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Abstract—To meet the growing need of robust and secure 

identity verification systems, a new biometric based on neural 

representations of synergistic hand grasps is proposed here. In 

this preliminary study five subjects were asked to perform six 

synergistic hand grasps that are shared most often in common 

activities of daily living. Their scalp electroencephalographic 

(EEG) signals were analyzed using 20 scalp electrodes. In our 

previous work, we found that hand kinematics of these 

synergistic grasps showed potential as a biometric. In the current 

work, we asked if the neural representations of these synergistic 

grasps can provide a unique signature to be a biometric. The 

results show that across 300 entries, the system, in its best 

configuration, achieved an accuracy of 92.2% and an EER of 

~4.7% when tasked with identifying these five individuals. The 

implications of these preliminary results and applications in the 

near future are discussed. We believe that this study could lead to 

the development of a novel biometric as a potential future 

technology. 

Keywords—Biometrics; hand synergies; quadratic discriminant 

classifier; electroencephalography (EEG); feature extraction 

I. INTRODUCTION 

In this digital age, an individual‘s vital signs, exercise, and 
diet information can be stored on a cloud to be reviewed by an 
online physician who then sends a prescription wirelessly. This 
type of streamlined workflow necessitates the need for 
seamless, secure, and personalized identity authentication. 
Digitalization has also influenced development of many lower-
to-middle income countries to develop cyber infrastructures 
that records the unique identity of citizens (e.g., India‘s 
universal ID program uses biometric identity authentication). 
The need for robust authentication is also essential in 
advanced, high profile, defense applications for information 
security, e.g., DARPA‘s active authentication program. Such 
needs are being met by sophisticated methods of authentication 
provided by biometric systems [1]. 

 
Fig. 1. Based on previous work, unique and representative grasps were determined from a larger grasp set that encompassed activities of daily living. In the current 

work, we are using the neural representations of these synergistic grasps to determine if unique features can still be extracted at the neural level, as they were as the 
kinematic level in previous work. EEG is recorded while subjects perform these synergistic grasps. Two functionally differing time segments are tested, movement 

planning (T1) and movement execution (T2). Features extracted from filtered EEG data are reduced using Column Subset Selection Problem. A quadratic 

discriminant model is then trained using a subset of the data. For a biometric identification system, a testing entry is treated as a classification problem. For a 
biometric verification/authentication system, a testing entry must match the model for a particular subject above a given threshold. 
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Biometric systems can identify individuals based on their 
physiological characteristics (e.g., finger prints, iris scans, face, 
recognition, voice recognition, and brain waves) or behavioral 
characteristics (e.g., typing cadence, gait patterns, and key 
strokes) or a fusion of these characteristics (multimodal 
biometrics) [2], [3]. Although they are more efficient than text-
based authentication, many of these systems are forgeable due 
to their stationary nature (snapshots without time history) and 
yet others are vulnerable due to their lack of uniqueness. 
Recognizing these limitations and the growing need for 
biometrics, this proposal presents a new biometric based on 
hand synergies and their neural representations. The proposed 
biometric overcomes the current limitations by the following 
features: 1) unique hand synergies contained in hand 
movements that are based on an individual‘s inimitable motor 
system, motor control and motor learning; 2) dynamic nature 
of spatiotemporal patterns of hand synergies and their neural 
representations. Moreover, if a biometric is compromised, 
existing security systems are in need of replaceable alternatives 
for cancelable biometrics [4]. 

