
Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

794 | P a g e

Sensor-based Ransomware Detection

Michael A. Taylor, Kaitlin N. Smith, and Mitchell A. Thornton

Darwin Deason Institute for Cybersecurity

Southern Methodist University

Dallas, TX 75275-0122

{taylorma, knsmith,mitch}@smu.edu

Abstract—A new method for detection of ransomware that is

present in an infected host during its payload execution is

proposed and evaluated. Data streams from on-board sensors

present in modern computing systems are monitored and

appropriate criteria are used that enable the sensor data to

effectively detect the presence of ransomware infections.

Encryption detection depends upon the use of small yet

distinguishable changes in the physical state of a system as

reported through on-board sensor readings. A feature vector is

formulated consisting of various sensor output that is coupled

with a detection criteria for the binary states of “ransomware

present” versus “normal operation”. Preliminary experimental

results indicate that ransomware is detected with an overall

accuracy in excess of 95% and with a corresponding false

positive rates of less than 6% for four different types of

encryption methods over two candidate systems with different

operating systems. An advantage of this approach is that

previously unknown or “zero-day” versions of ransomware are

vulnerable to our detection method since no prior knowledge of

the malware, such as a data signature, is required for our method

to be deployed and used.

Keywords—Ransomware detection; physical sensor side

channel; feature vector; encryption

I. INTRODUCTION

Malware is a term that we use here to refer to malicious
software and is used to refer to all forms of software that can
be used to compromise computer functions. This compromise
causes harm to the victim computer and ultimately to the user
or owner of the host computer. There are a large variety of
types of malware including, viruses, worms, adware, bots,
rootkits, spyware, trojans, and the primary subject of this
investigation, ransomware. Ransomware is a form of malware
that holds a victim computer system’s files hostage while
demanding a ransom to release access to those files back to
their legitimate owner.

A typical ransomware attack scenario involves infection of
victim computer through penetration of an attack vector
whereby the malware resulting from the attack contains a
payload that, unbeknownst to the victim, engages in rendering
important files as unusable, through their encryption with a
key that is unknown to the victim. Upon completion of the
initial silent encryption phase, the original unencrypted files
are deleted and the victim is alerted that their files are now
inaccessible and will remain so until a ransom is paid. It is
also often the case, that the attacker will demand ransom
within some time period or otherwise the encryption key will
be destroyed resulting in permanent loss of the victim’s data.

Fig. 1 contains a high-level diagram of the chain of events
characterizing a typical ransomware attack from the point of
view of the adversary.

Fig. 1. Typical ransomware attack.

Ransomware attacks can occur through a variety of means.
As a more specific example, a common attack vector is the use
of email spear phishing where a victim receives an email
message that somehow causes the victim to click on an
embedded link to a webpage that, in turn, causes the victim’s
browser to display the adversaries’ webpage and to lure the
victim into downloading the malware. This malware could be
presented as a macro contained within an Office

®
 document or

some other executable. Once the executable is run, it proceeds
to encrypt the victim’s local files in a silent mode and upon
completion of the encryption, it then notifies the user that their
files are now inaccessible due to the encryption. Next, the
exploitation of the victim occurs through a demand of
payment. The typical form of ransom payment is through an
anonymous transfer of non-traceable funds through the
darkweb using electronic currency such as bitcoin. The victim
is promised that, if the ransom is received within a prescribed
timeframe, the key will be delivered allowing their encrypted
files to be decrypted. While this example scenario is based
upon the premise of email phishing as the attack vector
penetration method, other means for delivering the malware
payload are also possible as well as other varieties of payload
activity, victim exploitation, and vulnerability [10]. More
detailed information about well-known versions of
ransomware, including how they infect computers can be
found in [1], [2] and [5].

Effective defense against a ransomware attack is generally
considered to comprise a multi-tiered or layered approach [6].
Detection of the malware during the time it is being
downloaded to the victim computer is the outer defense, and if
possible, can prevent the ransomware from ever entering the
system. This defense approach targets prevention of the attack
vector from ever penetrating a victim’s host computer. Packet
signature monitoring via an intrusion detection system (IDS)
or file signature monitoring via a local antivirus software
program can provide this capability, but only if these methods
are capable of recognizing the malware through knowledge of
the data signatures. While this is a desirable defense, it is
notoriously difficult to prevent infection with previously

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

795 | P a g e

unknown ransomware versions, or so-called “zero-day”
attacks. In the case of zero-day ransomware, data signatures
and other corresponding characteristics are unknown by
definition. Furthermore, the increasing presence of
polymorphic malware is causing signature-based approaches
to become less effective than they once were [7].

If malware penetration is not prevented and the malware
manages to be downloaded to the victim machine, the next
line of defense is to detect its presence and halt its operation
before or at least during the initial stages of victim host file
encryption. Recently, an approach has been developed that
performs payload detection through monitoring the integrity
of victim host file system [3]. This method provides several
metrics and indicators that are used to detect the presence of
data files that are in the process of being encrypted. One of
these metrics is the use of information entropy calculations.
Information entropy is a single-valued metric that indicates
when a data set has less structure, determinism, and
redundancy. The idea underlying the use of an entropy metric
is that an encrypted file is one that closely resembles a file of
random data. This is due to the side effect that encryption
generally produces data that appear to be random in order to
prevent unauthorized decryption through the exploitation of
determinism or redundancy in the encrypted file. Therefore an
increase in entropy for a given file indicates the high
likelihood that the file is being encrypted [8].

We propose an alternative method for ransomware
detection on an infected host system. Instead of monitoring
file system attributes, we monitor victim host system behavior
by taking advantage of the increasingly large number of
onboard sensors. In this sense, our method uses a physical
side channel approach where the victim’s files are not directly
monitored, rather the behavior of the victim machine is
monitored and onboard sensor provided data are used as side
channel information that indicate when an encryption
operation is occurring. This monitoring can be accomplished
through a background process that is loaded at boot time and
thus continuously monitors the system for suspicious
behavior. Once this suspicious behavior is detected, the user
can be alerted and the suspicious processes can be suspended.
The central difference between our approach and other
previous approaches is that we use secondary effects to detect
the presence of malware rather than a direct effect, such as
measuring increases in file entropy.

Another recent approach for malware detection involves
using embedded hardware performance counters that are
present in most modern CPU architectures [14], [15]. This
approach uses machine learning to create detection models
that monitor minor variations in malware execution
characteristics. Our approach differs from the use of hardware
performance counters in that we use data being supplied from
the suite of embedded sensors that are also present in modern
computing platforms rather than performance counter
data. Furthermore, our approach is designed to specifically
detect ransomware since ransomware uses encryption to
enable the victim’s data files to be held hostage, and hence,
allows them to be recoverable when a ransom is supplied in
exchange for the decryption key. Our approach uses data
sources that are secondary to malware execution patterns and

it does not rely upon the presence of performance
counters. By targeting a specific class of malware, namely
ransomware using encryption in the payload, we can achieve
high detection accuracy rates.

We propose that our sensor-based detection methodology
be used to complement more traditional signature-based
approaches that are intended to prevent attack vector
penetration. In contrast to prevention of attack vector
penetration, the technique described here is designed to detect
the presence of ransomware when penetration has been
achieved. Our side channel-based or sensor-based approach
has an advantage in comparison to antivirus or IDS systems in
that zero-day versions of ransomware can be detected since
previously captured malware signatures are not required.
Furthermore, it is not necessary to monitor individual files and
calculate entropy or other metrics that must be continually re-
computed and compared with one another as is the case in the
solution provided in [3].

We have implemented an experimental prototype system
based on sensor monitoring and have tested it through use of a
variety of scenarios where simulated ransomware is
undergoing the silent phase of encrypting victim files. To
evaluate our method, we used four different encryption
methods from the Python Cryptography Toolkit that have been
reported to be commonly used by adversaries during the
development of ransomware [9]. Our experiments have
yielded high accuracy rates in excess of 95% percent with
false positive and false negative rates of approximately 6% or
less. We anticipate that with proper tuning of our method,
these accuracy and error rates can be further improved.

II. BACKGROUND CONCEPTS USED IN THE APPROACH

A. Physical Sensors

Most modern computer systems comprise sensors that
monitor the state of internal hardware components. These
sensors continuously gather and supply information that is
communicated with other devices and subsystems within the
system for the intended purpose of ensuring that the system
stays within specific operating specifications. If sensor data
reveals that a system component is approaching a boundary
for a recommended value of an operational specification,
safety mechanisms will typically be engaged in order to
correct the internal environment so that system malfunctions
can be prevented. For example, when the data from a
temperature sensor of a computer’s central processing unit,
CPU, begins to increase, a signal is sent to the CPU cooling
fan. This signal causes the fan to either become active or to
increase the fan speed in order to cool the CPU. Additionally,
there are sensors that provide input to other subsystems such
as internal power management units, PMUs, to conserve
power usage.

Typically, computer system components are designed to be
compact in size through the use of transistors with feature
sizing in the nanometer scale. As a direct result, whenever
computations become more complex, more stress in placed on
a computer’s hardware components. This increased stress
occurs because a large number of transistors are
simultaneously switching in a circuit that correspondingly

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

796 | P a g e

cause an increase in dynamic power consumption resulting in
more heat dissipation during heavy computational activity.
Thus, monitoring the side channels of a system with
embedded sensors that measure temperature, power
consumption, and battery voltage levels can give insight into
the type of processing that is underway on a computer at a
given time. With this thought in mind, we hypothesize that
monitoring a computer’s side channels through periodic
observations of sensor output data could also indicate when a
resource-heavy task, such as encryption, is occurring. Since
ransomware utilizes encryption in its payload to deny its
victims access to their files, analyzing data from a computer’s
side channel sensor data could allow trends to emerge in
regard to how a computer behaves while under ransomware
attack.

