
Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

709 | P a g e

Defining a DSL for Transmission Pipeline Systems

Metamodeling

Bunakiye R. Japheth

Department of Computer Science

Edo University Iyamho

Auchi, Nigeria

jbunakiye@gmail.com

Acheme I. David

Department of Computer Science

Edo University Iyamho

Auchi, Nigeria

ijeggs@gmail.com

Abstract—Transmission pipeline systems metamodeling is

simply reengineering pre-constructed notations and abstractions

of the pipeline engineering domain in a form that offer expressive

power for the domain expert to create designs that suits the

intended transmission pipeline project. The required formality

that can provide such expressive power is a domain specific

language (DSL), the domain specific modeling approach,

therefore is adopted to create a domain specific platform where

the specification primitives represent abstractions and

conceptual modeling processes in the design and implementation

of transmission pipeline configurations. Domain specific

languages, which are centered on meta-modeling raises the level

of abstraction beyond programming by specifying the solution

directly using domain concepts. The conceptual DSL definition

brings to bear domain abstractions, and expressive power

restricted to, the domain of transmission pipelines for the related

products in the petroleum industry and in water supply.

Consequently this can be achieved only by taking advantage of

specific properties of the pipeline engineering application domain

that pertain to transmission. The description of these specific

properties therefore represents the domain concepts, which will

be useful in creating the abstractions and in the semantic

mappings of the elements of the DSL modeling platform.

Keywords—Formal specifications; semantic mappings;

petroleum industry; pipeline design; modeling platform

I. INTRODUCTION

Transmission pipelines are the most common means of
transporting oil or gas [1]. They are used to transport large
volumes over long distances to major markets. These oil and
gas products are introduced into a pipeline transmission
system at various terminals, processing plants near supply
fields, and interconnections with other transmission pipelines.
Transmission pipeline also delivers natural gas to large
industrial end-users, to homes and businesses for heat and
energy. Major characteristics of transmission pipelines are that
they are long and continuously welded flow lines with a
number of curves and no sharp bends. These properties of
transmission pipelines mean that small sections of pipeline are
not easily removed for maintenance and consequently great
care is taken to prevent problems arising in the first place. A
pipeline is extremely expensive to lay, especially in the case
of offshore pipelines [4]. Though maintenance on pipelines is
expensive; they frequently form the most efficient and cost-
effective method of transporting the quantities of oil or gas
produced.

The industry encompasses a range of different activities
and processes which jointly contribute to the transformation of
underlying petroleum resources into useable end-products
valued by industrial and private customers. To address the
global competition, some midstream operators, which link the
upstream and downstream entities mostly, include resource
transportation and storage to strive to deliver more quickly
through transmission pipeline systems designed from better
and cheaper platforms [20]. For complex systems such as
transmission pipelines, the design is fundamentally an
overwhelming task often involving multiple computation-
intensive processes for both discrete and continuous design
variables. Taking the design computation challenge with
AutoCAD, a computer aided design (CAD) system as an
example, over the years such CAD computing environments
did map domain concepts to specific abstraction levels that
concentrates and relates only to the computer aided design
technologies but cannot express domain concepts
appropriately. It is reported that it takes a stakeholder in the
pipeline engineering design domain to always seek for the
services of CAD systems for solving pipeline design
problems, and for a favorable project, assuming an average
computation time would be several days to months, which is
unacceptable in real practice [14].

Despite continual advances in CAD computing power, the
complexity of usage seems to increase. In recent years, the
domain specific languages of the model had driven
engineering based method for design representation in a
language has attracted many attentions [6]. This approach
represents physical model functions with simple domain
concepts and attributes. With a simple model, and transformed
into a meta-model, classic design, for example of a
transmission pipeline that can be easily fabricated to effect
smooth conveyance of products can then be effectively
achieved. Such a method is therefore referred as meta-
modeling the pipeline systems through the DSL definitions.
Section 2 of this paper describes related work for variability in
the domain specific modeling approach. In Section 3 the
concepts of model driven architecture and domain specific
modeling in the model driven engineering development spaces
is described, followed by the domain specific modeling
architecture for supporting the actual DSL specification
definitions. Section 4 briefly describes the transmission
pipeline domain with regards to tracing the domain concepts
and the domain model in a DSL system. Section 5 describes
the primitives’ specifications, followed by discussion on meta-

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

710 | P a g e

modeling and case study in Section 6. Section 5 concludes the
paper and describes future work.

