optimization algorithm is to minimize 
the respective norms of the closed loop transfer matrix TZW(s) 
from W(s) to Z(s) for a given generalized plant P(s), as in [10]. 
The H∞ optimization algorithm yields a strictly proper 
controller for a suboptimal norm (γ>1) on TZW(s). Thus, the H∞ 
optimization problem may be stated as finding a stabilizing 
controller, K(s) with constraint on loop transfer function, 
TZW(s), as in [21]. Mathematically, 

‖𝑇 𝑠 ‖ 𝛾, 𝛾 1∀ strictly proper H∞ controller. 

The mathematically modulated generalized plant structure 
presented in Section III may be simplified in order to design a 
controller for TRMS. Fig. 5 is redrawn with TRMS as the 
actual plant and illustrated in Fig. 6. Orders of the vectors and 
matrices are shown in Table 4. Thus, we have 

𝑊 𝑠 𝑊 , 𝑈 𝑠 𝑈 , 

𝑍 𝑠 𝑍 , 𝑌 𝑠 𝑌 . 

𝜀
𝜀 0
0 𝜀 , 𝜀

𝜀 0
0 𝜀 . 

Thus, the generalized plant is obtained as 

𝑃 𝑠

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝐺 0

0 𝐺
𝐺 𝜀 𝐺 𝜀
𝐺 𝜀 𝐺 𝜀

0   0
0   0

0            0
0            0 ⎣

⎢
⎢
⎡

𝐺 𝐺
𝐺 𝐺
𝜀 0
0 𝜀 ⎦

⎥
⎥
⎤

1 0
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Fig. 6. Singularity treated TRMS. 

TABLE IV. ORDERS – VECTORS AND MATRICES 

Sl. No. 
Vector and Matrix Order 
Vector/Matrix Name Order 

1. No. of  states of G(s) 7

2. No. of  states of G0(s) 4

3. No. of exogenous inputs 2*

4. No. of control inputs 2

5. No. of regulated outputs 4

6. No. of measured outputs 2

7. Order of A 11×11

8. Order of B1 11×4

9. Order of B2 11×2

10. Order of C1 4×11

11. Order of C2 2×11

12. Order of D11 4×4

13. Order of D12 4×2

14. Order of D21 2×4

15. Order of D22 2×2

*Output disturbance and measurement noise vectors are ignored in this design 
for simplicity. 

For computer programming, values are assigned from 
Table 2 into (18). The generalized plant is defined in time 
domain from (26) and used as it is for defining programming 
parameters. Other values are mentioned below: 

𝜀 𝜀  0.01, 𝜀 𝜀  0.01, 𝜉 𝜉 0.9 

𝜔  𝜔 0.5, 𝐺 1.02, 𝐺 0.01 

A suboptimal H∞ controller is obtained by computer 
iteration. Controller is of 11th order and strictly proper in 
nature. The controller is tested on the closed loop unity 
feedback TRMS in SIMULINK for computer simulation. 
Simulation results of the experiments are presented in the next 
section. All experiments are conducted in the laboratory 
environment under ideal conditions. 

V. SIMULATION RESULTS - H∞ CONTROL 

As discussed in Section I, TRMS has pitch and yaw 
movements which are the angular displacements in two 
perpendicular planes. (No roll is permitted.) If tail position is 
fixed, pitch output can be observed in a fixed vertical plane. 
Similarly, if pitch position is fixed in a vertical plane, tail will 
displace in a plane perpendicular to the pitch plane. In the 
TRMS setup, if the pitch is given an elevation of 28º from rest, 
it hovers in the horizontal plane. Although, there is a good 
range of pitch and yaw angles for which the system shows 
stability in real time, yet simulation results are presented for 
pitch angle of  28º and yaw angles of 80º and 210º. The H∞ 

controller is simulated for square, sinusoidal and pseudo 
random noise inputs with few other sets of command inputs 
before being tested on the actual TRMS. Physical plant is 
tested for pitch command of 28º and yaw command of 80º. 
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A. Computer Simulation with Square, Sine and Pseudo 
Random Noise Inputs 

Fig. 7(a) illustrates pitch response to square signal. The 
outputs of TRMS and second order reference system, G01(s) 
are compared, here. Fig. 7(b) illustrates control input to main 
rotor. The control signal to each servo motor is ±18 volts. But, 
the input to digital to analog interface is bounded within ±2.5 
volts. In the latest software versions of TRMS, a built-in 
saturation block of ±2.5 volts is provided. Fig. 8(a) compares 
yaw response and output of G02(s) against square command. 
Yaw displacement is limited to ±210º in horizontal plane in 
actual plant. Fig. 8(b) illustrates control input to tail rotor. 

The bounded control for tail rotor and main rotor are ±2.5 
volts, which is shown as a band in Fig. 8(b). The control 
voltage spikes are taken care by the built-in saturation block. 
Fig. 9(a) and Fig. 10(a) illustrate responses against sinusoidal 
inputs. Delay in pitch and yaw outputs may be recorded. 
Control inputs are well within limit as presented in Fig. 9(b) 
and Fig. 10(b). Again in Fig. 11(a) and Fig. 12(a), responses 
against pseudo (band limited) random noise inputs are tested 
and presented. Notably, the outputs swing around the average 
values of inputs. Again the control signals are noisy but 
bounded within specifications. Finally, TRMS is tested in real 
time against a constant set point. But, before that it is tested by 
computer simulations as illustrated in Fig. 13 to 15. The 
control signals are observed to be within limit. Control signal is 
an indicator of the energy exerted by the system. 

 
(a) 

 
(b) 

Fig. 7. (a) Pulse command input of 0.02 Hz – TRMS pitch displacement Vs 
response of reference plant, G01(s) (b) Main rotor control input in volts for 

pulse command input. 

 
(a) 

 
(b) 

Fig. 8. (a) Square command input – TRMS yaw displacement Vs response of 
reference plant, G02(s) (b) Tail rotor control input in volts. Rotor input 

saturation beyond ±2.5 volts is observed (square command). 

 
(a) 

 
(b) 

Fig. 9. (a) Sinusoidal command input of 0.2 radians/second – TRMS pitch 
displacement Vs response of reference plant, G01. (b) Main rotor control for 

sinusoidal command input. 
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(a) 

 
(b) 

Fig. 10. (a) Sinusoial command input – TRMS yaw displacement Vs response 
of reference plant, G02(s). (b) Tail rotor control for sinusoidal command input. 

 
(a) 

 
(b) 

Fig. 11. (a) Pseudo random noise command input of upper value 28º and 
frequency 10Hz – TRMS pitch displacement Vs response of reference plant, 

G01(s). (b) Main rotor control - Pseudo random noise command input of upper 
value 28º and frequency 10Hz. 

 
(a) 

 
(b) 

Fig. 12. (a) Pseudo random noise command input of upper value 210º and 
frequency 10Hz – TRMS yaw displacement Vs response of reference plant, 
G02(s). (b) Tail rotor control - Pseudo random noise command input of upper 

value 210º and frequency 10Hz. 

 
(a) 
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(c) 

 
(d) 

Fig. 13. (a) TRMS pitch displacement Vs response of reference plant, G01(s) – 
pitch command 28º and yaw reference 0. (b) Main rotor control – pitch 

command 28º and yaw reference 0. (c) TRMS yaw displacement Vs response 
of reference plant, G02(s) – pitch command 28º and yaw reference 0. (d) Tail 

rotor control – pitch command 28º and yaw reference 0. 

In Fig. 13(c), response of G02 is not perceptible as G0 is in 
canonical form and cross coupling is not present. On the other 
hand, TRMS has coupling effect, which is cancelled but with 
delay. Yaw reference is set to command signal of 80º and pitch 
reference is kept at neutral, as illustrated in Fig. 14(a)-(d). 
Again, in Fig. 14(a), output of G01 is not observed due to the 
decoupled structure of G0. Thus, TRMS illustrates coupling 
between two forward paths. Fig. 14(b) illustrates that command 
input zero does not imply that control input will also be zero. 
The control efforts in Fig. 13(d) and Fig. 14(b) are to minimize 
the cross coupling effects. 

In Fig. 14(d), although the upper bound of control input is 
violated, yet the built-in saturation block protects the physical 
system from any damage. It is noticed that single spike of 
control voltage is sufficient to achieve yaw reference angle of 
80º. In Fig. 15(a)-(d), pitch reference of 28º and yaw reference 
of 80º are given simultaneously and outputs are recorded. 

B. Control Experiment on Real Time TRMS 

The H∞ controller has demonstrated commendable results 
as illustrated in Fig. 7 through Fig. 15. Response of TRMS is in 
close proximity with the second order reference plant as 
desired. 

This 11th order H∞ controller is further tested on closed 
loop TRMS in the laboratory environment and outputs are 
recorded as presented in Fig. 16(a)-(d). The system is tested 
under nominal conditions, that is, disturbance due to external 
agencies are neglected. The effect of the output disturbance on 

pitch and yaw displacements will be presented in an ensuing 
paper. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. (a) TRMS pitch displacement Vs response of reference plant, G01(s) – 
pitch command 0 and yaw reference 80º. (b) Main rotor control – pitch 

command 0 and yaw reference 80º. (c) TRMS yaw displacement Vs response 
of reference plant, G02(s) – pitch command 0 and yaw reference 80º. (d) Tail 

rotor control – pitch command 0 and yaw reference 80º. 

0 20 40 60 80 100
-1

0

1

2

3

4

5

6

TIME IN SECONDS -->

Y
A

W
 A

N
G

L
E

 I
N

 D
E

G
R

E
E

S

 

 

COMMAND INPUT
TRMS YAW OUTPUT
G02 OUTPUT

0 20 40 60 80 100

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

TIME IN SECONDS -->

C
O

N
T

R
O

L
 I

N
P

U
T

 I
N

 V
O

L
T

S
 -

->

 

 

TAIL ROTOR CONTROL 0 20 40 60 80 100
-1

0

1

2

3

4

5

6

7

TIME IN SECONDS -->

P
IT

C
H

 A
N

G
L

E
 I

N
 D

E
G

R
E

E
S

 -
->

 

 

COMMAND INPUT
TRMS PITCH OUTPUT
G01 OUTPUT

0 20 40 60 80 100
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

TIME IN SECONDS -->

C
O

N
T

R
O

L
 I

N
P

U
T

 I
N

 V
O

L
T

S
 -

->
 

 

MAIN ROTOR CONTROL

0 20 40 60 80 100
0

20

40

60

80

100

TIME IN SECONDS -->

Y
A

W
 A

N
G

L
E

 I
N

 D
E

G
R

E
E

S
 -

->

 

 

COMMAND INPUT
TRMS YAW OUTPUT
G02 OUTPUT

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

TIME IN SECONDS -->

C
O

N
T

R
O

L
 I

N
P

U
T

 I
N

 V
O

L
T

S
 -

->

 

 

TAIL ROTOR CONTROL



Future Technologies Conference (FTC) 2017 
29-30 November 2017| Vancouver, Canada 

427 | P a g e  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 15. (a) TRMS pitch displacement Vs response of reference plant, G01(s) – 
pitch command 28º and yaw reference 80º. (b) Main rotor control – pitch 

command 28º and yaw reference 80º. (c) TRMS yaw displacement Vs response 
of reference plant, G02(s) – pitch command 28º and yaw reference 80º. (d) Tail 

rotor control – pitch command 28º and yaw reference 80º. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 16. (a) TRMS pitch displacement – pitch command 28º and yaw reference 
80º in real time. (b) Main rotor control – pitch command 28º and yaw reference 
80º. (c) TRMS yaw displacement – pitch command 28º and yaw reference 80º 
in real time. (d) Tail rotor control – pitch command 28º and yaw reference 80º. 
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C. Analysis of Test Results 

The experiments on TRMS in Fig. 15 and 16 have 
illustrated acceptable results on relative and absolute stability 
parameters. Tables 5 and 6 compare pitch and yaw outputs, 
respectively. The controlled amplitude at the natural frequency 
(0.346 Hz) is observed as ripple at pitch output of real time 
experiment in steady state, as in [1]-[4]. The delay and inverse 
responses are observed in both the cases, that is, computer 
simulation and real time experiment. Control signals are well 
within bound illustrating energy efficient control, again both in 
computer simulation and real time cases. 