Synergy-based movement theory [5] hypothesizes that 
some commonly used movement patterns are encoded in the 
central nervous system (CNS). These movement patterns, or 
synergies, reduce the degrees of freedom that the CNS must 
control and can be combined to perform more complicated 
movements. The human hand is one of the most mechanically 
complex end effectors in the human body and has been studied 
in the context of hand grasping for many years. We and others 
have previously explored grasping tasks to determine different 
forms of movement synergies. In recent work [6], we used 
twenty-five objects taken from activities of daily living (ADL) 
to derive kinematic synergies, in the form of joint angular 
velocity profiles over movement time. We found that these 
kinematic synergies represented anatomically meaningful joint 
relationships that execute over time. Testing for sensitivity and 
specificity of these synergies, we found that they could 
successfully be used as a biometric. We were able to reduce the 
larger grasp data set to six objects that still spanned activities 
of daily living, but also highlighted unique patterns across 
individuals. Here, we denote these optimized grasps as 
synergistic grasps. At the kinematic level, these synergistic 
grasps showed potential as a biometric. In this study, we 
explored these synergistic grasps at the top level of movement 
hierarchy, the CNS, to determine if a unique signature can still 
be found. 

The remainder of the paper is outlined as follows. In 
Section II, a description of the experiment, dataset, and 
equipment is presented. Then, the steps used to develop the 
biometric testing scheme are provided. An overview of the 
system is provided in Fig. 1. In Section III, the performance of 
this new biometric, evaluated as an identification system and as 
an authentication/verification system, is presented. An analysis 
of selected features is also provided. In Section IV, the paper 

concludes by summarizing the implications of this work and 
discusses future goals. 

II. METHODS 

A. Data Collection 

For this study, five right-handed individuals (3 male, 2 
female; mean age 24.8 ± 2.5 years) were recruited under 
Stevens Institute of Technology Institutional Review Board 
approval. For EEG data collection, subjects wore a high-
density EEG Cap based on 10/20 system positions with an 
additional 86 intermediate positions (g.GAMMA cap). During 
the experiment, EEG was recorded with 32 active channels 
(g.Ladybird). However, for this study, we are considering data 
from channels most related to motor areas. These channels are: 
FC4 (1), C2 (3), C4 (2), CP2 (5), CP4 (4), RI1(7) , RI2 (6), RI3 (9), 
RI4 (8) for right hemisphere,  FC3 (11), C3 (12), C1 (13), CP1 

(15), CP3 (14), LI1 (16), LI2 (17), LI3 (18), LI4 (19) and Cz (10), 
CPz (20) along the midline for a total of 20 channels (channel 
numbers indicated in parentheses). A ground channel was 
placed at nasion (Nz) and reference channel on the right ear. 
Fig. 2 (top) shows positioning of these channels. A conductive 
gel (g.GAMMAgel) was used to bridge the gap between the 
scalp and each channel. Impedance was kept below 5 kOhms 
and checked throughout the experiment. Data was continuously 
captured with two amplifiers (g.USBamp) using BCI2000 [7] 
at a sampling rate of 256 Hz. 

Subjects also wore a right handed CyberGlove 
(CyberGlove Systems, LLC, San Jose, CA, USA) that records 
joint angles. For this study we used 10/18 sensors that 
measured the interphalangeal (IP) and metacarpophalangeal 
(MCP) joints of the thumb and MCP and proximal 
interphalangeal (PIP) joints of the four fingers. Each subject 
performed initial postures to calibrate the glove. Data was 
captured at 125 Hz using a custom-built LabVIEW (National 
Instruments Corporation, Austin, TX, USA) program. 

 Each grasp task consisted of grasping an object placed 40 
cm away from the midline of the subject‘s body (Fig. 2, 
below). The hand started in an initial resting position (20 cm to 
the right of the subject‘s midline). The subject was asked to 
rapidly grasp the object after hearing an audio ‗go‘ signal and 
to hold the grasp until an audio ‗stop‘ signal was heard. The 
LabVIEW program provided these audio cues, collected 
CyberGlove data, and sent a sync waveform to the amplifiers 
to align kinematic and EEG data. Subjects were asked to 
refrain from blinking or swallowing during the grasp, if 
possible. The six synergistic grasp tasks determined from 
previous work [6] spanned different grip types (tripod, 
cylindrical, lateral key, spherical, hook, and precision) found in 
activities of daily living (ADL). These objects were: screw 
driver, water bottle, CD, petri dish, handle, and bracelet. Each 
object was grasped with 30 repetitions, for a total of 180 
grasping tasks per subject. 
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Fig. 2. Top: The twenty selected electrodes and their locations are shown. 