A. Motivation and Open Problems

The strategy is utilizing domain specific modeling
technologies in pipeline systems meta-modeling. In the
domain of transmission pipeline engineering, there have been
constant demands for more cost-effective and efficient tools
and methodologies that could aid better, and provide faster
and productive solutions to production of artifacts for
pipelines systems. Though GPLs and common interactive
CAD systems are effectively utilized for modeling, they do
lack the necessary power to express the specifications of these
models in a language (i.e., formal notations), which could
enable the systematic representation of the various facets of
the specific pipeline domain. In addition, they cannot express
domain concepts appropriately, which means they are also
characterized with the complexities of time consuming, syntax
oriented and code centered development to achieving results
in particular problem spaces [13].

The motivation therefore, is to define a DSL that could
tackle the identified complexities of conventional software
development tools. The DSL structure simply offers primitives
whose semantics are familiar only to transmission pipeline
mechanisms. With this well-defined DSL through domain
specific modeling (DSM) approach, non-programmers and
domain experts will be provided the resource to operate on
very familiar notations and achieving great results without
bothering on how the system is working, and without being
burdened by its syntactic or semantic requirements [2].

II. RELATED WORK

A pipeline system modeling language is simply a domain
specific language whose pre-constructed notations and
abstractions only offer expressive power to the pipeline
engineering domain. As usual it has its own definition, which
to some extent is presented in this work. However a few more
formally defined schemes have been identified. Defining the
domain directly as a language is [1].

Another exemplary language definition based on domain
analysis is that of [2]. He translated a feature diagram to both
grammars and propositional formulae. The semantics of the
grammar is a set of iterative tree with string tokens, and thus
repetition was possible. His definitions are close to ours but
differs in the respect that there is no clear separation of
decomposable features. Some research works have dealt with
domain specific modeling languages. The Model-Driven
Testing (MDT) work on automation of software testing
emerged from the project of [10], which resulted in a domain
specific modeling language (DSML) for Mobile Phone
Applications Testing. They were interested in providing a
platform, where test scenarios such as downloading an
application, installing it, launching it, navigating in menus,
validating user permission requests that are typically repeated
on several devices can be performed by as a suite of actions by
the tester or a non-programmer on one phone. The DSML uses
models as instances of the language metamodel to express and
execute tests [10]. One significant advantage we have over
this method is their use of UML diagrams that traditionally

restricts the user with its diagram definition standards. With
DSM- DSL approach a potential user is not restricted but has
the freedom to express their viewpoints clearly to achieve
desired results.

There has been a surge of interest in applying model
engineering and DSMLs to tool integration, with the benefits
of model transformations [11]. The novel idea we are bringing
to bear in this scenario is to greatly simplify the two issues of
syntactic and semantic interoperability via tool utilization
instead of defining each dynamics separately on a different
framework before integrating to achieve desired model
transformations. MetaEdit+'s implementation of the GOPPRR
meta-modeling language provides useful metamodeling
flexibility [8]. The heart of the environment is the
MetaEngine, which handles all operations on the underlying
conceptual data through a well-defined service protocol. The
different tools request services of the engine in accessing and
manipulating repository data [9]. The Graphical Editing
Framework (GEF) provides technology to create rich
graphical editors and views for the Eclipse Workbench UI [3].
GEF makes no restrictions on the underlying model; it can be
an EMF model, Java code, etc. [7]. GEF follows the MVC
(model-view-controller) concept, meaning that there is a
separation between the model, its graphical representation
(view) and the program logic (controller) [3].

III. METHODOLOGY

A. Model Driven Engineering (MDE)

Model Driven Engineering (MDE) technology is a suit of
methodologies that support the development of domain
specific languages (DSLs). There are [5] two approaches to
MDE; the Model Driven Architecture (MDA) and Domain-
Specific Modeling (DSM). The Domain-specific modeling
approach [18] is characterized by a domain specific modeling
language (DSML). The language formalism usually is about
requirements within particular domains, such as oil and gas
pipeline systems. All the models are defined in some language
which defines the relationships among concepts in the domain
and precisely specify the key semantics and constraints
associated with these domain concepts [12]. MDE with DSML
definition is declarative, usually expresses what the program
should accomplish by hiding from the user the complexities of
how to solve the problem in terms of sequences of actions to
be taken [3]. Policies are specified at a higher level of
abstraction using models and are separated from the
mechanisms used to enforce the policies.

B. Domain-Specific Modeling (DSM)

Domain-specific modeling (DSM) is a new approach to
model-based software development that defines and produces
domain specific languages (DSLs). DSM is a top-down
vertical approach that gives the developer the freedom to use
structures and logic of a domain model that is specific to the
target application domain, and thus, completely independent
of programming language concepts and syntax. The
application domain of consideration, for example,
transmission pipeline systems can be represented in a domain
model through metamodeling. The domain model usually
represents the real world components, concepts and

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

711 | P a g e

vocabulary relative to the core of the language definitions [6].
The necessity for a domain model is founded on the fact that
not only is it the exact conceptual framework that showcases
the semantics and the language workflow [9], but also
contains domain classes and relationships as the basic defining
components.

A well-defined domain-specific language provides
abstraction mechanism to deal with complexity in a given
domain; defining a DSL for transmission pipeline systems
metamodeling is simply creating pipeline models from
conception through a domain specific modeling language
platform to produce an artifact. The definitions in our case, is
to clearly identify and specify the concepts in the transmission
pipelines domain as instances in the DSL such that the
defining elements form the language metamodel with related
domain notations [10]. In this way the design of a typical
transmission pipeline tied to a particular conceived project
system can achieved without the user facing any difficulty of
how the policies are mapped onto the underlying mechanisms
implementing them.

C. DSM Architecture

Illustrated in Fig. 1 is the DSM architecture for defining
the DSL; whereas the left side describes the actual
specifications, the right side describes use of the domain
model [7]. The language is formalized into a metamodel and
all models describing applications or features are instantiated
from this metamodel. Thus models can’t express anything else
other than what the language allows. This language
instantiation ensures that developers for a typical transmission
pipeline follow the concepts and rules of the domain model
[9]. This flexibility is making sure the domain framework is
not visible to developers, in a similar manner as basic input
and output system (BIOS) code or primitives called by the
running application are not visible to programmers in general
purpose programming languages (GPL).

Fig. 1. DSM Architecture (source: Steven and Juha, 2008).

Another progression is in the aspect of clear definitions
and use of the modeling language. In the simplest cases, each
modeling symbol generates certain fixed artifact, including the
values entered into the symbol as arguments. The domain
framework also provides the interface between the generated
artifact and the underlying target platform. It can directly call
the platform components, whose existing services are enough

to make the artifacts simpler. This domain framework can
range in size from components down to libraries, which
provide predefined building blocks [11]. In DSM, all the
possible layers are hidden and not visible to developers yet the
use of the domain model elements are made automatic.

IV. DEFINING THE PRIMITIVES

Significantly, the system definitions involve the
specification and evaluation of solutions to the specific
problems of modeling transmission pipelines. The key issues
here are the applicable steps of the interacting components
realized from domain analysis. Conventionally [15], the DSL
definition steps include defining the domain, designing the
language that accurately captures the domain semantics, and
describing the configuration rules of the features of the
pipeline physical components within the domain model.

A. Domain Definition

The domain definition is a framework that describes the
requirements engineering products resulting from the domain
analysis. Shown in Fig. 2 are the key elements in the
framework for the development of the new system. The rest of
this section is dedicated to the explanation of the elements of
the framework. As depicted in the framework, domain
knowledge involving oil and gas pipelines, which invariably
means transmission pipelines will come first. The next will be
the description of concepts and the domain model specifics
and so on. The concept description, which is part of the
analysis, follows a precise path that moves into the formation
of the model instances for the language design [16].

Fig. 2. Domain analysis framework.

B. Oil and Gas Transmission Pipeline

Oil and gas transmission pipelines here refer to domain
knowledge; the specific information needed from stakeholders
in the oil and gas pipeline engineering domain [19]. In order to
achieve this very important step in the definition of a DSL,
some domain knowledge about pipeline systems were
gathered during domain analysis. Knowledge was provided by
crew engineers from oil and gas pipelines servicing industries.
Transmission pipelines are specifically designed to transport
petroleum products along distances. The transmission pipeline
as shown in Fig. 3 collects the specific petroleum products
from any quality assured source along the pipeline and

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

712 | P a g e

delivers the product to end users [5]. Transmission pipelines
can convey unrefined crude oil from producing areas to large
storage areas or directly to refineries, it can deliver water for
town water supply, and could be for natural gas only or carry a
number of processed or refined petroleum products such as
gasoline, diesel, refined fuel oils.

Fig. 3. Typical transmission pipeline.

Most transmission pipelines are designed to the American
Society of Mechanical Engineers or standards based on these.
The design and operation of pipelines is usually regulated or
subject to local laws, which detail design, construction,
operation and maintenance requirements for pipelines. The
pipelines are made by welding together lengths of steel pipe,
typically constructed to meet the specific needs established by
the marketplace.

The major components used to construct these lines
include pipe, fittings, joints, flanges, gaskets, coatings, valves,
compressors, drivers, meters, liquid management equipment,
actuators, cathodic protection equipment, control equipment,
and ancillary systems to provide compressed air.
Compressors, drivers, and meters have already been discussed
so this section will concentrate on the other components. The
design and build process of transmission pipelines [20],
involves determining the origin and destination of the
pipeline, the approximate length of the pipeline, the product to
be transported, diameter and type of pipe used, hydraulic
factors such as type of flows expected in a pipeline,
approximate capital cost and running expenses. It also
involves route selection being requirements for right of way
acquisition, testing of soils and data collection, and analysis
and design of hydraulic and job scheme.

C. Description of Concepts

Engineers responsible for the preparation of design
documents must, from time to time, review the current codes
and standards in order to comply with and take advantage of
the changes in the industry which are expected to continue as
computerized drafting and isometric or orthographic pipeline
sketches are made, as determined by project requirements.
Structural, and control information are often included in these
sketches, which form the basis for the working physical

drawings. The sketches and composites are now transformed
into the computer versions of the physical models in a
computer-aided design (CAD) system. With the development
of three-dimensional computer-aided design (3DCAD)
software, the engineer can check for interference and can
generate different views [8].

Once the orthographic drawings are completed, they may
be issued for piping fabrication and construction. However,
for complex pipeline systems, it is common practice to
develop separate piping isometric drawings for each pipeline
[]. For pipe stress analysis, fabrication, and installation, the
piping isometric drawings are easier to use than the
orthographic drawings because all the information on the
isometric drawing pertains to the pipeline of interest without
cluttering with extraneous information [18]. It was observed
however that a bottleneck [12], in their modeling operations is
the inability of the conventional CAD tools to give the
engineers the required interface to freely interact with the
systems without being guided by strict design policies inherent
in the software. The systems provided poor facilities for
keeping track of design rules from the stakeholder’s
viewpoints. For example, RapidVu could only create a
solution platform for maintenance needs, and then
programming expertise is required all the time to leverage
Solid Works with Excel whenever an interface and some
calculation routes are needed in their schedules [9]. Now a
carefully defined DSL with knowledge of pipeline physical
components representations and design parameters can make
the engineer achieve optimal performance in bringing a typical
transmission pipeline design on an editor interface with
relevant concrete syntax representations better than struggling
all the time trying to understand isometric and other CAD
mechanics to achieve same. The conceptual DSL definition
brings to bear domain abstractions, and expressive power
restricted to, the domain of transmission pipelines for the
related products in the petroleum industry and in water supply.
Consequently this can be achieved only by taking advantage
of specific properties of the pipeline engineering application
domain that pertain to transmission [10]. The description of
these specific properties therefore represents the domain
concepts, which will be useful in creating the abstractions and
in the semantic mappings of the elements of the DSL
modeling platform.

D. Domain Model

The semantic gap created due to inability of domain
experts to manipulate artefacts orientation by using GPLs in
their work place is closed by mapping the domain concepts to
abstractions in the form of attributes of the CAD physical
models representing the pipeline physical components [20].
The domain model is the repository for these concepts (i.e. its
vocabulary) and their relations. In the domain model is the
semantic model subset consisting of the classes of the events
and their relationships with a focus on the user’s perspectives.
An example of a typical event pertaining to user’s perspective
is thus given:

event

name:elbowJoint

code:PipeBuild

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

713 | P a g e

end

state:active

elbowJoint WaitingForParameters

end

state:join.this.elbow

translate target

target:name join.this.elbow

trigger:elbowjoint

end
As knowledge changes, the semantic model itself can

change so as to ensure physical components continue to do
what the users want them do at the editor interface of the DSL
and then produce clear design specifications for pipeline
physical assets such as pipes, valves, active equipment
(pumps, compressors, etc.), insulation and supports [6].