A significant advantage of this approach as compared to
other side channel methods is that the sensors and a means for
querying them are natively provided. Thus there are fewer
concerns in deploying and accessing sensors for the purpose
of side channel exploitation. Furthermore, the trend has been
that an increasingly diverse number of sensors are provided as
integral components in modern computing devices. A typical
smart phone has many embedded sensors that could be used to
support security applications including power monitors,
accelerometers, ambient light sensors, antennas (including
GPS receivers), fingerprint scanners, barometers, cameras,
touchpad pressure sensors, and others. Even rack-mounted
industrial servers contain a significant number of sensors that
measure subsystem power consumption, temperature, and
other environmental factors. All of these deployed sensors in
modern computing devices provide a rich set of data sources
that may be used to provide internal side-channel information
for the environment in which a computing device is operating.
Use of these sensors has been used in other security-related
applications in the past. As an example, in [13], sensors
present in mobile computing devices have been used to
provide a user demographic classification capability for
mobile devices with embedded touchscreens.

Conventional computers are comprised of the same set of
basic internal devices to enable their operation. However,
manufacturers may choose to use different and unique sets of
components for their various computer models. Due to this
variation among different product models, corresponding
differences among the readings of the internal onboard sensors
can occur when they are queried. Instantaneous values of
sensor readings can be accessed via the command line or
through calls to the operating system using an application that
queries and interprets the onboard sensor data. During our
experimentation, the Hardware Monitor and the Open
Hardware Monitor applications were used to provide
information from systems running Apple’s OSX

®
 and

Microsoft’s Windows
®
 operating systems. As an example of

large number of available on-board sensors, a list of the 59
sensors and their readings from an Apple Macbook

®
 is

provided in Table 1.

The on-board sensors in Table 1 for the Apple Macbook
are provided as an example. Windows

®
-based machines also

have a similar complement of accessible on-board sensors. In
this investigation, Python polling scripts are used to

continuously access data from the hardware sensors and to
record the information in the form of .csv file for further
analysis. Operational deployment of the method would likely
use a more sophisticated technique for obtaining sensor data
such as an interrupt-driven background process or an event-
driven polling technique.

B. Machine Learning Concepts

In the investigation reported here, prediction models were
created using Machine Learning (ML) techniques. Models are
trained using a large amount of data gathered and processed
from an experimental environment. We hypothesized that the
sensor data, such as that provided in Table 1, can be used to
form a feature vector that differentiates between the binary
machine states of “normal operation” versus “ransomware
payload execution” (i.e., unauthorized encryption activity).
The model is trained to weigh the feature vector components
with a goal of predicting the machine state with high accuracy.
For the implementation described here, we used a simple
logistic regression approach as the ML classification
algorithm wherein our goal is to discriminate between the
binary states of “normal operation” versus “ransomware
payload execution.” We note that many alternative
classification algorithms are available and subsequent research
efforts will focus upon choosing the best form of classification
methodology.

Logistic regression is a statistical method that is used to
create models that determine if an instance belongs to a certain
category. More detailed information about logistic regression
can be found in [4]. When this method is used as a binary
classifier for ML, a probability estimate produced by logistic
regression is compared to a threshold value. This comparison
results in a predicted state. When the prediction is false, a
system state of “normal operation” is declared, otherwise the
predicted state is “ransomware payload execution.” In order
to create a logistic regression model that can provide accurate
predictions, the model must be formulated with a training
dataset that is as accurate and complete as possible. The
example below shows how a simple logistic regression
algorithm can be implemented within Python.

From sklearn.linear_model import LogisticRegressionCV

lr_sk = LogisticRegressionCV()

lr_sk.fit(X_train,y_train)

yhat = lr_sk.predict(X_test)

In this example, lr_sk is an object of class
LogisticRegression. This object will eventually be used as
the classifier model. However, before the model is effective,
it must be trained using the fit method. lr_sk is trained using
X_train and y_train. X_train utilizes a matrix containing the
training data while y_train holds a vector of values that
correspond to X_train for the categorical feature that is to be
predicted. Once the model has been trained, the prediction
method is used to classify new data present in X_test.

C. Ransomware Payload Model

The encryption algorithm used within an instance of a
ransomware implementation encodes files in such a way that it
is virtually impossible to recover the data without knowledge
of the decryption key. In many cases, such as in the malware
implementations known as CryptoLocker and CryptoWall,

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

797 | P a g e

the encryption algorithms adhere to the Advanced Encryption
Standard (AES) [1], [5]. AES is currently one of the
encryption methods of choice for the United States
government due to the algorithm’s well-known ability to
protect sensitive data [11].

