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Abstract—A new method for detection of ransomware that is 

present in an infected host during its payload execution is 

proposed and evaluated.  Data streams from on-board sensors 

present in modern computing systems are monitored and 

appropriate criteria are used that enable the sensor data to 

effectively detect the presence of ransomware infections.  

Encryption detection depends upon the use of small yet 

distinguishable changes in the physical state of a system as 

reported through on-board sensor readings.  A feature vector is 

formulated consisting of various sensor output that is coupled 

with a detection criteria for the binary states of “ransomware 

present” versus “normal operation”.  Preliminary experimental 

results indicate that ransomware is detected with an overall 

accuracy in excess of 95% and with a corresponding false 

positive rates of less than 6% for four different types of 

encryption methods over two candidate systems with different 

operating systems. An advantage of this approach is that 

previously unknown or “zero-day” versions of ransomware are 

vulnerable to our detection method since no prior knowledge of 

the malware, such as a data signature, is required for our method 

to be deployed and used. 

Keywords—Ransomware detection; physical sensor side 

channel; feature vector; encryption 

I. INTRODUCTION 

Malware is a term that we use here to refer to malicious 
software and is used to refer to all forms of software that can 
be used to compromise computer functions.  This compromise 
causes harm to the victim computer and ultimately to the user 
or owner of the host computer. There are a large variety of 
types of malware including, viruses, worms, adware, bots, 
rootkits, spyware, trojans, and the primary subject of this 
investigation, ransomware.  Ransomware is a form of malware 
that holds a victim computer system’s files hostage while 
demanding a ransom to release access to those files back to 
their legitimate owner. 

A typical ransomware attack scenario involves infection of 
victim computer through penetration of an attack vector 
whereby the malware resulting from the attack contains a 
payload that, unbeknownst to the victim, engages in rendering 
important files as unusable, through their encryption with a 
key that is unknown to the victim.  Upon completion of the 
initial silent encryption phase, the original unencrypted files 
are deleted and the victim is alerted that their files are now 
inaccessible and will remain so until a ransom is paid. It is 
also often the case, that the attacker will demand ransom 
within some time period or otherwise the encryption key will 
be destroyed resulting in permanent loss of the victim’s data.  

Fig. 1 contains a high-level diagram of the chain of events 
characterizing a typical ransomware attack from the point of 
view of the adversary. 

 
Fig. 1. Typical ransomware attack. 

Ransomware attacks can occur through a variety of means.  
As a more specific example, a common attack vector is the use 
of email spear phishing where a victim receives an email 
message that somehow causes the victim to click on an 
embedded link to a webpage that, in turn, causes the victim’s 
browser to display the adversaries’ webpage and to lure the 
victim into downloading the malware.  This malware could be 
presented as a macro contained within an Office

®
 document or 

some other executable.  Once the executable is run, it proceeds 
to encrypt the victim’s local files in a silent mode and upon 
completion of the encryption, it then notifies the user that their 
files are now inaccessible due to the encryption.  Next, the 
exploitation of the victim occurs through a demand of 
payment.  The typical form of ransom payment is through an 
anonymous transfer of non-traceable funds through the 
darkweb using electronic currency such as bitcoin.  The victim 
is promised that, if the ransom is received within a prescribed 
timeframe, the key will be delivered allowing their encrypted 
files to be decrypted.  While this example scenario is based 
upon the premise of email phishing as the attack vector 
penetration method, other means for delivering the malware 
payload are also possible as well as other varieties of payload 
activity, victim exploitation, and vulnerability [10]. More 
detailed information about well-known versions of 
ransomware, including how they infect computers can be 
found in [1], [2] and [5]. 

Effective defense against a ransomware attack is generally 
considered to comprise a multi-tiered or layered approach [6].  
Detection of the malware during the time it is being 
downloaded to the victim computer is the outer defense, and if 
possible, can prevent the ransomware from ever entering the 
system.  This defense approach targets prevention of the attack 
vector from ever penetrating a victim’s host computer.  Packet 
signature monitoring via an intrusion detection system (IDS) 
or file signature monitoring via a local antivirus software 
program can provide this capability, but only if these methods 
are capable of recognizing the malware through knowledge of 
the data signatures.  While this is a desirable defense, it is 
notoriously difficult to prevent infection with previously 
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unknown ransomware versions, or so-called “zero-day” 
attacks.  In the case of zero-day ransomware, data signatures 
and other corresponding characteristics are unknown by 
definition. Furthermore, the increasing presence of 
polymorphic malware is causing signature-based approaches 
to become less effective than they once were [7]. 

If malware penetration is not prevented and the malware 
manages to be downloaded to the victim machine, the next 
line of defense is to detect its presence and halt its operation 
before or at least during the initial stages of victim host file 
encryption.  Recently, an approach has been developed that 
performs payload detection through monitoring the integrity 
of victim host file system [3].  This method provides several 
metrics and indicators that are used to detect the presence of 
data files that are in the process of being encrypted.  One of 
these metrics is the use of information entropy calculations.  
Information entropy is a single-valued metric that indicates 
when a data set has less structure, determinism, and 
redundancy.  The idea underlying the use of an entropy metric 
is that an encrypted file is one that closely resembles a file of 
random data.  This is due to the side effect that encryption 
generally produces data that appear to be random in order to 
prevent unauthorized decryption through the exploitation of 
determinism or redundancy in the encrypted file. Therefore an 
increase in entropy for a given file indicates the high 
likelihood that the file is being encrypted [8]. 

We propose an alternative method for ransomware 
detection on an infected host system.  Instead of monitoring 
file system attributes, we monitor victim host system behavior 
by taking advantage of the increasingly large number of 
onboard sensors.  In this sense, our method uses a physical 
side channel approach where the victim’s files are not directly 
monitored, rather the behavior of the victim machine is 
monitored and onboard sensor provided data are used as side 
channel information that indicate when an encryption 
operation is occurring.  This monitoring can be accomplished 
through a background process that is loaded at boot time and 
thus continuously monitors the system for suspicious 
behavior.  Once this suspicious behavior is detected, the user 
can be alerted and the suspicious processes can be suspended.  
The central difference between our approach and other 
previous approaches is that we use secondary effects to detect 
the presence of malware rather than a direct effect, such as 
measuring increases in file entropy. 

Another recent approach for malware detection involves 
using embedded hardware performance counters that are 
present in most modern CPU architectures [14], [15].  This 
approach uses machine learning to create detection models 
that monitor minor variations in malware execution 
characteristics.  Our approach differs from the use of hardware 
performance counters in that we use data being supplied from 
the suite of embedded sensors that are also present in modern 
computing platforms rather than performance counter 
data.  Furthermore, our approach is designed to specifically 
detect ransomware since ransomware uses encryption to 
enable the victim’s data files to be held hostage, and hence, 
allows them to be recoverable when a ransom is supplied in 
exchange for the decryption key.  Our approach uses data 
sources that are secondary to malware execution patterns and 

it does not rely upon the presence of performance 
counters.  By targeting a specific class of malware, namely 
ransomware using encryption in the payload, we can achieve 
high detection accuracy rates. 

We propose that our sensor-based detection methodology 
be used to complement more traditional signature-based 
approaches that are intended to prevent attack vector 
penetration.  In contrast to prevention of attack vector 
penetration, the technique described here is designed to detect 
the presence of ransomware when penetration has been 
achieved.  Our side channel-based or sensor-based approach 
has an advantage in comparison to antivirus or IDS systems in 
that zero-day versions of ransomware can be detected since 
previously captured malware signatures are not required.  
Furthermore, it is not necessary to monitor individual files and 
calculate entropy or other metrics that must be continually re-
computed and compared with one another as is the case in the 
solution provided in [3]. 

We have implemented an experimental prototype system 
based on sensor monitoring and have tested it through use of a 
variety of scenarios where simulated ransomware is 
undergoing the silent phase of encrypting victim files.  To 
evaluate our method, we used four different encryption 
methods from the Python Cryptography Toolkit that have been 
reported to be commonly used by adversaries during the 
development of ransomware [9]. Our experiments have 
yielded high accuracy rates in excess of 95% percent with 
false positive and false negative rates of approximately 6% or 
less.  We anticipate that with proper tuning of our method, 
these accuracy and error rates can be further improved. 

II. BACKGROUND CONCEPTS USED IN THE APPROACH 

A. Physical Sensors 

Most modern computer systems comprise sensors that 
monitor the state of internal hardware components. These 
sensors continuously gather and supply information that is 
communicated with other devices and subsystems within the 
system for the intended purpose of ensuring that the system 
stays within specific operating specifications. If sensor data 
reveals that a system component is approaching a boundary 
for a recommended value of an operational specification, 
safety mechanisms will typically be engaged in order to 
correct the internal environment so that system malfunctions 
can be prevented. For example, when the data from a 
temperature sensor of a computer’s central processing unit, 
CPU, begins to increase, a signal is sent to the CPU cooling 
fan. This signal causes the fan to either become active or to 
increase the fan speed in order to cool the CPU.  Additionally, 
there are sensors that provide input to other subsystems such 
as internal power management units, PMUs, to conserve 
power usage. 

Typically, computer system components are designed to be 
compact in size through the use of transistors with feature 
sizing in the nanometer scale. As a direct result, whenever 
computations become more complex, more stress in placed on 
a computer’s hardware components. This increased stress 
occurs because a large number of transistors are 
simultaneously switching in a circuit that correspondingly 
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cause an increase in dynamic power consumption resulting in 
more heat dissipation during heavy computational activity. 
Thus, monitoring the side channels of a system with 
embedded sensors that measure temperature, power 
consumption, and battery voltage levels can give insight into 
the type of processing that is underway on a computer at a 
given time. With this thought in mind, we hypothesize that 
monitoring a computer’s side channels through periodic 
observations of sensor output data could also indicate when a 
resource-heavy task, such as encryption, is occurring. Since 
ransomware utilizes encryption in its payload to deny its 
victims access to their files, analyzing data from a computer’s 
side channel sensor data could allow trends to emerge in 
regard to how a computer behaves while under ransomware 
attack. 

A significant advantage of this approach as compared to 
other side channel methods is that the sensors and a means for 
querying them are natively provided.  Thus there are fewer 
concerns in deploying and accessing sensors for the purpose 
of side channel exploitation.  Furthermore, the trend has been 
that an increasingly diverse number of sensors are provided as 
integral components in modern computing devices.  A typical 
smart phone has many embedded sensors that could be used to 
support security applications including power monitors, 
accelerometers, ambient light sensors, antennas (including 
GPS receivers), fingerprint scanners, barometers, cameras, 
touchpad pressure sensors, and others.  Even rack-mounted 
industrial servers contain a significant number of sensors that 
measure subsystem power consumption, temperature, and 
other environmental factors.  All of these deployed sensors in 
modern computing devices provide a rich set of data sources 
that may be used to provide internal side-channel information 
for the environment in which a computing device is operating.  
Use of these sensors has been used in other security-related 
applications in the past.  As an example, in [13], sensors 
present in mobile computing devices have been used to 
provide a user demographic classification capability for 
mobile devices with embedded touchscreens. 

Conventional computers are comprised of the same set of 
basic internal devices to enable their operation.  However,  
manufacturers may choose to use different and unique sets of 
components for their various computer models.  Due to this 
variation among different product models, corresponding 
differences among the readings of the internal onboard sensors 
can occur when they are queried. Instantaneous values of 
sensor readings can be accessed via the command line or 
through calls to the operating system using an application that 
queries and interprets the onboard sensor data. During our 
experimentation, the Hardware Monitor and the Open 
Hardware Monitor applications were used to provide 
information from systems running Apple’s OSX

®
 and 

Microsoft’s Windows
®
 operating systems.  As an example of 

large number of available on-board sensors, a list of the 59 
sensors and their readings from an Apple Macbook

®
 is 

provided in Table 1. 

The on-board sensors in Table 1 for the Apple Macbook 
are provided as an example. Windows

®
-based machines also 

have a similar complement of accessible on-board sensors. In 
this investigation, Python polling scripts are used to 

continuously access data from the hardware sensors and to 
record the information in the form of .csv file for further 
analysis.  Operational deployment of the method would likely 
use a more sophisticated technique for obtaining sensor data 
such as an interrupt-driven background process or an event-
driven polling technique. 

B. Machine Learning Concepts 

In the investigation reported here, prediction models were 
created using Machine Learning (ML) techniques. Models are 
trained using a large amount of data gathered and processed 
from an experimental environment.  We hypothesized that the 
sensor data, such as that provided in Table 1, can be used to 
form a feature vector that differentiates between the binary 
machine states of “normal operation” versus “ransomware 
payload execution” (i.e., unauthorized encryption activity).  
The model is trained to weigh the feature vector components 
with a goal of predicting the machine state with high accuracy. 
For the implementation described here, we used a simple 
logistic regression approach as the ML classification 
algorithm wherein our goal is to discriminate between the 
binary states of “normal operation” versus “ransomware 
payload execution.” We note that many alternative 
classification algorithms are available and subsequent research 
efforts will focus upon choosing the best form of classification 
methodology. 

Logistic regression is a statistical method that is used to 
create models that determine if an instance belongs to a certain 
category. More detailed information about logistic regression 
can be found in [4]. When this method is used as a binary 
classifier for ML, a probability estimate produced by logistic 
regression is compared to a threshold value.  This comparison 
results in a predicted state.  When the prediction is false, a 
system state of “normal operation” is declared, otherwise the 
predicted state is “ransomware payload execution.”  In order 
to create a logistic regression model that can provide accurate 
predictions, the model must be formulated with a training 
dataset that is as accurate and complete as possible. The 
example below shows how a simple logistic regression 
algorithm can be implemented within Python. 