V. SPECIFYING THE PRIMITIVES

The modeling primitives in the language internal logic are
specified to ensure the exertion of the linguistic power to
manipulate input parameters from domain experts and as well
display appropriate pipeline configurations [15]. It also
displays the modeling language internal mechanics that
reflects the abstractions; incorporating domain concepts and
associated production and semantic communication rules. The
system engine contains the interactive configurations implying
possible assignment of features given the current state of the
system, and propagating information whenever new choices
are made. The Pipeline designated (r) is the parent root feature
with mandatory features; Components (c), Fittings (f), Joint
(j), and Support (s), and Optional pipeline bed location feture
(b). These are the standard references that define the pipeline
components attributes and relationships [2]. The standard
reference definition can actually be an associated tree
grammar with mandatory feature having dimension (d), point
of intersection (p), and type of component (t) as child features.
Syntactically directed; the standard reference definitions are
made up of the context-free grammar with attributes and rules
to calculate the attributes. The syntactic elements in the CFG
are specified as input with productions specifying the symbol
substitutions for the major objects in the pipeline model that
can be recursively performed to generate new modeling
sequences [19]. With each grammar symbol, a set of attributes
are associated, and with each production, a set of semantic
rules are defined for mapping values of the attributes
corresponding to a typical artefacts of the pipeline model as
follows:

Following the necessary structural framework that must be
put in place for the language to implement its core operations,

fragments of the syntactic elements of the grammar in BNF
notation for defining the various pipeline build metrics of the
language is created. The grammar is the pipeline components
grammar; it is a collection of the modeling primitives and the
rules connecting them as the syntactic elements [16]. The
entire structure is a collection of pipeline components context
free grammar split into varieties of lexemes corresponding to
each token in the statements for processing as follows:

 , , , ,

The domain specific modeling methodology for creating
domain specific language is presented with a focus mainly on
modeling transmission pipeline systems [17]. This approach is
flexible comparable to Computer Aided Software Engineering
(CASE) and GPL tools (Steven, 2007). One notable difference
is in the aspect of clear specifications formalized into a
metamodel in the form of a collection of modeling primitives
and the rules connecting them; there is informal domain
description, recursively defined for pre-processing by the
system functions.

Fig. 4. Modeling action using DSL definition.

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

714 | P a g e

Fig. 5. Result of a design scenario.

A. Design Scenario and Case Study

In order to start building the different design criteria or
routes that depicts stakeholders view points, the input values
and attributes of the pipeline components has to be selected.
Depending on the particular design operation, a stakeholder or
a domain expert (pipeline engineer) can simply follow simple
prompts by selecting any desired scenario such as
pipe→joint→pipe→fitting→pipe→instrument→pipe, etc. to
come up with a system curve that models and describes the
fundamental requirements of the developed pipeline system
for onward physical interpretation and fabrications
respectively [5]. Fig. 4 is an example of a modeling action
using the editor of a DSL definition, and a subsequent system
curve depicting model selection for a particular pipeline
project as presented in Fig. 5.

VI. CONCLUSION AND FUTURE WORK

The DSM approach is adopted in this research to create a
domain specific platform whose type systems and semantics
simplify modeling processes in the design and implementation
of transmission pipeline configurations. The domain specific
representation is predicated on transmission pipeline graphics
model as the entity during development, it is the model that
reflects the prescriptive technical characteristics prevalent in
the transmission pipeline engineering domain. It also
represents the concepts of the domain within which the
language formalism is created to control the flow of processes
without including extra or unnecessary properties captured in
the design analysis. A typical modeling activity with this
system takes away complexities related with conventional
modeling systems where the engineer has to rely on most of
the times, but with this system, the engineer only need to
follow simple instructions and achieve design intents. More
activity and build process is possible in the future because
computing science is yet applied to solving an engineering
problem concerning pipeline design for fluid transmission
operations. With given set of values in a system curve, the
engineer is equipped with relevant information about the
intended pipeline properties, and can now go ahead for
acquisition of the physical components to start a pipeline build
project.