Left (L) and Right (R) Intermediate (I) electrodes were chosen in addition to 
traditional electrode positions (frontal—F, central—C, parietal—P),  in this 

high density EEG Cap for improved motorcortical signal acquisition. Bottom: 

Experimental setup. Subjects grasped six objects representative of activities of 
daily living. Hand kinematics and neural signals were recorded using 

CyberGlove and an EEG cap, respectively. 

B. Preprocessing 

EEG was filtered into 8 different frequency bands: low 
delta (.01-5 Hz), delta (1-3 Hz), theta (3-7 Hz), alpha 1 (7-9 
Hz), alpha 2 (9-12 Hz), beta 1 (13-17 Hz), beta 2 (18-30), and a 
general EEG band (.01-45 Hz) using a 3rd order Butterworth 
bandpass filter. As depicted in Fig. 1, we isolated neural data to 
both movement planning (feedforward neural commands) and 
movement execution (trajectory correction, sensory feedback) 
portions. In order to do so, joint data was used to detect grasp 
onset time (first joint to reach .05% of peak velocity) and 
completion time (last joint to fall below .05% peak velocity) 
for each task. Across all subjects the mean onset time (0.5 ± 
.12 seconds) and grasp completion time (1.45 ± .5 seconds) 
was calculated. Data taken from ‗go‘ to movement onset is 
denoted as T1 and from movement onset to grasp completion is 
denoted as T2. Data was then standardized by subtracting the 
mean and dividing by the standard deviation (calculated from 
tasks within the training dataset only) at each time point. 

C. Feature Extraction 

After splitting data into the 2 groups (T1 and T2), the mean 
across each time portion was calculated representing the 
average amplitude of EEG activity for a specific channel and 
frequency band. We also evaluated the mean power spectral 
density, using a fast fourier transform (FFT) within this time 
portion for each frequency band. As a feature type, amplitude 
and spectral density were evaluated separately. Each feature 
type resulted in 300 features (8 frequency bands x 20 
channels). We first ranked each feature using a column subset 
selection problem (CSSP) method [8]. After determining the 
loss of each increasingly ranked feature, the number of features 
until an asymptote was reached was determined. 
These n features were chosen to create the training dataset. 

Based on preliminary work, we found a quadratic 
discriminant, rather than a linear discriminant classifier to be a 
better fit for the distribution of our neural data. In quadratic 
discriminant analysis, both the means and covariance of each 
class vary. Additionally, discriminant classifiers can be used 
for multi-class classification. Here we used data from each of 
the subjects to represent each class. For initial evaluation of the 
classifier, 2/3 of the dataset (i.e. 20 repetitions from each of the 
6 objects for each subjects for a total of 600 grasps) were used. 
The remaining 1/3 of the dataset (300 grasps) was used to test 
the classifier. 

D. Biometric Testing 

In biometric identification, the system determines the 
identity of an individual without the individual having to claim 
it. Thus, we can treat each entry as a classification problem. 
The classifier chooses the class (here, characterized by 
covariance matrix and mean) with the least misclassification 
cost. Accuracy is defined as the percent of correct 
classifications. In biometric authentication, a claim of identity 
is given and the system either rejects/accepts the claim. To test 
this type of system each entry was compared to the user‘s 
template (modeled by the quadratic discriminant). The match 
rate, evaluated as the posterior probability, must be above a 
specified threshold to be accepted by the system. We evaluated 
false positive rate and false rejection rate as a function of a 
threshold to determine equal error rate (EER) of the system.  

For initial evaluation of the classifier and to determine 
strengths of different feature types (amplitude versus spectral 
density), 3-fold cross validation was used for each time 
segment (T1 and T2) as well as smaller time windows 
throughout the grasp time. Finally, selected features from the 
feature extraction method were examined to determine optimal 
parameters for this type of biometric. Statistical analysis, when 
used, was performed using a student t-test with a significance 
level set at p < 0.05.   

III. RESULTS 

A. Biometric Performance 

In order to test the potential of neural sources of 
synergistic movements as a biometric, a quadratic 
discriminant classifier was used to classify 5 different 
subjects. EEG data during grasps were split into two time 
segments. To evaluate the biometric identification system, the 
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results of classifier performance, averaged across 3-fold cross 
validation, are presented in Fig. 3. Using amplitude of EEG 
signals, the classifier achieved 86.6 ± 4.5% accuracy during 
T1 (movement planning) and 87.2 ± 5.7% during T2 
(movement execution). Performance using spectral density 
was much lower, with an average of 54.4 ± 5.8% and 60.8 ± 
6.29% during T1 and T2, respectively. 

 
Fig. 3. Classification using amplitude (blue) versus spectral density (red) 

show significantly better performance (p < 0.05) for both T1 (movement 

planning) and T2 (movement execution), indicated by the *.  No significant 

difference was seen between each of the time segments. 

 
Fig. 4. For both amplitude-based (blue) and spectral power-based (red) 

classifiers, using a smaller window of data (~1 second) increased performance 
compared to the longer time windows (T1 and T2). Peak performance was 

92.2% at t = 2.0 seconds and 68.3% at t = 0.8 seconds for amplitude and 

spectral power-based classifiers respectively. 

 
Fig. 5. For a quadratic dimscirmant model based on amplitude features from 

T1, false acceptance rate (blue) and false rejection rate (red) are plotted ass a 
function of threshold values (match scores). The inset  shows where the two 

curves meet, to determine EER. Here, EER is ~5.1% at a threshold of .011. 

In general, no significant difference could be seen between 
T1 and T2 for both the amplitude based classifier (p=0.88) and 
spectral power based classifier (p=0.27). However, neural data 
during grasping is extremely dynamic, even within T1 and T2. 
Thus, we further explored how time affects classifier 
performance using a moving 1-second window of data with 
~0.2 second overlap. Results are provided in Fig. 4. For an 
amplitude-based classifier (blue), results show that accuracy 
was able to increase to ~92.2 ± 1.57% when using a smaller 
window towards the end of grasp (time = 2 seconds), thereafter 
dropping significantly. The spectral power-based classifier 
(red) also showed increased performance (68.3± 3.8% at time = 
0.8 seconds).  However, standard deviations across the three 
folds are high. The classifier, trained on a smaller window of 
data, may be more sensitive to inter-repetition differences 
during specific grasp portions (i.e. contact with object). 

To evaluate the biometric authentication system, false 
acceptance rate and false rejection rate are plotted in Fig. 5. 
The means and standard deviation across 3-fold cross 
validation is provided by the solid line and shaded region, 
respectively. The intersection of the two curves represents 
equal error rate (EER). For T1, EER was ~5.1% using a 
threshold of .011 (Fig. 5). For T2, EER was ~4.67% using a 
threshold of .0218. Note that this evaluation was based on 
amplitude features, rather than spectral power features, based 
on above results. 
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B. Feature Analysis 

Finally, to optimize such a biometric application, we 
examined which features were selected during feature 
reduction. Results, presented in Fig. 6, show features selected 
from a single training and testing classification iteration for T1 
(top row) and T2 (bottom row). Selected bands are shown on 
the left and channels are shown on the right. For both time 
periods, the distribution of selected bands and channels is 
similar. Lower frequency bands and the general EEG band 
(.01-45 Hz) were most often selected. Although channel 4 was 
often selected, no spatial trends can be seen from channel 
selection. During T2, the number of features selected 
increased, while still maintaining the same distribution. 

