
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

23 | P a g e

Blockchain and Git Repositories for Sticky Policies
Protected OOXML

Grzegorz Spyra
The Cyber Academy

Edinburgh Napier University
Edinburgh, UK

g.spyra@napier.ac.uk

Prof William J Buchanan
The Cyber Academy

Edinburgh Napier University
Edinburgh, UK

w.buchanan@napier.ac.uk

Dr Elias Ekonomou
The Cyber Academy

Edinburgh Napier University
Edinburgh, UK

e.ekonomou@napier.ac.uk

Abstract—The paper discusses possible cloud-based
Information Rights Management (IRM) model extension with
enhanced accountability for both a sticky policy and an attached
data. This work compliments research on secure data sharing
with Office Open XML (OOXML) package extended by a sticky
policy in eXtensible Access Control Mark-up Language
(XACML) format. Research used Identity Based Encryption
(IBE) primitive to securely bind the policy and the data together.
High availability required from cloud service is here achieved
using distributed system components. The Git repository and the
Blockchain, leveraged technologies are not new, however their
application for IRM system is novel and brings it closer to
universal approach and open architectural construct.

Keywords—Sticky policies; git repositories; Blockchain

I. INTRODUCTION

This work is focused on a sticky policy protected data
access accountability and non-repudiation. With emerging
cloud technology, data, once released into the cloud, may be
stored in several locations, across several legal jurisdictions
and can be hosted by various cloud service providers, and that
not necessarily share the consistent information required to
take valid access control decisions. Sectors such as healthcare,
governments and finance seek for secure cloud systems, where
not only data confidentiality could be protected but also
contains information on authorship [1]. These new extended
data boundaries require new security safeguards i.e. data
accountability and auditing that currently are adapted from
legacy on-premises environments.

Secure Patient Health Record (PHR) architecture consists
of historical fingerprint [2]. When such record or its part leaves
a medical system boundary it should be accompanied by well-
defined security components to ensure access control, integrity
and non-repudiation in semi-trusted or non-trusted
environments. Unfortunately neither homogeneous systems nor
data sharing standard exists that guarantees such safeguards
across different security boundaries.

Companies and health institutions processing, storing and
sharing sensitive information like PHR run various data
protection programmes aiming to prevent data leakage.
Information Rights Management (IRM) implementation is one
of the technical safeguards helping to protect documents.
Where information integrity and changes history are required
to comply with data protection directives this solution delivers
a core functionality for IRM system.

This work contributes by adding a new simple module and
it compliments other works on sensitive documents sharing
where information authenticity and non-repudiation are
ensured within a single document boundary by recording all
changes made upon commit operation of a new version.

II. BACKGROUND

Office Open XML (OOXML) as XACML policy wrapper
is a ZIP package file consisting of one or more file sections
followed by a central directory. The main document part is
defined by multiple XML document elements. Each file section
consists of an actual embedded file, and a local metadata file
that includes information such as a filename, a file directory, a
timestamp, compression used and a data descriptor that
includes a valid file checksum. Most of OOXML internal
sections could be protected by built-in OOXML encryption.
However there are sections that are not covered by a native
OOXML cryptographic techniques [3]. An XACML policy is
added as an additional package content that remains in
unencrypted XML format. This policy defines access rules
over resource and implements Attribute-based Access Control
(ABAC) with attribute values defining legitimate data
processing subject, Role-based Access Control (RBAC) [4]
where business or institutional roles define who can access the
data or finally Risk-Aware Access Control (RAAC)
expressions [5], the most dynamic access control technique
making access decisions upon dynamically calculated risk.

OASIS empowered XACML with health-care system
authentication architectures [6] and defined entities, i.e. Access
Control Service (ACS) responsible for taking access control
decisions. Proposed here model integrates existing
architectures with Identity Provider and Identity Based
Encryption (IBE) key generator. The IBE as a preferred
encryption method leverages XACML policy as an encryption
key that attached to the OOXML package remains in plain text
and follows the package ensuring data confidentiality prior to
successful data access authorization.

III. OOXML ACCOUNTABILITY AND AUDITING

Limited sources define possible non-repudiation assurance
applied to an Information Rights Management (IRM) system
where OOXML is used as a protected rich data wrapper.
Furthermore if this is simultaneously processed, several
different versions of the same distributed data may become
available on the cloud. While the OOXML standard built-in

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

24 | P a g e

functionality delivers integrity with well-defined granular
digital signature model [7] it does not deliver information non-
repudiation other than one used for revision tracking [8]. While
the revision tracking could be leveraged to keep an audit record
on changes it was not designed for such a purpose. The entire
OOXML data-sharing scheme has features enabling it for
changes non-repudiation and auditing and with properly
configured editor application the required safeguard could be
secured.

Non-repudiation could be secured by introducing data
versioning for properly hosted and referenced data. Where non-
repudiation of all the changes is not required data versioning
functionality without historical versions will still ensure non-
repudiation of the latest registered version. However a single
chain of data versioning is must to consistently maintain data
shared in the cloud. Where data storage cost has to be
considered, OOXML internal structure allows package
decomposition and only changed elements extraction. In this
way rich text element, i.e. media files that may not change as
often as the text are not becoming redundant and unnecessarily
stored all over the chain of changes. However, the last
approach requires highly trusted service provider as none of the
historical changes could be stored in encrypted form,
considering the fact that each historical revision or version
requires different encryption key derived from policy therefore
generates different cipher text.

IV. XACML ACCOUNTABILITY AND AUDITING

Furthermore not only data but also access policy may
require accountability allowing incident identification showing
when, how and by whom the initial data owner access rights
were tampered or simply legitimately changed. XACML policy
could be signed, however it does not guarantee non-repudiation
and does not provide any historical information [9].

Same functionality used for OOXML could be leveraged
for XACML policy as XACML data incorporated as a part of
OOXML package inherits security safeguards from its
wrapper.

There are various functional disadvantages of such a
safeguard where entire sticky policies implementation may
loose its flexibility and increase maintenance costs. However
where thorough accountability is required Trust Authority (TA)
or data owner may decide to enforce higher security policies.

V. MERKLE TREES APPLICATIONS

There are various applications leveraging Merkle Trees
construct designed to ensure distributed data or database
integrity like in [10], although block-chain and git repositories,
the most popular, have the required functionality as well as
many implementations available already as a cloud-based
service.

Consistent OOXML data versioning requires a single
globally available chain of all the changes. Document changes
have to be consistent and relate only to one previous version.
Users should not be able to simultaneously commit same
version updates with two different contents.

Merkle Trees allow quick and efficient verification of data
and its version in large data structures. Hashing, a
cryptographic primitive ensures the integrity of the current and
the preceding tree leaf.

A. Data Versioning with Blockchain

Blockchain maintains one central chain of all the
transactions. The single chain normally consists of the latest
blockchain hash. XACML policy instance and OOXML
package versions can be located on a centralized blockchain
what guarantees document integrity. Data editor who wishes to
commit a new version has to ensure that the version committed
is a direct ascendant from the latest committed version. In the
case where new version from a different version ancestor has
to be committed to the chain, a new transaction for version
cancelation has to be added to the blockchain by authorized
actor. Classical blockchain implementation maintains basic
transaction meta-data unlike Git repositories, where actually
entire data history is stored. Excluding consensus available in
blockchain the both are very similar.

B. Changes History via Git Repository

In Git everyone may have several branches ascendant from
the same data. Consequently everyone could commit the latest
version in a chain by resolving conflicts with latest committed
version. Unlike in blockchain, in Git the content matters
regardless of the branch while in blockchain the final
consensus matters regardless of the content. Entire OOXML
package and XACML policy history can be stored and hosted
simultaneously using single Git repository. Package data could
be either stored in unencrypted format, what has many
functional features compared to single branch consisting only
encrypted versions.

VI. CONCLUSIONS

Where only policy and data versioning has to be
maintained the blockchain technology is sufficient, however
where non-repudiation and changed history is required a
constrained Git repository have to be used. Basic evaluation of
Git repository for described purpose shows that encrypted
OOXML data and unencrypted OOXML data require more
storage and cannot respond to diff requests compare to
unpacked and unencrypted OOXML data. Additionally, a
constrained built-in OOXML revision control could deliver
granular changes information required for high accountability
although it requires custom OOXML editor implementation.
With both Git repository and OOXML revision control model
could provide revision history via Git required for data
maintenance and non-repudiation via amended internal
OOXML revision control functionality.

Automated Git repository evaluation was completed using
default version control repository configuration. The
Blockchain evaluation for versioning control with a single
version revocation upon author request is not ready and
requires components development on client and server side.

REFERENCES

[1] D. Shackleford, “Orchestrating Security in the Cloud,” 2015.

[2] D. Daglish and N. Archer, “Electronic personal health record systems: A
brief review of privacy, security, and architectural issues,” in
CONGRESS 2009 - 2009 World Congress on Privacy, Security, Trust

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

25 | P a g e

and the Management of e-Business, 2009, pp. 110–120.

[3] S. L. Garfinkel and J. J. Migletz, “New XML-Based Files Implications
for Forensics,” IEEE Secur. Priv., vol. 7, no. 2, pp. 38–44, 2009.

[4] Soceanu, M. Vasylenko, A. Egner, and T. Muntean, “Managing the
Privacy and Security of eHealth Data,” in 2015 20th International
Conference on Control Systems and Computer Science, 2015, pp. 439–
446.

[5] L. Gasparini, “XACML and Risk-Aware Access Control,” Aberdeen,
2013.

[6] Mohammad Jafari and D. DeCouteau, “Cross-Enterprise Security and
Privacy Authorization (XSPA) Profile of SAML v2 . 0 for Healthcare
Version 2 . 0 Committee Specification Draft 01 /,” 2014.

[7] Apple, Barclays Capital, BP, The British Library, Essilor, Intel,
Microsoft, NextPage, Novell, Statoil, Toshiba, and the United States
Library of Congress, “Information technology — Document description
and processing languages — Office Open XML File Formats — Part 2:
Open Packaging Conventions,” no. December. ISO/IEC, Geneva, p.
138, 2006.

[8] Apple, Barclays Capital, BP, The British Library, Essilor, Intel,
Microsoft, NextPage, Novell, Statoil, Toshiba, and The United States
Library of Congress, “Information technology — Document description
and processing languages — Office Open XML File Formats —Part 1:
Fundamentals and Markup Language Reference,” vol. 2012. ISO/IEC,
Geneva, p. 5030, 2012.

[9] Saldhana, A. Tappetla, A. Anderson, A. Nadalin, B. Parducci, C.
Forster, D. Arumugam, C. David, S. Dilli, D. DeCouteau, E. Rissanen,
G. Richards, H. Lockhart, J. Herrmann, J. Tolbert, L. Seitz, M. Kudo, N.
Itoi, P. Tyson, P. Mishra, R. Levinson, R. Jacobson, S. Proctor, S.
Muppidi, T. Moses, and V. Murdoch, “eXtensible Access Control
Markup Language (XACML) Version 3.0,” 2013.

[10] N. Parab and A. Brown, “Cloud Storage Using Merkle Trees,”
20160110261, 2016.