To evaluate the robustness of our methodology, four
different methods of encryption are used in our experiments
and are encapsulated within scripts written in Python, a C-
based programming language, in order to simulate the
execution of a ransomware payload. Specifically, we used
Electronic Code Book, Cipher-Block Chaining, Cipher
FeedBack, and XOR encryption. The Python Cryptography
Toolkit implementations are used to implement these four
encryption algorithms within our simulated ransomware
scripts. Electronic Code Book, Cipher-Block Chaining, and
Cipher Feedback are symmetric-key algorithms that follow the
AES standard. XOR encryption is included in our study due
to the method’s ability to encode files quickly with a
corresponding relatively low complexity. Due to the
unavailability of a cyber range during the test of our
ransomware payload detection prototype, we refrained from
using actual samples of malware, such as those described in
[5], that are currently a threat to all Internet-connected
devices.

Electronic Code Book encryption is based on the concept
of a block cipher in which blocks of information are encrypted
rather than each bit being encrypted individually as in a stream
cipher. Additionally, each encoded block of information is
independent of any other block [12]. Because of this
independence, Electronic Code Book encryption is
characterized by the fact that matching blocks of information
will always be identical, even in their encrypted form. Cipher-
Block Chaining is another type of block cipher, but it’s
encryption method differs as compared to the Electronic Code
Book method. With Cipher-Block Chaining, each encoded
block of data depends on the previously encoded information
[12]. Due to this dependence, matching blocks of plaintext
information will result in different encryption values. Cipher
Feedback encryption is a type of stream cipher in which small
groups of bits are encrypted individually rather than large
blocks of plaintext being processed as individual symbols
[12]. Cipher Feedback encryption is based upon each new
stream of data being encoded with a dependence on the
previously encrypted data thus allowing matching plaintext
data to have unique values in their plaintext form. XOR
encryption is a simpler and far less secure method of
encryption where information in plaintext form is simply
XORed with an encryption key, thus, it is a basic substitution
cipher. Although we recognize that XOR encryption could be
easily defeated through cryptanalysis, it is included in our
experiments since we wanted to evaluate our detection method
with an extremely lightweight method and we felt that the
XOR method was at least representative of the behavior of
many lightweight methods. We anticipate that future versions
of ransomware, particularly those that target limited resource
systems such as IoT devices, may likely employ such
lightweight encryption methods due to the practical constraint
that a limited amount of processing power is available within
this class of devices.

Our script that emulates the ransomware encryption
payload includes the four encryption methods mentioned
previously as well as options to set delays and random
intervals for activity. To ensure that no data was actually lost
during experimentation, the keys for encryption were
hardcoded in the encryption script and were written as
plaintext metadata in each encrypted file. The reach of the
script was limited to a set of dummy test directories. Three
dummy test sets were used: a small directory measuring 16
MB in size, a medium directory with 334 MB of files, and a
large directory that was 3 GB in size. To collect training data,
the encryption script randomized the encryption processes to
execute at varying intervals of time so that a total of 40
encryptions would take place within the small directory. 20
encryptions would take place within the medium directory,
and four of these would take place within the large directory.
All of the encryption iterations taking place in each directory
were evenly divided among the four different encryption
techniques. During the duration of the script’s run, hardware
sensor data was gathered on average at every half second in
order to obtain examples of the status of the hardware
components during normal computer activity and during a
covert encryption process.

Once the test data was populated within the machine
learning algorithms to train the ransomware detection model,
the encryption script was randomly activated in the
background of the test computer in order to test the
effectiveness of the model’s ability to detect hidden
encryption activity based on hardware sensor readings. In the
experiments reported here, the amount of time required for
training was proportional to the speed of the processor being
used and ranged between 1.8 and 3.5 hours. The operational
phase of the ransomware detection algorithm ran as a
background process thus allowing normal usage of the victim
computing system.

III. METHOD FOR DETECTING RANSOMWARE

Encryption detection through hardware sensor monitoring
depends upon the detection of small yet distinguishable
changes in the physical state of a system as reported through
on-board sensor readings. Rather than focus on any one aspect
of victim host machine performance, a feature vector of
system sensor data is used to classify the system states. The
relationship between increasing and decreasing sensor
readings gives a strong indication of what type of task a
system is currently performing given that enough data has
been collected to form a clear indication of what a task looks
like. In the case of encryption, the following sequence of
events occurs: 1) data is read/accessed from the filesystem
into main memory; 2) the accessed data is encrypted in main
memory; and 3) the encrypted data is then written back to
secondary storage. The system sensors, when individually
monitored, would likely only allow very broad conclusions to
be drawn such as indications of when the system has increased
CPU usage or disk I/O operations are occuring. However,
combining all the system sensors into a feature vector allows
much more focused conclusions to be drawn that are
indicative of sequences of events such as those outlined for an
executing encryption process. Given that the sensor-data
feature vector indicates a state of encryption, appropriate

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

798 | P a g e

alerts can be issued and the corresponding encryption
processes can be suspended or halted.

While a large number of sensors are available as evident in
Table 1, we anticipated and subsequently observed that some
of the sensors dominated in terms of provision of useful
classification data. In particular the sensors that indicate main
memory power usage emerged as being particularly sensitive
to the presence of encryption activity. This is likely due to the
fact that encryption algorithms are very memory-intensive
operations.

While the dominant sensors were identified empirically in
this study, in the future we intend to employ a more rigorous
assessment and augment our ML approach based upon
preprocessing analyses to refine our feature vector definition.
Techniques such as Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and others will be
employed to further refine the feature vector. We anticipate
that such refinements will increase accuracy through the
provision of enhanced discrimination in the classification
algorithm thus reducing the false negative and false positive
rates as well as reducing feature vector dimensionality.
Another desired outcome of reducing the feature vector
dimensionality is enhancement of performance of the
detection algorithm. We intend to focus upon enhancements
that results in decrease of false negative errors rather than
false positive errors since the former error type results in more
serious consequences than those of the latter type.

TABLE I. APPLE MACBOOK INTERNAL SENSORS AND READINGS

Apple Macbook Sensor Value

SMART Disk APPLE SSD SD0128F (135251405113)
[TEMPERATURE]:

136.4 F

SMC AIR INLET [TEMPERATURE]: 102.2 F

SMC BATTERY [TEMPERATURE]: 87.8 F

SMC BATTERY CHARGER PROXIMITY
[TEMPERATURE]:

111.2 F

SMC BATTERY POSITION 2 [TEMPERATURE]: 87.8 F

SMC BATTERY POSITION 3 [TEMPERATURE]: 87.8 F

SMC CAMERA PROXIMITY [TEMPERATURE]: 113 F

SMC CHARGER PROXIMITY TEMPERATURE
[TEMPERATURE]:

100.4 F

SMC CPU A PROXIMITY [TEMPERATURE]: 120.2 F

SMC LEFT PALM REST [TEMPERATURE]: 87.8 F

SMC MAIN HEAT SINK 2 [TEMPERATURE]: 93.2 F

SMC MAIN LOGIC BOARD [TEMPERATURE]: 96.8 F

SMC PLATFORM CONTROLLER HUB CHIP
TEMPERATURE [TEMPERATURE]:

129.2 F

SMC SSD BAY [TEMPERATURE]: 98.6 F

SMC SSD TEMPERATURE A [TEMPERATURE]: 138.2 F

SMC SSD TEMPERATURE B [TEMPERATURE]: 120.2 F

SMC WLAN CARD [TEMPERATURE]: 98.6 F

Smart Battery bq20z451 (1) [TEMPERATURE]: 82.4 F

Battery 1 Cell 1 [VOLTAGE]: 3.69299 V

Battery 1 Cell 2 [VOLTAGE]: 3.69398 V

Battery 1 Voltage [VOLTAGE]: 7.38699 V

SMC CPU CORE [VOLTAGE]: 1.66211 V

SMC CPU SUPPLY 1 [VOLTAGE]: 1.05176 V

SMC DC INPUT [VOLTAGE]: 0 V

SMC POWER SUPPLY/BATTERY [VOLTAGE]: 7.16016 V

SMC SSD SUPPLY [VOLTAGE]: 3.29883 V

SMC WLAN CARD [VOLTAGE]: 3.29883 V

Battery 1 Current [CURRENT]: 1.45599 A

SMC 5V S0 LINE [CURRENT]: 0.0498047 A

SMC BACKLIGHT [CURRENT]: 0.00292969 A

SMC MAIN HEAT SINK 2 [TEMPERATURE]: 93.2 F

SMC MAIN LOGIC BOARD [TEMPERATURE]: 96.8 F

SMC PLATFORM CONTROLLER HUB CHIP

TEMPERATURE [TEMPERATURE]:
129.2 F

SMC SSD BAY [TEMPERATURE]: 98.6 F

SMC SSD TEMPERATURE A [TEMPERATURE]: 138.2 F

SMC SSD TEMPERATURE B [TEMPERATURE]: 120.2 F

SMC WLAN CARD [TEMPERATURE]: 98.6 F

Smart Battery bq20z451 (1) [TEMPERATURE]: 82.4 F

Battery 1 Cell 1 [VOLTAGE]: 3.69299 V

Battery 1 Cell 2 [VOLTAGE]: 3.69398 V

Battery 1 Voltage [VOLTAGE]: 7.38699 V

SMC CPU CORE [VOLTAGE]: 1.66211 V

SMC CPU SUPPLY 1 [VOLTAGE]: 1.05176 V

SMC DC INPUT [VOLTAGE]: 0 V

SMC POWER SUPPLY/BATTERY [VOLTAGE]: 7.16016 V

SMC SSD SUPPLY [VOLTAGE]: 3.29883 V

SMC WLAN CARD [VOLTAGE]: 3.29883 V

Battery 1 Current [CURRENT]: 1.45599 A

SMC 5V S0 LINE [CURRENT]: 0.0498047 A

SMC BACKLIGHT [CURRENT]: 0.00292969 A

SMC BATTERY CURRENT [CURRENT]: 0.78125 A

SMC CPU CORE [CURRENT]: 0.566406 A

SMC CPU HIGH SIDE [CURRENT]: 0.241211 A

SMC CPU SUPPLY 1 [CURRENT]: 0.0107422 A

SMC CPU/VRM SUPPLY 2 [CURRENT]: 0 A

SMC DC INPUT [CURRENT]: 0.00195312 A

SMC DDR3 MEMORY 1.35V LINE [CURRENT]: 0.881836 A

SMC DDR3 MEMORY S3 LINE [CURRENT]: 0.0771484 A

SMC DISCRETE BATTERY [CURRENT]: 0.738281 A

SMC LCD PANEL [CURRENT]: 0.000976562 A

SMC POWER SUPPLY/BATTERY [CURRENT]: 0.770508 A

SMC SSD SUPPLY [CURRENT]: 0.0771484 A

SMC WLAN CARD [CURRENT]: 0.0107422 A

SMC 5V S0 LINE [POWER]: 0.164062 W

SMC BACKLIGHT [POWER]: 0.015625 W

SMC CPU CORE [POWER]: 0.964844 W

SMC CPU HIGH SIDE [POWER]: 1.72266 W

SMC CPU SUPPLY 1 [POWER]: 0.0078125 W

SMC CPU/VRM SUPPLY 2 [POWER]: 0 W

SMC DDR3 MEMORY 1.35V LINE [POWER]: 1.05469 W

SMC DDR3 MEMORY S3 LINE [POWER]: 0.0898438 W

SMC LCD PANEL [POWER]: 0 W

SMC POWER SUPPLY/BATTERY [POWER]: 5.51172 W

SMC SSD SUPPLY [POWER]: 0.25 W

SMC WLAN CARD [POWER]: 0.0351562 W

Battery 1 Current Capacity [CAPACITY]: 503 mAh

Battery 1 Total Capacity [CAPACITY]: 6559 mAh

SMC FAN Exhaust [RPMS]: 1192 RPM

SMC AMBIENT LIGHT 1 [LIGHT]: 70

All algorithms in the ransomware detection experiments
were written in Python. To develop a model that detects
ransomware, a training set of hardware sensor data is first be
gathered. This data must include examples of how the sensors
behave on the host computer under normal operating
conditions as well as whenever a covert encryption process is
taking place. After the sensor training data has been gathered,
logistic regression is used to fit the model to the training data.
Due to the slight variation between the components of each
computer, the resulting ransomware detection model is unique
for each machine. This model is then used to classify the state
of the computer whenever the hardware sensors are routinely
polled. If the model predicts that a suspicious encryption
process is taking place on a computer, the user is alerted and
the suspicious process is either suspended or terminated.

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

799 | P a g e

The detection algorithm is employed after model training
has completed and it runs as a background process to allow
normal usage of the system. A pseudocode version of the
detection algorithm is provided below:

// load model from binary file

model = load(‘./model.pkl’)

attack_count = 0

previous_prediction = 0

under_attack = False

// check sensor data and make prediction

while True

 data = monitor.read_sensors()

 prediction = model.predict(data)

 // determine action based on current and

 // previous data

 if prediction:

 attack_count += 1

 else:

 if previous_prediction == 0:

 attack_count = 0

 under_attack = False

 previous_prediction = data

// set condition to under attack if positive

predictions

// increase above threshold

 if attack_count > threshold:

 under_attack = True

IV. EXERIMENTAL RESULTS

Testing was conducted on two machines, one running
Apple OSX

®
 and the other running Microsoft Windows

®
.

Specifically, the Apple OSX machine is a Macbook Air with a
1.3GHz Intel

®
i5 processor and 4GB of main memory and the

Windows
®
 machine comprised an Intel

®
i7 processor with

32GB of main memory.

Training data was collected on both machines and the data
was used to generate a prediction model. The new encryption
detection method was tested utilizing a ransomware
simulation testing script written in Python. The size of the
directory and the method of encryption were selected by
randomly picking a number between 1 and 100. All values of
60 and below caused encryption of the small directory, all
values from 61 to 90 encrypted the medium directory, and all
values from 91 to 100 encrypted the large directory. The
particular encryption method used is randomly selected among
the four types we implemented in our experiments.

After a particular directory has been encrypted, the script
waits a random amount of time before performing additional
encryption. The amount of time it waits is proportional to the
size of the directory it previously encrypted. After encrypting
a small directory, a random amount of time between 1 and 60
seconds is selected, a time between 5 and 10 minutes is
selected for the medium directory, and a time between 15 and
30 minutes is selected for the large directory. The script also
randomly selects a value between 5 and 15 and waits for an
hour and a half after encrypting that many gigabytes of data.
Randomness and wait times are utilized in order to simulate
the attempts made by an adversary to avoid detection of
ransomware payload execution. During the encryption
process, the script searches for files by recursively starting
from a given path. Files that have extensions matching a list of
common user file types are read and their data is encrypted.
After encryption the data is copied over the existing data in
the original file.

