
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

268 | P a g e

Isolating Bone and Gray Matter in MRI Images using
3D Slicer

Ashley Whiteside
Department of Computer Science,

University of Colorado, Colorado Springs,
CO, USA

amwhiteside1@yahoo.com

Sudhanshu Kumar Semwal
Department of Computer Science,

University of Colorado, Colorado Springs,
CO, USA

ssemwal@uccs.edu

Abstract—Slicer has been used in medical community for
several years now. This paper describes a Python extension
imported in Slicer application. The main contribution of the
paper is to outline and explain how to import and test a Python
extension which we created to isolate gray matter and bone in
MR brain volume images. Our future plans include both
qualitative and quantitative analysis, validation, and comparison
to other similar techniques, and extensions to 3D surface
extractions and interpretations using Slicer.

Keywords—3D slicer; medical visualization; thresholding

I. INTRODUCTION

The inability of an unskilled and untrained user to identify
different parts of the brain, including the bone and gray matter,
limits those who can correctly interpret these images to only
highly-trained, skilled individuals. However, the number of
skilled individuals is much lower than the number of untrained
people, and the services of trained individuals is often in high
demand. As a result, the number of images that can be
interpreted in a reasonable timeframe is severely limited. Using
the Python extension functionality in 3D Slicer, we created an
extension for the purpose of isolating the gray matter and the
bone in an MRI Images as a first step towards understanding
both the 3D Slicer and how one could use it to specifically
develop their own interfaces using Python extensions.

3D Slicer is an open-source software platform available for
Linux, MacOSX, and Windows. It was created for the purpose
of image analysis and visualization [1]-[5] and is extensively
used for research in image-guided therapy [6]. Its powerful
extension capabilities allow for the addition and use of a
Python algorithm, discussed in this paper, updates the MRI
images to clearly show either the bone or gray matter found in
the brain.

The method used to isolate these materials was a
combination of averaging and thresholding. For the purpose of
isolating the gray matter, the average of each slice was
calculated and a user-adjustable standard deviation was
applied. All pixel values outside of this range were set to zero.
To find the bone, the maximum and average value of each slice
was averaged, and the user-defined bone standard deviation
was applied. As with the gray matter, all pixel values outside of
this range were once again set to zero.

This paper discusses how to create or import an extension
in 3D Slicer, testing and running the code used to isolate gray

matter and bone, specifics regarding how this code was written,
and improvements that can be applied to the code in the future.

II. MOTIVATION

Identifying areas of interest using thresholding, such as the
technique described in this paper, can be precursor to obtaining
surfaces from medical data, such as 3D volume of CT/MRI
scan slices [1]-[5]. Surfaces are extracted by sometimes
identifying contours in the 2D slices. Once the contours have
been collected, the reconstruction problem becomes one of
constructing a surface between them. Most techniques
construct the surface with a mesh of polygons [7]-[11]. The
most common of these is the triangle. After the polygons are
extracted, traditional surface shading techniques are applied.
Some details are lost if thresholding is used for identifying
contours. Identifying a set of closed contours is a costly
process. The marching cubes approach [10] is a well-known
surface construction model and remains an excellent algorithm
to interpret the binary images. Depending upon the intensity
values of the eight vertices of the voxel, a surface is generated
using a predefined polygonal topology from a look-up table. A
major problem with this approach is surface shading due to
relatively high number of triangles or polygons generated
depending upon the voxels (3D cells) occupied by the object of
interest. This also requires a large amount of memory but is
simple to implement.

On the other hand, non-thresholding models have been
proposed to better understand the entire volume data. Surfaces
are not constructed, but rather are displayed implicitly. Voxel-
based models correspond closely to the format of the medical
data. The entire volume is stored in terms of voxels. Frieder et
al. display the surface by showing voxels in a back-to-front
approach [8]. