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Abstract—Studies demonstrate that monitoring and recording 
movement of rehabilitation exercises can improve the degree of 
recovery of the patient. Technologies exist to track user 
movements but they are often large, expensive, or require 
multiple units to be mounted on the user in different locations. 
Each of these can be barriers to patient adoption of rehabilitation 
technologies inside the home. We propose a single unit which 
incorporates an inertial measurement unit (IMU) and infrared 
sensors to determine orientation of the arm for various 
movements. The infrared sensors compensate for IMU drift 
errors, providing a sensor fusion solution. A novel optical 
wearable was created for detection of arm movement exercises in 
three-dimensional space that are consistent with stroke survivor 
exercises for spasticity rehabilitation. A study of five participants 
yielded high average accuracies of 98% across participants, 
without requiring any normalization of results to varying body 
sizes of participants. These findings indicate a strong inter-
patient similarity in arm movement patterns. This inter-patient 
similarity implies the possibility of a transfer learning 
application, where various patient data can be used to collectively 
improve the accuracy of the predictive machine learning model. 
This could allow development of a medical device that is easily 
donned by the user for rehabilitation in the comfort of their own 
home, allowing more effective telerehabilitation. 
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telerehab; rehabilitation devices; medical devices; wearable 
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I. INTRODUCTION 

Motion sensing and motion capture has applications in 
several industries, including medical, sports, and entertainment. 
Motion capture can be used in the entertainment industry to 
capture a person’s limb movements or facial expressions and 
map these motions to a digital animation. Motion capture for 

sport or medical industries focuses on capturing the movement 
of an individual to enable precise analysis of user movements. 
While several high-accuracy motion capture systems exist, 
many of them command a high sales price and require a trained 
professional to operate them. Price and a trained operator may 
not be an impediment in professional sport teams and private 
health clinics, but are a barrier to technology adoption in home-
based rehabilitation [1], where a user would typically rent or 
purchase hardware to aid rehabilitation and may only be 
supervised intermittently by a clinician. 

Stroke is one such medical condition that affects over 15 
million people annually worldwide. It is the fifth leading cause 
of death in USA. Survivors of a stroke frequently suffer from a 
condition called spasticity, which limits their strength, range of 
movement, and overall independence [2]. 

It is generally recognized that the extent of a stroke 
patient’s recovery can increase with the degree rehabilitation 
they receive [2].  Technologies that allow monitoring of 
patient exercises while at home (telerehabilitation) are 
considered a crucial part of extending patient rehabilitation [3], 
[4]. Studies have demonstrated improved physical function in 
individuals who undergo telerehabilitation when compared to 
usual care [5]. 

A. Existing Wearables for Motion Sensing 

Significant research has been done into designing wearable 
technologies for rehabilitation motion sensing. Designs 
frequently incorporate an inertial measurement unit, or IMU, 
which provides accelerometer, gyrometer, and magnetometer 
data. Integration of gyroscope data and double integration of 
accelerometer data allows determination of position and 
orientation of the device and user. 

If these IMU sensors are placed on multiple points of the 
body, the combined orientation values can be used to 
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reconstruct the movement path of a limb in free space. Many 
studies have been completed on systems which incorporate 
multiple IMU systems for limb orientation and position 
tracking [6], [7]. These systems situate the IMUs at different 
places on the body such as wrist, elbow, shoulder, and back. 
Motion tracking within 2 cm accuracy has been achieved with 
multi-unit systems, however, the systems are difficult to don 
without assistance [8]. Difficulty donning the device can be a 
barrier to user acceptance of the device. 

Very few studies have used single IMU for upper extremity 
motion sensing. Some studies have used single IMU systems to 
provide motion classification between broad classes of 
movements, which can include arm and leg movements [9]. 
Single IMU systems for arm position estimation often 
incorporate a maximum likelihood estimate (MLE) of the arm 
position based on possible location data from the single IMU. 
The position estimates are constrained by the limitations on 
possible anatomical positions, but full estimation of arm 
orientation and position is difficult because of the 7 degrees of 
freedom of the human arm [10]. Error values are higher with 
single IMU systems, with errors of  9-13 cm being reported 
[11]. 

In both multi-sensor and single-sensor IMU motion 
tracking systems, drift of the IMU sensor is a recognized 
challenge [12], since repeated integration of sensor data can 
propagate signal noise and accumulate error over time. We 
propose incorporating additional sensors into the device to 
reduce effects of sensor drift, improving accuracy of a device 
having prolonged usage. Incorporating additional sensors to 
compensate for IMU drift can be considered a form of sensor 
fusion, whereby the additional sensor data can improve 
performance and accuracy of the system. 

Our prior work [13] demonstrated the initial feasibility for 
such a device, incorporating passive infrared (PIR) sensors and 
active IR sensors in addition to the IMU. This device could 
classify 3 different dynamic arm movements correctly with 
88% accuracy. Only one study was found which used infrared 
sensing technology, but this was incorporated as a goniometric 
rotary encoder [14]. A literature review did not yield any other 
publications which utilize infrared sensors for direct sensing of 
the user’s movements [15]. 

II. MATERIALS AND METHODS 

An updated device was created, incorporating additional 
PIR and active IR sensors to increase the field-of-view (FOV) 
of the device (Fig. 1). The layout of the sensors has been offset 
at angles from the transverse (horizontal) plane to increase the 
FOV of the device at different levels of pronation and 
supination. This device is a wrist wearable device containing 
an IMU, and four PIR and four active IR sensors. Sensor data 
is processed by an Arduino Pro Mini microprocessor and sent 
via Bluetooth connection to a computer. The unit is portably 
powered by a lithium polymer battery. The completed unit can 
be seen in Fig. 2. 

 
Fig. 1. Concept model of device. (a) Active IR sensors; (b) Passive IR 

sensors. 

 
Fig. 2. Optical wearable device. (a) Active IR sensors; (b) Passive IR 

sensors. 

1) Active IR 
The active IR sensors emit a safe infrared light which is 

received by a photodiode on the unit. The time of flight (TOF) 
between transmission and reception or phase change of the 
received signal is used to determine the distance from emitter 
to nearby objects. The sensor outputs a voltage reading 
proportional to the distance of nearby objects. 

2) Passive IR 
Passive IR sensors were chosen that are selectively 

sensitive to thermal emissions in the Longwave IR region 
(LWIR), allowing human thermal emissions to be detected. 
These particularly PIR sensors contain an array of sensors, 
meaning that the presence and direction of a person can be 
sensed based on pixels that appear “warmer”. 

The Arduino receives the sensor data, formats and 
transmits via Bluetooth connection to a computer. Data is 
received into a LabVIEW program where the data is saved to a 
CSV file. Results are then analyzed offline with Python 
machine learning code. 
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III. EXPERIMENTAL PROTOCOL 

A. Exercise Protocol 

We designed an exercise protocol to demonstrate the 
device’s ability to determine orientation of the wrist relative to 
the user’s torso, and the distance of the wrist from the user’s 
torso. 

Participants were guided to complete arm movements at 
varying distances along five axes relative to the user: forward, 
left, right, upwards, and downwards. These trials were 
conducted with the device mounted on the left wrist. 

The five axes have a common origin point near the user’s 
left shoulder. Users completed gestures in the left, right, 
upward and downward axis by moving their hand 10 cm, 
25 cm, or 40 cm from the center resting position at the origin 
point. Movements along the forward axis were completed in 
5 cm intervals from 15 – 60 cm. Movement along each axis can 
be seen below in Fig. 3. The total number of completed 
movements is 22. 

A test area was prepared to guide user movements. Specific 
distances are delineated on a paper track in the test area. The 
user sits so that the forward axis aligns with their left shoulder. 
Users complete these exercises while seated at a table (Fig. 4).

 
Fig. 3. User movements along 5 axes. (a) Forward axis; (b) left; (c) right; (d) upwards; (e) downwards. 

 
Fig. 4. Test area for trials. 

B. Experimental Procedure and Data Recording 

Participants completed 10 repetitions of the 22 gestures, for 
a total of 220 acquisitions. A test supervisor was present to 
brief the participant, aid the participant in donning the device, 
and initiate data recordings. 

Data was recorded through use of a National Instruments 
LabVIEW Graphical User Interface (GUI) which received data 
wirelessly from the device via Bluetooth connection. Data was 
transmitted from the device at a 10 Hz frequency and received 
by the LabVIEW program, which sent the results to a file for 
the specific patient, gesture, and repetition. Each individual 
acquisition was a minimum of 1 second in length. The average 
time to complete 220 acquisitions, including setup and rest 
periods was about 30 minutes. 
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C. Machine Learning Analysis 

Data was analyzed using Python Machine Learning 
software. A Support Vector Machine (SVM) with a Radial 
Basis Function (RBF) kernel was used. 

A total of 55 features were used for the analysis, and can be 
summarized as follows: 

 Three features (yaw, pitch, and roll) come from the 
orientation data from the IMU. 

 Four features from the active IR distance sensors. 

 Forty-eight features from the array PIR sensors. 

Prior to machine learning analysis, data values were feature 
scaled to ensure equal weighting of each feature in the analysis. 
Data was normalized across all participants to have a mean of 
zero and a standard deviation of 1. Data was then segmented 
into testing and training data. The machine learning model 
learned with the training data, and then accuracy was assessed 
using the unseen testing data. The model was cross validated 
25 times by randomly shuffling the data for repeated analysis, 
and taking the average of the results. 

A meta-analysis indicated that data accuracy is not strongly 
affected by the proportion of data segmented for testing and 
training, Fig. 5. Accuracy values were very high for most 
testing/training fractions, and accuracy only decreased for 
scenarios where more than 80% of data was reserved for 
testing, which is a generally unrealistic scenario. It was chosen 
to segment 20% of data for testing, and 80% for training. 

 
Fig. 5. Model accuracy as a function of testing/training data segmentation. 

IV. RESULTS 

High overall accuracies of 98% were reported from the 
machine learning model. The accuracy levels for each 
movement gesture are summarized in a confusion matrix in 
Fig. 6. The confusion matrix shows the gesture that the 
machine learning model predicts for each of the labeled test 
data samples. An accurate model shows highest values on the 
diagonal, corresponding to a model with high prediction 
accuracy. Our analysis indicates that model accuracy is very 
high for most classes.  Note that the movements on different 
axis are labeled with a letter for the axis, and a number for the 
distance. “L1” is a left axis movement with 10 cm 
displacement from the torso. “R2” is a right axis movement 
with 25 cm displacement. “U3” is an upward reaching 
movement with 40 cm displacement. 

 
Fig. 6. Confusion matrix. 
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Note that this analysis tested the model’s accuracy at 
predicting the position of the user’s wrist in space relative to 
the user while seated at a table. Comprehensive tracking of 
complete arm orientation (including shoulder and elbow 
orientation) was not the focus of this study. 

A. Variance Analysis 

An analysis of accuracy levels for each gesture was 
completed. Accuracy levels for movements along the varied 
axes were consistently more accurate (Fig. 8) than movements 
along the forward axis (Fig. 7). Movements on varied axes 
have greater variance in orientation, allowing the model to 
discriminate movements more accurately. 

Movements in the forward axis (Fig. 7) have more similar 
orientation readings, possibly making resulting differentiation 
more difficult. We notice high average accuracies and lower 
standard deviations for movements where the wrist is close to 
the body. As the wrist is more displaced from the body, 
average accuracies decrease slightly to 93%, and variance 
increases. 

B. Inter-patient Performance 

An analysis of accuracy levels across patients was also 
performed (Fig. 9). Accuracy was consistent across patients, 
with average accuracy of 98% and standard deviation of 1%. 

 
Fig. 7. Variance Analysis of forward movements. 

 
Fig. 8. Variance analysis of movements in multiple directions. 

 
Fig. 9. Relative accuracy levels of 5 patients in this study. 

V. CONCLUSION 

In this paper, we have demonstrated a wearable device that 
uses infrared sensors to increase the motion sensing accuracy 
of conventional IMU sensor wearables. High average 
accuracies of 98% were realized across five participants, 
without requiring any normalization of results to varying body 
sizes of participants. These findings indicate a strong inter-
patient similarity in arm movement patterns, and improve on 
our previous results by testing an increased number of 
movement classes in different directions. We conclude that this 
design could be applied into motion sensing applications across 
different individuals with high degrees of accuracy in a transfer 
learning application. In this application, exercise data from 
various patients can be combined to collectively improve the 
accuracy of the predictive machine learning model. This could 
allow realization of a device that is easily donned and 
calibrated to the movements an individual undergoing physical 
rehabilitation. 

Future research will evaluate spatial accuracy limits of the 
device and incorporate a continuous tracking routine to allow 
spatial regression. 
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