IV. DISCUSSION AND CONCLUSION 

Preliminary results indicate that it is possible to distinguish 
the identity of an individual based on the neural representations 
of these six characteristic and synergistic hand grasps. These 
results, although not substantial, do indicate the potential of 
neural EEG signals corresponding to synergistic grasps as 
candidates for biometrics.  A biometric system based on these 
identifiers is currently under development and will be 
substantiated on a large group of individuals to test sensitivity 
and specificity. Nevertheless, these preliminary results show 
promise. Other EEG based biometric systems have been able to 

achieve up to 100% accuracy in eyes-closed, resting 
environments [9], [10]. EEG biometrics collected during motor 
imagery tasks have achieved up to 99% accuracy [11] and 
those based on stimuli have achieved up to 97% accuracy [12], 
[13]. An optimal task with high accuracy as well as 
reproducibility over time remains under investigation. 
Advantages, disadvantages, applications, challenges and 
possible solutions for such biometric systems are discussed 
below. 

A. Advantages of Neural(brain) Biometrics 

There are several advantages to using neural (brain) activity 
for biometrics because of its uniqueness, confidentiality, 
inimitability and invulnerability [14]. Brainwaves have been 
successfully studied as a biometric for over 15 years [15]. 
Electrical signals measured by electroencephalogram (EEG) 
have been used often as a successful biometric due to its 
simplicity, low cost, noninvasiveness and yet informing macro-
scale cortical field potentials. Other noninvasive brain imaging 
modalities such as magnetoencephalography (MEG), 
functional magnetic resonance imaging (fMRI), positron 
emission tomography (PET), and optical imaging and invasive 
methodologies such as electrocorticography (ECoG) are not 
considered candidates for use in biometrics due to practical 
limitations. Functional near-infrared spectroscopy is the only 
other noninvasive methodology used in biometrics [16]. 

 
Fig. 6. For time segments T1 (a and b) and T2 (c and d), the distribution of selected features for frequency bands (a and c) and channel numbers (b and d) is the 

same. Lower frequencies (bands 1-3) and the general EEG band (band 8) were most often selected. Across all 20 channels, only channel 4 shows consistently higher 

selections. This particular channel lies on the right hemisphere along the central sulcus (RI2 in Fig. 2, top). 
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B. Current Challenges of of EEG Based Biometrics 

The following studies have used EEG in biometric 
applications [15], [17]-[19]. Using an autoregressive model, 
Paranjape et al. [15] examined EEG epochs. Visual evoked 
potentials (VEP) in 32-48Hz frequency range were used as a 
biometric by Palaniappan and Mandic [12]. In such studies, 
subjects are either in a resting state, are performing repetitive 
self-paced hand movements, generating words, or observing 
visual stimuli. Current methodologies face challenges such as 
variability in EEG signals recorded during cognitive tasks at 
different mental and emotional states, and heritability [14]. By 
measuring neural representations of physical movements (basic 
grasping movements) in focal cortical areas we hope to 
overcome these challenges. 

C. Future Challenges and Possible Solutions 

Aging affects almost all the biometrics [20]. There are 
direct and indirect problems associated with aging. Reduction 
in muscle strength, increase in response time and slow 
movements are direct problems that can be modeled; indirect 
problems such as vision deficits, hearing deficits, and other 
cognitive deficits that affect movement and must be taken into 
consideration during modeling. A possible solution to these 
problems is to track changes with age, as done with current 
biometrics using a data driven approach. This approach can 
inform the system for needed updates to ensure continued 
accuracy of the model. 

Similar to other behavioral biometrics, the proposed 
biometric is subject to variability due to disease. Paralysis from 
stroke and spinal-cord injury (SCI) might completely debilitate 
one's ability to perform movements. Movement disorders such 
as Parkinson's disease can introduce tremors into movement. 
While in some cases, such as SCI, neural representations may 
remain, in many other cases they may not. Disease is a 
limitation to this biometric just as upper-limb amputation is to 
finger prints. Nevertheless, the current study gives us an 
opportunity to explore this new area of biometrics by studying 
neural mechanisms of motor control. 
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