From sklearn.linear_model import LogisticRegressionCV 

 

lr_sk = LogisticRegressionCV()  

lr_sk.fit(X_train,y_train) 

yhat = lr_sk.predict(X_test) 

In this example, lr_sk is an object of class 
LogisticRegression. This object will eventually be used as 
the classifier model.  However, before the model is effective, 
it must be trained using the fit method. lr_sk is trained using 
X_train and y_train. X_train utilizes a matrix containing the 
training data while y_train holds a vector of values that 
correspond to X_train for the categorical feature that is to be 
predicted.  Once the model has been trained, the prediction 
method is used to classify new data present in X_test. 

C. Ransomware Payload Model 

The encryption algorithm used within an instance of a 
ransomware implementation encodes files in such a way that it 
is virtually impossible to recover the data without knowledge 
of the decryption key. In many cases, such as in the malware 
implementations known as  CryptoLocker and CryptoWall, 
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the encryption algorithms adhere to the Advanced Encryption 
Standard (AES) [1], [5]. AES is currently one of the 
encryption methods of choice for the United States 
government due to the algorithm’s well-known ability to 
protect sensitive data [11]. 

To evaluate the robustness of our methodology, four 
different methods of encryption are used in our experiments 
and are encapsulated within scripts written in Python, a C-
based programming language, in order to simulate the 
execution of a ransomware payload. Specifically, we used 
Electronic Code Book, Cipher-Block Chaining, Cipher 
FeedBack, and XOR encryption. The Python Cryptography 
Toolkit implementations are used to implement these four 
encryption algorithms within our simulated ransomware 
scripts.  Electronic Code Book, Cipher-Block Chaining, and 
Cipher Feedback are symmetric-key algorithms that follow the 
AES standard.  XOR encryption is included in our study due 
to the method’s ability to encode files quickly with a 
corresponding relatively low complexity. Due to the 
unavailability of a cyber range during the test of our 
ransomware payload detection prototype, we refrained from 
using actual samples of malware, such as those described in 
[5], that are currently a threat to all Internet-connected 
devices. 

Electronic Code Book encryption is based on the concept 
of a block cipher in which blocks of information are encrypted 
rather than each bit being encrypted individually as in a stream 
cipher. Additionally, each encoded block of information is 
independent of any other block [12]. Because of this 
independence, Electronic Code Book encryption is 
characterized by the fact that matching blocks of information 
will always be identical, even in their encrypted form. Cipher-
Block Chaining is another type of block cipher, but it’s 
encryption method differs as compared to the Electronic Code 
Book method. With Cipher-Block Chaining, each encoded 
block of data depends on the previously encoded information 
[12].   Due to this dependence, matching blocks of plaintext 
information will result in different encryption values. Cipher 
Feedback encryption is a type of stream cipher in which small 
groups of bits are encrypted individually rather than large 
blocks of plaintext being processed as individual symbols 
[12]. Cipher Feedback encryption is based upon each new 
stream of data being encoded with a dependence on the 
previously encrypted data thus allowing matching plaintext 
data to have unique values in their plaintext form. XOR 
encryption is a simpler and far less secure method of 
encryption where information in plaintext form is simply 
XORed with an encryption key, thus, it is a basic substitution 
cipher.  Although we recognize that XOR encryption could be 
easily defeated through cryptanalysis, it is included in our 
experiments since we wanted to evaluate our detection method 
with an extremely lightweight method and we felt that the 
XOR method was at least representative of the behavior of 
many lightweight methods.  We anticipate that future versions 
of ransomware, particularly those that target limited resource 
systems such as IoT devices, may likely employ such 
lightweight encryption methods due to the practical constraint 
that a limited amount of processing power is available within 
this class of devices. 

Our script that emulates the ransomware encryption 
payload includes the four encryption methods mentioned 
previously as well as options to set delays and random 
intervals for activity.  To ensure that no data was actually lost 
during experimentation, the keys for encryption were 
hardcoded in the encryption script and were written as 
plaintext metadata in each encrypted file.  The reach of the 
script was limited to a set of dummy test directories. Three 
dummy test sets were used: a small directory measuring 16 
MB in size, a medium directory with 334 MB of files, and a 
large directory that was 3 GB in size.  To collect training data, 
the encryption script randomized the encryption processes to 
execute at varying intervals of time so that a total of 40 
encryptions would take place within the small directory.  20 
encryptions would take place within the medium directory, 
and four of these would take place within the large directory. 
All of the encryption iterations taking place in each directory 
were evenly divided among the four different encryption 
techniques. During the duration of the script’s run, hardware 
sensor data was gathered on average at every half second in 
order to obtain examples of the status of the hardware 
components during normal computer activity and during a 
covert encryption process. 

Once the test data was populated within the machine 
learning algorithms to train the ransomware detection model, 
the encryption script was randomly activated in the 
background of the test computer in order to test the 
effectiveness of the model’s ability to detect hidden 
encryption activity based on hardware sensor readings.  In the 
experiments reported here, the amount of time required for 
training was proportional to the speed of the processor being 
used and ranged between 1.8 and 3.5 hours.  The operational 
phase of the ransomware detection algorithm ran as a 
background process thus allowing normal usage of the victim 
computing system. 