TABLE V. COMPARISON OF RELATIVE STABILITY PARAMETERS - PITCH 

Sl. No. 
Relative Stability Parameters of TRMS 

Name of parameter Simulation Real time 

1. Rise time (10% to 90%) 
3.4 
seconds 

3.2 
seconds 

2. %Peak overshoot 9.929 25 

3. Settling time (2%)* 
9.3 
seconds 

36.2 
seconds 

4. Delay** 
0.035 
seconds 

0.4 
seconds 

5. %Steady state error* 0.071 1.786 

6. 
Time to reach second high 
frequency zero 

6.6 
seconds 

2.5 
seconds 

*Output ripple in real time pitch response is neglected. 
**Recorded from experimental data. 

TABLE VI. COMPARISON OF RELATIVE STABILITY PARAMETERS - YAW 

Sl. No. 
Relative Stability Parameters of TRMS 

Name of parameter Simulation Real time 

1. Rise time (10% to 90%) 
5.52 
seconds 

1.4 
seconds 

2. %Peak overshoot Zero 13 

3. Settling time (2%)* 
10.2 
seconds 

12.3 
seconds 

4. Delay** Zero Zero 

5. %Steady state error* 0.094 2.088 

*Output ripple in real time yaw response is neglected. 
**Recorded from experimental data. 

It is inferred from Tables 5 and 6 that all parameter values 
are scaled up in case of actual plant. The possible causes are 
modeling and scaling errors. 

VI. CONCLUSION 

This paper has presented a matrix modulation technique on 
a conceptual plant, known as generalized plant or four block 
plant in control literature, for convergence of H∞ control 
algorithm. The convergence is ensured by populating the sub-
matrices of the generalized plant by artificial augmentation of 
certain signals (vectors) at design stage. This approach reduces 
the requirement of augmenting certain hardware loops in the 
actual plant in order to mitigate the signal singularities. Thus, 
the matrix inversion issues are transformed to signal 
singularities. The optimization is based on output error 
regulation of a model matching problem. The H∞ controller, 
developed in this way, is tested on the TRMS by computer 
simulation followed by real time experiment. The illustrations 

of modeling and scaling errors, RHP zeros, delays, and natural 
modes in the outputs imply further research opportunities in 
this area. In light of the high order of the controllers and its 
hardware implementation issues, the controller model 
reduction approach will be duly addressed in an ensuing paper. 
It may further be added that helicopter technology has 
developed in many centuries and thus migration from 
mechanical era to the electrical world may engage at least 
another few decades. 

ACKNOWLEDGMENT 

This work was performed in the Control Systems 
laboratory of the Electrical Engineering Department at 
National Institute of Technology Calicut, India. The authors 
are thankful to the technical staff of the Institute for providing 
the experimental support, facilities and arrangement. The 
authors appreciate the valuable comments from the reviewers. 

REFERENCES 

[1] S. M. Ahmad, A. J. Chipperfield, and M. O. Tohki, “Modelling and 
control of a twin rotor multi-input multi- output system,” in Proc. 
American Control Conference, pp. 1720-1724, 2000. 

[2] S. M. Ahmad, A. J. Chipperfield, and M. O. Tohki, “Dynamic modelling 
and optimal control of a twin rotor mimo system,” in Proc. IEEE, pp. 
391-398, 2000. 

[3] S. M. Ahmad, A. J. Chipperfield, and M. O. Tohki, “Dynamic modelling 
and linear quadratic Gaussian control of a twin-rotor multi-input multi-
output system,” in Proc. Instn. Mech. Engrs, Journal of Systems and 
Control Engineering, vol. 217, part I, pp. 203-227, 2003. 

[4] P. K. Paul, and J. Jacob, “On the modeling of twin rotor MIMO system 
using chirp inputs as test signals,” Asian Journal of Control, vol. 19, no. 
6, pp. 1–10, November 2017. 

[5] G. Zames, “Feedback and optimal sensitivity: model reference 
transformation, multiplicative seminorms, and approximate inverses,” 
IEEE Trans. Autom. Control, vol. AC-26, no. 2, pp. 301-320, April 
1981. 

[6] K. Zhou, and P. P. Khargonekar, “An algebraic Riccati equation 
approach to H∞ optimization,” Syst. & Control Letters, North Holland, 
vol. 11, pp. 85-91, 1988.  

[7] M. Sampei, T. Mita, and M. Nakamichi, “An algebraic approach to H∞ 
output feedback control problems,” Syst. & Control Letters, North 
Holland, vol. 14, 13 – 24, 1990. 

[8] T. Iwasaki , and R. E. Skelton, “All controllers for the general H∞ 
control problem: LMI existence conditions and state space formulas,” 
Automatica, Great Britain, vol. 30, no. 8, pp. 1307 – 1307, 1994. 

[9] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-
space solutions to standard H2 and H∞ control problems,” IEEE Trans. 
Autom. Control, vol. 34, no. 8, pp. 831 – 847, 1989. 

[10] A. Megretski, “On the order of optimal controllers in the mixed H-2/H-
infinity control,” in Proc. 33rd Conf. Decis. Control, Lake Buena Vista, 
Florida, pp. 3173-3174, 1994. 

[11] M. L. Martinez, C. Viva, and M. G. Ortega, “A multivariable nonlinear 
H∞ controller for a laboratory helicopter,” in Proc. 44th IEEE Conf. on 
Decision and Control, pp. 4065-4070, 2005.  

[12] M. L. Martinez, C. Vivas, M. G. Ortega, and F. R. Rubio, “Nonlinear L2 
control of a laboratory helicopter with variable speed rotors,” 
Automatica, vol. 43, pp. 655 – 661, 2007. 

[13] Ph. Mullhaupt, B. Srinivasan, J. Levine, and D. Bonvin, “Cascade 
control of the toycopter,” in Proc. European Control Conf. (ECC’99), 
Karlsruhe, pp. 3226 – 3231, 1999. 

[14] S. F. Toha, and M. O. Tokhi, “Inverse model based control for a twin 
rotor system,” IEEE 9th Int. Conf. Cybernetic Intelligent Systems, UK, 
pp. 1-5, September 2010. 

[15] J. P. Su, C. Y. Liang, and H. M. Chen, “Robust control of a class of 
nonlinear systems and its application to a twin rotor MIMO system,” 



Future Technologies Conference (FTC) 2017 
29-30 November 2017| Vancouver, Canada 

429 | P a g e  
 

IEEE Int. Conf. on ICIT, Bangkok, Thailand, vol. 2, pp. 1272 -1277, 
2002. 

[16] P. K. Paul, and J. Jacob, “Elevation and hovering control of TRMS via 
H∞ optimization technique,” 1st IEEE Int. Conf. ICPEICES, New Delhi, 
India, pp. 1-6, 2016. 

[17] A. Rahideh, M. H. Shaheed, and H. J. C. Huijberts, “Dynamic modelling 
of a TRMS using analytical and empirical approaches,” Control Eng. 
Practice, vol. 16, pp. 241–259, 2008. 

[18] T. W. Lu, and P. Wen, “Time optimal and robust control of twin rotor 
system,” IEEE Int. Conf. Control Automation, vol. ThA3-2, pp. 862-
866, 2007. 

[19] Feedback Instruments Ltd., Twin rotor MIMO system control 
experiments 33-949S Laboratory Manual, U.K., 2005. 

[20] S. Skogestad, and I. Postlethwaite, Multivariable Feedback Control - 
Analysis and Design, 2nd ed., John Wiley and Sons, England, , 2005. 

[21] D. U. C. Delgado, and K. Zhou, “A parametric optimization approach to 
H∞ and H2 strong stabilization,” Automatica, vol. 39, pp. 1205-1211, 
2003. 

 