After testing the Windows
®
 machine for 5 hours 94.2% of

sensor polls were accurately predicted as either “under attack”
or “no attack”. The confusion matrix in Fig. 2 shows the
relationship between the predictions made by the model and
the actual state of the machine. During the periods the script
was performing encryption 98.1% of polling predictions
correctly identified a state of under attack. During the periods
the script was not performing encryption 92.5% of polling
predictions correctly identified a state of no attack.

1.9% of the checks that occurred during periods of
encryption incorrectly predicted that there was no attack (i.e.,
a false negative error) while 7.5% of periods with no
encryption incorrectly predicted that there was an attack (i.e.,
a false positive error). Our classification method was tuned in
a conservative fashion to focus more upon the reduction of
false negative errors than the case of false positives as the
former error type is assumed to be more critical than the latter.

The overall accuracy of the encryption detection method is
illustrated in Fig. 3. The uppermost graph, (a), of the figure
represents the actual periods of encryption or “truth data”
while the plot on the bottom, (b), represents the actual
predicted periods of encryption. These graphs depict the
machine state on the vertical axis with zero indicating normal
operation and one indicating under attack. The horizontal
axes depict time.

The Apple machine was tested by only encrypting the
large directory after a random wait period between 30 and 60
minutes over a 6-hour period. This method gives a clear
indication of how well the new detection method can detect
periods of high volume encryption. The confusion matrix in
Fig. 4 shows the relationship between the predictions made by
the model and the actual state of the machine.

After testing the Apple machine, 98.2% of the sensor polls
resulted in accurate predictions. During the periods the script
was actually performing an encryption operation, 99.7% of the
polling predictions correctly identified a state of “under
attack.” During the periods the script was not performing
encryption, 97.7% of polling predictions correctly identified a
state of “no attack.” A false negative rate of 0.27% of the
checks that occurred during periods of encryption incorrectly
predicted that there was no attack while a false positive error
rate of 2.3% of observations with no encryption incorrectly
predicted that there was an attack. Fig. 5 shows the periods of
actual encryption in the uppermost portion, (a), and periods of
predicted encryption in the lower portion, (b). As in Fig. 3,
the vertical axes depict machine state and the horizontal axes
depict time.

Fig. 2. Confusion matrix representing actual machine state vs. ransomware

detection model prediction for a Windows machine.

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

800 | P a g e

(a)

(b)
(b)

(a)

Fig. 3. (a) Plot of encryption activity vs. time and (b) Plot of ransomware

detection model prediction vs. time for a Windows machine.

Fig. 4. Confusion matrix representing actual machine state vs. ransomware

detection model prediction for an Apple machine.

Upon further analysis of the results we found that most
periods of false positive predictions occured directly after a
correct attack prediction. This can be observed in Fig. 5 which
contains false positive periods after the second and fourth
encryption periods. We believe that implementing additional
testing and filtering techniques that more closely scrutinize
predictions being made for a short period directly following a
positive prediction period will result in increased overall
accuracy. Currently our method does not make use of any
temporal or history data regarding past recent predictions. We
also believe that significant improvements can be made to the
method when such temporal data is included in our prediction.

It is noted that there are cases when encryption is being
legitimately conducted on a host system. It was indeed the
case that our preliminary experimental results also detected
this situation. In one case, we computed a false positive
detection when the system performed a routine incremental
backup operation. In operational deployment of our method,
these cases will be accounted for through use of white-listing
or other methods that notify the detection process that
legitimate encryption operations are in process. Such
notification methods will have to be carefully implemented in
a manner where they cannot be exploited by malware to
prevent exploitation. System registry data could be used to
label processes that employ legitimate encryption and the
ransomware detection process can be augmented to verify if a
detection is the result of a legitimate process or not before a
state of “ransomware payload execution” is declared.

Fig. 5. (a) Plot of encryption activity vs. time and (b) Plot of ransomware

detection model prediction vs. time for an Apple machine.

Our experiemental ransomware detection algorithm used a
simple polling or sampling method wherein the operational
phase of the detection method would periodically query the
sensors to obtain readings. This approach suffers from
potential aliasing problems, particularly if the malware
payload were to be implemented in short bursts or use some
other form of intelligence about the state of the victim system
before encryption is executed. In the future, we intend to
investigate the use of an alternative means to schedule sensor
queries such as an event-based technique. This enhancement
should decrease error rates while also reducing the avergae
computational overhead since it is assumed that ransomware
payload execution is a relatively rare event.

Because these preliminary experiments were conducted
under the framework of a supervised machine learning model,
the choice of the training data is a crucial aspect of the
method. It will be important to craft a learning phase that is
capable of charaterizing ransomware payload behavior even
when the actual ransomware may be in the form of a zero-day
exploit. Fortunately, most known ransomware uses well-
known encryption methods, thus the training phase can focus
on detection of these types of encryption.