III. METHOD FOR DETECTING RANSOMWARE 

Encryption detection through hardware sensor monitoring 
depends upon the detection of small yet distinguishable 
changes in the physical state of a system as reported through 
on-board sensor readings. Rather than focus on any one aspect 
of victim host machine performance, a feature vector of 
system sensor data is used to classify the system states. The 
relationship between increasing and decreasing sensor 
readings gives a strong indication of what type of task a 
system is currently performing given that enough data has 
been collected to form a clear indication of what a task looks 
like. In the case of encryption, the following sequence of 
events occurs:  1) data is read/accessed from the filesystem 
into main memory; 2) the accessed data is encrypted in main 
memory; and 3) the encrypted data is then written back to 
secondary storage. The system sensors, when individually 
monitored, would likely only allow very broad conclusions to 
be drawn such as indications of when the system has increased 
CPU usage or disk I/O operations are occuring. However, 
combining all the system sensors into a feature vector allows 
much more focused conclusions to be drawn that are 
indicative of sequences of events such as those outlined for an 
executing encryption process. Given that the sensor-data 
feature vector indicates a state of encryption, appropriate 
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alerts can be issued and the corresponding encryption 
processes can be suspended or halted. 

While a large number of sensors are available as evident in 
Table 1, we anticipated and subsequently observed that some 
of the sensors dominated in terms of provision of useful 
classification data.  In particular the sensors that indicate main 
memory power usage emerged as being particularly sensitive 
to the presence of encryption activity.  This is likely due to the 
fact that encryption algorithms are very memory-intensive 
operations. 

While the dominant sensors were identified empirically in 
this study, in the future we intend to employ a more rigorous 
assessment and augment our ML approach based upon 
preprocessing analyses to refine our feature vector definition.  
Techniques such as Principal Component Analysis (PCA), 
Linear Discriminant Analysis (LDA), and others will be 
employed to further refine the feature vector.  We anticipate 
that such refinements will increase accuracy through the 
provision of enhanced discrimination in the classification 
algorithm thus reducing the false negative and false positive 
rates as well as reducing feature vector dimensionality.  
Another desired outcome of reducing the feature vector 
dimensionality is enhancement of performance of the 
detection algorithm.  We intend to focus upon enhancements 
that results in decrease of false negative errors rather than 
false positive errors since the former error type results in more 
serious consequences than those of the latter type. 

TABLE I. APPLE MACBOOK INTERNAL SENSORS AND READINGS 

Apple Macbook Sensor Value 

SMART Disk APPLE SSD SD0128F (135251405113) 
[TEMPERATURE]:  

136.4 F 

SMC AIR INLET [TEMPERATURE]:  102.2 F 

SMC BATTERY [TEMPERATURE]:  87.8 F 

SMC BATTERY CHARGER PROXIMITY 
[TEMPERATURE]:  

111.2 F 

SMC BATTERY POSITION 2 [TEMPERATURE]:  87.8 F 

SMC BATTERY POSITION 3 [TEMPERATURE]:  87.8 F 

SMC CAMERA PROXIMITY [TEMPERATURE]:  113 F 

SMC CHARGER PROXIMITY TEMPERATURE 
[TEMPERATURE]:  

100.4 F 

SMC CPU A PROXIMITY [TEMPERATURE]:  120.2 F 

SMC LEFT PALM REST [TEMPERATURE]:  87.8 F 

SMC MAIN HEAT SINK 2 [TEMPERATURE]:  93.2 F 

SMC MAIN LOGIC BOARD [TEMPERATURE]:  96.8 F 

SMC PLATFORM CONTROLLER HUB CHIP 
TEMPERATURE [TEMPERATURE]:  