ACKNOWLEDGMENT

First and foremost, my gratitude goes out to my research
fellows in the field of domain specific modeling and

requirements engineering. This work was part sponsored by
the Nigerian Niger Delta Development Commission, and then
fully supported by the Edo University Iyamho Edo State
Nigeria through its provisions for research frontiers.

REFERENCES

[1] Zhao, W., Bryant, B. R., Cao, F., Rajeev, R., Raje, M., and Auguston,
C.C. (2004), Grammatically interpreting feature compositions, in:
Proceedings of the 16th International Conference on Software
Engineering and Knowledge Engineering (SEKE’04), Banff, Canada,
185-191.

[2] Batory, D. S. (2005), Feature models, grammars, and propositional
formulas, in: Proceedings of the 9th International Conference on
Software Product Lines (SPLC’05), 7-20.

[3] Gustavo, C. M., Sousa, F. M., Costa, G., Peter, J., and Clarke, A. A.
(2012), Model-Driven Development of DSML Execution Engines,
Proceedings of ACM Conference, eduMRT ’12, Innsbruck, Austria, 112
-118.

[4] A.Agrawal et al. “MILAN: A Model Based Integrated Simulation
Framework for Design of Embedded Systems”. In: Proceedings of
LCTES, 2001.

[5] L.Bondé, C.Dumoulin, J.-L.Dekeyser. “Metamodels and MDA
Transformations for Embedded Systems”. In: Proceedings of the Forum
on Design Languages (FDL), Lille, France, September 2004.

[6] EMF. Eclipse Modeling Framework. Available at:
http://www.eclipse.org/emf. Accessed in May, 20010.

[7] Baar, T. (2006), Correctly defined concrete syntax for visual modeling
languages, in: Proceedings of the 9th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’06), 111-125.

[8] Kelly, S., and Tolvanen, J. P. (2008), Domain-Specific Modeling.
Wiley-IEEE Computer Society Press, NY, 2008.

[9] Juha-Pekka, T. (2011), Implementing Your Own Domain-Specific
Modelling Languages: Hands-on, ICM - International Congress Centre
Munich, Germany.

[10] Youssef, R. (2010), A DSML for Mobile Phone Applications Testing,
University of Pau Avenue de l'université 64013 Pau, France.

[11] Zekai, D., and Marjan, M. (2009), Verification of DSMLs Using Graph
Transformation: A Case Study with Alloy, MoDeVVa'09, 74-82.

[12] M.F.S.Oliveira, E.W.Briao, F.A.Nascimento, F.R.Wagner. “Model
Driven Engineering for MPSoC Design Space Exploration”. Journal of
Integrated Circuits and Systems,v. 3, n.1, 2008.

[13] OMG. UML Profile for Modeling and Analysis of Real-time and
Embedded Systems (MARTE). 2007, available at .

[14] Kelly S, Tolvanen JP (2008) Domain-Specific Modeling: Enabling Full
Code Generation, Wiley-IEEE Computer Society Pr.

[15] Gronback RC (2009) Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit, Addison- Wesley Professional, Upper Saddle
River, NY.

[16] B.G. Technical LTD (2013), B.G. Technical Oil & Gas industry Port
Harcourt, Nigeria; www.bgtechnical.com/ Annual Reports 2009 to 2013

[17] Zezula, F., and Durden, C. (2000), Piping Joints Handbook, Piping &
Pressure Systems Consultant, UG, Sunbury, 2000

[18] Cook S, Jones G, Kent S, Wills AC (2007) Domain- Specific
Development with Visual Studio DSL Tools, Addison-Wesley
Professional, Upper Saddle River, NY.

[19] Mezhuyev V (2015) Metamodelling architecture for modelling domains
with different mathematical structure. In: Advanced Computer and
Communication Engineering Technology: Proceedings of the 1st
International Conference on Communication and Computer
Engineering, Lecture Notes in Electrical Engineering vol 315, Springer,
pp 1049–56.

[20] Mezhuyev V, Sputh B, Verhulst E (2010) Interacting entities modelling
methodology for robust systems design. In: Proceedings of 2010 Second
International Conference on Advances in System Testing and Validation
Lifecycle, pp 75–80.