V. CONCLUSION

A new method for the detection of ransomware is devised,
implemented, and experimentally verified for accuracy and
error. The method is applicable to both previously known as
well as zero-day instances of ransomware that employ
encryption in the payload. The detection method results in
very low, if any, data loss since encryption detection can occur
very early in the timespan of the malicious encryption activity.
The technique is based upon monitoring on-board, hardware
sensor data streams rather than characteristics of the targeted
data. The new technique requires a minimal amount of
modification to hosting computer systems since it uses pre-
existing physical sensors, supporting circuitry, and system
software assets that provide access to the sensor
readings. Since the approach does not require direct
interaction with the filesystem, it does not require extensive
changes to the filesystem nor frequent disk accesses. The
ransomware detection technique has been experimentally
shown to be effective for both Apple OSX

®
 and Microsoft

Windows
®
 operating systems.

Future Technologies Conference (FTC) 2017

29-30 November 2017| Vancouver, Canada

801 | P a g e

Future research includes devising new methods for
increasing the sensitivity of the classifier while also reducing
error rates. One such method is the implementation of
additional system features into the feature vector. We believe
that gathering system performance data in conjunction with
system sensor data could greatly improve the new method’s
ability to recognize periods of encryption. Additionally, we
plan to analyze and reduce the dimensionality of the feature
vector such that only the most discriminating data sources are
included as features. We also plan to implement and evaluate
a multiple model majority vote ensemble method for
prediction based on the feature vector. Our future plans also
include the evaluation of alternative machine learning
methods such as the use of classifiers other than a simple
linear regression binary classifier perhaps including a multi-
state classifier that could include a state of “legitimate
encryption.” Finally, we plan to evaluate the sensor-based
ransomware detection approach in an environment such as a
cyber range where actual samples of ransomware are used.

REFERENCES

[1] L. Abrams. (2013 Oct. 14). CryptoLocker Ransomware Information
Guide and FAQ [Online]. Available:
http://www.bleepingcomputer.com/virus-removal/cryptolocker-
ransomware-information

[2] G. O’Gorman, G. McDonald. “Ransomware: A growing menace.”
Technical Report, Symantec Corporation, 2012.

[3] N. Scaife, H. Carter, P. Traynor, and K.B. Butler, “Cryptolock (and
Drop It): Stopping Ransomware Attacks on User Data,” in proc. IEEE
Int. Conf. on Dist. Computing Systems, pp. 303-312, June 2016

[4] D.W. Hosmer, S. Lemeshow, R. X. Sturdivant. “Introduction to the
Logistic Regression Model,” in Wiley Series in Probability and
Statistics: Applied Logistic Regression, 3rd ed. Wiley, 2013.

[5] J. Wyke, A. Ajjan. “The Current State of Ransomware.” Technical
Report, SophosLabs, 2015.

[6] S. Mehmood. “Enterprise Survival Guide for Ransomware Attacks.”
Technical Report, The SANS Institute. 2015.

[7] P. Mell, K. Kent, and J. Nusbaum, “Guide of Malware Incident
Prevention and Handling,” Recommendations of the National Institute
of Standards and Technology (NIST), Special Publication 800-83, 2005.

[8] C.S. Oejman, P.J. Bruillard, B.D. Matzke, A.R. Phillips, K.T. Star, J.L.
Jenson, D. Nordwall, S. Thompson, and E.S. Peterson. “LINEBACKER:
LINE-speed Bio-inspired Analysis and Characterization for Event
Recognition,” in proc. IEEE Security and Privacy Workshops, pp. 88-95,
2016.

[9] D. Bonderud. (2016 Oct. 17). CryPy Ransomware Slithers Onto PCs
With Unique, Python-Based Encryption [Online]. Available:
https://securityintelligence.com/news/crypy-ransomware-slithers-onto-
pcs-unique-python-based-encryption/

[10] J. Seitz. Black Hat Python. No Starch Press, Inc. 2015.

[11] “Announcing the Advanced Encryption Standard (AES),” Federal
Information Processing Standards Publication 197. United States
National Institute of Standards and Technology (NIST). 2001

[12] D. Litzenberger. Package Crypto Python Cryptography Toolkit [Online].
Available: https://www.dlitz.net/software/pycrypto/api/current/.

[13] A. Alharbi and M.A. Thornton, “Demographic Group Classification of
Smart Device Users,” in proc. IEEE Int. Conf. on Machine Learning and
Applications, pp. 481-486, Dec. 2015.

[14] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S.
Sethumadhavan, S. Stolfo. “On the Feasibility of Online Malware
Detection with Performance Counters,” in proc. 40th Annual Int.
Symposium on Comp. Arch, pp. 559-570, June 2013.

[15] A. Tang, S. Sethumadhavan, S. Stolfo. “Unsupervised Anomaly-based
Malware Detection using Hardware Features,” in proc. Int. Symposium
on Research in Attacks, Intrusions, and Defenses, pp. 109-129. Sept.
2014.