129.2 F 

SMC SSD BAY [TEMPERATURE]:  98.6 F 

SMC SSD TEMPERATURE A [TEMPERATURE]:  138.2 F 

SMC SSD TEMPERATURE B [TEMPERATURE]:  120.2 F 

SMC WLAN CARD [TEMPERATURE]:  98.6 F 

Smart Battery bq20z451 (1) [TEMPERATURE]:  82.4 F 

Battery 1 Cell 1 [VOLTAGE]:  3.69299 V 

Battery 1 Cell 2 [VOLTAGE]:  3.69398 V 

Battery 1 Voltage [VOLTAGE]:  7.38699 V 

SMC CPU CORE [VOLTAGE]:  1.66211 V 

SMC CPU SUPPLY 1 [VOLTAGE]:  1.05176 V 

SMC DC INPUT [VOLTAGE]:  0 V 

SMC POWER SUPPLY/BATTERY [VOLTAGE]:  7.16016 V 

SMC SSD SUPPLY [VOLTAGE]:  3.29883 V 

SMC WLAN CARD [VOLTAGE]:  3.29883 V 

Battery 1 Current [CURRENT]:  1.45599 A 

SMC 5V S0 LINE [CURRENT]:  0.0498047 A 

SMC BACKLIGHT [CURRENT]:  0.00292969 A 

SMC MAIN HEAT SINK 2 [TEMPERATURE]:  93.2 F 

SMC MAIN LOGIC BOARD [TEMPERATURE]:  96.8 F 

SMC PLATFORM CONTROLLER HUB CHIP 

TEMPERATURE [TEMPERATURE]:  
129.2 F 

SMC SSD BAY [TEMPERATURE]:  98.6 F 

SMC SSD TEMPERATURE A [TEMPERATURE]:  138.2 F 

SMC SSD TEMPERATURE B [TEMPERATURE]:  120.2 F 

SMC WLAN CARD [TEMPERATURE]:  98.6 F 

Smart Battery bq20z451 (1) [TEMPERATURE]:  82.4 F 

Battery 1 Cell 1 [VOLTAGE]:  3.69299 V 

Battery 1 Cell 2 [VOLTAGE]:  3.69398 V 

Battery 1 Voltage [VOLTAGE]:  7.38699 V 

SMC CPU CORE [VOLTAGE]:  1.66211 V 

SMC CPU SUPPLY 1 [VOLTAGE]:  1.05176 V 

SMC DC INPUT [VOLTAGE]:  0 V 

SMC POWER SUPPLY/BATTERY [VOLTAGE]:  7.16016 V 

SMC SSD SUPPLY [VOLTAGE]:  3.29883 V 

SMC WLAN CARD [VOLTAGE]:  3.29883 V 

Battery 1 Current [CURRENT]:  1.45599 A 

SMC 5V S0 LINE [CURRENT]:  0.0498047 A 

SMC BACKLIGHT [CURRENT]:  0.00292969 A 

SMC BATTERY CURRENT [CURRENT]:  0.78125 A 

SMC CPU CORE [CURRENT]:  0.566406 A 

SMC CPU HIGH SIDE [CURRENT]:  0.241211 A 

SMC CPU SUPPLY 1 [CURRENT]:  0.0107422 A 

SMC CPU/VRM SUPPLY 2 [CURRENT]:  0 A 

SMC DC INPUT [CURRENT]:  0.00195312 A 

SMC DDR3 MEMORY 1.35V LINE [CURRENT]:  0.881836 A 

SMC DDR3 MEMORY S3 LINE [CURRENT]:  0.0771484 A 

SMC DISCRETE BATTERY [CURRENT]:  0.738281 A 

SMC LCD PANEL [CURRENT]:  0.000976562 A 

SMC POWER SUPPLY/BATTERY [CURRENT]:  0.770508 A 

SMC SSD SUPPLY [CURRENT]:  0.0771484 A 

SMC WLAN CARD [CURRENT]:  0.0107422 A 

SMC 5V S0 LINE [POWER]:  0.164062 W 

SMC BACKLIGHT [POWER]:  0.015625 W 

SMC CPU CORE [POWER]:  0.964844 W 

SMC CPU HIGH SIDE [POWER]:  1.72266 W 

SMC CPU SUPPLY 1 [POWER]:  0.0078125 W 

SMC CPU/VRM SUPPLY 2 [POWER]:  0 W 

SMC DDR3 MEMORY 1.35V LINE [POWER]:  1.05469 W 

SMC DDR3 MEMORY S3 LINE [POWER]:  0.0898438 W 

SMC LCD PANEL [POWER]:  0 W 

SMC POWER SUPPLY/BATTERY [POWER]:  5.51172 W 

SMC SSD SUPPLY [POWER]:  0.25 W 

SMC WLAN CARD [POWER]:  0.0351562 W 

Battery 1 Current Capacity [CAPACITY]:  503 mAh 

Battery 1 Total Capacity [CAPACITY]:  6559 mAh 

SMC FAN Exhaust [RPMS]:  1192 RPM 

SMC AMBIENT LIGHT 1 [LIGHT]:   70 

All algorithms in the ransomware detection experiments 
were written in Python. To develop a model that detects 
ransomware, a training set of hardware sensor data is first be 
gathered. This data must include examples of how the sensors 
behave on the host computer under normal operating 
conditions as well as whenever a covert encryption process is 
taking place.  After the sensor training data has been gathered, 
logistic regression is used to fit the model to the training data. 
Due to the slight variation between the components of each 
computer, the resulting ransomware detection model is unique 
for each machine. This model is then used to classify the state 
of the computer whenever the hardware sensors are routinely 
polled. If the model predicts that a suspicious encryption 
process is taking place on a computer, the user is alerted and 
the suspicious process is either suspended or terminated. 
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The detection algorithm is employed after model training 
has completed and it runs as a background process to allow 
normal usage of the system.  A pseudocode version of the 
detection algorithm is provided below: 

// load model from binary file  

model = load(‘./model.pkl’) 

attack_count = 0 

previous_prediction = 0 

under_attack = False 

// check sensor data and make prediction 

while True 

 data = monitor.read_sensors() 

 prediction = model.predict(data) 

 // determine action based on current and 

  //  previous data 

 if prediction: 

  attack_count += 1 

 else:  

  if previous_prediction == 0: 

   attack_count = 0 

   under_attack = False 

 previous_prediction = data 

// set condition to under attack if positive 

predictions 

// increase above threshold 

 if attack_count > threshold: 

  under_attack = True 

IV. EXERIMENTAL RESULTS 

Testing was conducted on two machines, one running 
Apple OSX

®
 and the other running Microsoft Windows

®
. 

Specifically, the Apple OSX machine is a Macbook Air with a 
1.3GHz Intel

® 
i5 processor and 4GB of main memory and the 

Windows
®
 machine comprised an Intel

® 
i7 processor with 

32GB of main memory. 

Training data was collected on both machines and the data 
was used to generate a prediction model. The new encryption 
detection method was tested utilizing a ransomware 
simulation testing script written in Python. The size of the 
directory and the method of encryption were selected by 
randomly picking a number between 1 and 100. All values of 
60 and below caused encryption of the small directory, all 
values from 61 to 90 encrypted the medium directory, and all 
values from 91 to 100 encrypted the large directory. The 
particular encryption method used is randomly selected among 
the four types we implemented in our experiments. 

After a particular directory has been encrypted, the script 
waits a random amount of time before performing additional 
encryption. The amount of time it waits is proportional to the 
size of the directory it previously encrypted. After encrypting 
a small directory, a random amount of time between 1 and 60 
seconds is selected, a time between 5 and 10 minutes is 
selected for the medium directory, and a time between 15 and 
30 minutes is selected for the large directory. The script also 
randomly selects a value between 5 and 15 and waits for an 
hour and a half after encrypting that many gigabytes of data. 
Randomness and wait times are utilized in order to simulate 
the attempts made by an adversary to avoid detection of 
ransomware payload execution. During the encryption 
process, the script searches for files by recursively starting 
from a given path. Files that have extensions matching a list of 
common user file types are read and their data is encrypted. 
After encryption the data is copied over the existing data in 
the original file. 

After testing the Windows
®
 machine for 5 hours 94.2% of 

sensor polls were accurately predicted as either “under attack” 
or “no attack”. The confusion matrix in Fig. 2 shows the 
relationship between the predictions made by the model and 
the actual state of the machine. During the periods the script 
was performing encryption 98.1% of polling predictions 
correctly identified a state of under attack. During the periods 
the script was not performing encryption 92.5% of polling 
predictions correctly identified a state of no attack. 

1.9% of the checks that occurred during periods of 
encryption incorrectly predicted that there was no attack (i.e., 
a false negative error) while 7.5% of periods with no 
encryption incorrectly predicted that there was an attack (i.e., 
a false positive error).  Our classification method was tuned in 
a conservative fashion to focus more upon the reduction of 
false negative errors than the case of false positives as the 
former error type is assumed to be more critical than the latter. 

The overall accuracy of the encryption detection method is 
illustrated in Fig. 3. The uppermost graph, (a), of the figure 
represents the actual periods of encryption or “truth data” 
while the plot on the bottom, (b), represents the actual 
predicted periods of encryption.  These graphs depict the 
machine state on the vertical axis with zero indicating normal 
operation and one indicating under attack.  The horizontal 
axes depict time. 

The Apple machine was tested by only encrypting the 
large directory after a random wait period between 30 and 60 
minutes over a 6-hour period. This method gives a clear 
indication of how well the new detection method can detect 
periods of high volume encryption. The confusion matrix in 
Fig. 4 shows the relationship between the predictions made by 
the model and the actual state of the machine. 

After testing the Apple machine, 98.2% of the sensor polls 
resulted in accurate predictions. During the periods the script 
was actually performing an encryption operation, 99.7% of the 
polling predictions correctly identified a state of “under 
attack.” During the periods the script was not performing 
encryption, 97.7% of polling predictions correctly identified a 
state of “no attack.” A false negative rate of 0.27% of the 
checks that occurred during periods of encryption incorrectly 
predicted that there was no attack while a false positive error 
rate of 2.3% of observations with no encryption incorrectly 
predicted that there was an attack. Fig. 5 shows the periods of 
actual encryption in the uppermost portion, (a), and periods of 
predicted encryption in the lower portion, (b).  As in Fig. 3, 
the vertical axes depict machine state and the horizontal axes 
depict time. 

 
Fig. 2. Confusion matrix representing actual machine state vs. ransomware 

detection model prediction for a Windows machine. 
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(a) 

(b) 
(b) 

(a) 

 
Fig. 3. (a) Plot of encryption activity vs. time and (b) Plot of ransomware 

detection model prediction vs. time for a Windows machine. 

 
Fig. 4. Confusion matrix representing actual machine state vs. ransomware 

detection model prediction for an Apple machine. 

Upon further analysis of the results we found that most 
periods of false positive predictions occured directly after a 
correct attack prediction. This can be observed in Fig. 5 which 
contains false positive periods after the second and fourth 
encryption periods. We believe that implementing additional 
testing and filtering techniques that more closely scrutinize 
predictions being made for a short period directly following a 
positive prediction period will result in increased overall 
accuracy.  Currently our method does not make use of any 
temporal or history data regarding past recent predictions.  We 
also believe that significant improvements can be made to the 
method when such temporal data is included in our prediction. 

It is noted that there are cases when encryption is being 
legitimately conducted on a host system.  It was indeed the 
case that our preliminary experimental results also detected 
this situation.  In one case, we computed a false positive 
detection when the system performed a routine incremental 
backup operation.  In operational deployment of our method, 
these cases will be accounted for through use of white-listing 
or other methods that notify the detection process that 
legitimate encryption operations are in process. Such 
notification methods will have to be carefully implemented in 
a manner where they cannot be exploited by malware to 
prevent exploitation.  System registry data could be used to 
label processes that employ legitimate encryption and the 
ransomware detection process can be augmented to verify if a 
detection is the result of a legitimate process or not before a 
state of “ransomware payload execution” is declared. 

 
Fig. 5. (a) Plot of encryption activity vs. time and (b) Plot of ransomware 

detection model prediction vs. time for an Apple machine. 

Our experiemental ransomware detection algorithm used a 
simple polling or sampling method wherein the operational 
phase of the detection method would periodically query the 
sensors to obtain readings. This approach suffers from 
potential aliasing problems, particularly if the malware 
payload were to be implemented in short bursts or use some 
other form of intelligence about the state of the victim system 
before encryption is executed. In the future, we intend to 
investigate the use of an alternative means to schedule sensor 
queries such as an event-based technique.  This enhancement 
should decrease error rates while also reducing the avergae 
computational overhead since it is assumed that ransomware 
payload execution is a relatively rare event. 

Because these preliminary experiments were conducted 
under the framework of a supervised machine learning model, 
the choice of the training data is a crucial aspect of the 
method. It will be important to craft a learning phase that is 
capable of charaterizing ransomware payload behavior even 
when the actual ransomware may be in the form of a zero-day 
exploit. Fortunately, most known ransomware uses well-
known encryption methods, thus the training phase can focus 
on detection of these types of encryption. 

V. CONCLUSION 

A new method for the detection of ransomware is devised, 
implemented, and experimentally verified for accuracy and 
error.  The method is applicable to both previously known as 
well as zero-day instances of ransomware that employ 
encryption in the payload.  The detection method results in 
very low, if any, data loss since encryption detection can occur 
very early in the timespan of the malicious encryption activity.  
The technique is based upon monitoring on-board, hardware 
sensor data streams rather than characteristics of the targeted 
data.  The new technique requires a minimal amount of 
modification to hosting computer systems since it uses pre-
existing physical sensors, supporting circuitry, and system 
software assets that provide access to the sensor 
readings.  Since the approach does not require direct 
interaction with the filesystem, it does not require extensive 
changes to the filesystem nor frequent disk accesses.  The 
ransomware detection technique has been experimentally 
shown to be effective for both Apple OSX

®
 and Microsoft 

Windows
®
 operating systems. 
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Future research includes devising new methods for 
increasing the sensitivity of the classifier while also reducing 
error rates. One such method is the implementation of 
additional system features into the feature vector. We believe 
that gathering system performance data in conjunction with 
system sensor data could greatly improve the new method’s 
ability to recognize periods of encryption.  Additionally, we 
plan to analyze and reduce the dimensionality of the feature 
vector such that only the most discriminating data sources are 
included as features. We also plan to implement and evaluate 
a multiple model majority vote ensemble method for 
prediction based on the feature vector. Our future plans also 
include the evaluation of alternative machine learning 
methods such as the use of classifiers other than a simple 
linear regression binary classifier perhaps including a multi-
state classifier that could include a state of “legitimate 
encryption.”  Finally, we plan to evaluate the sensor-based 
ransomware detection approach in an environment such as a 
cyber range where actual samples of ransomware are used. 
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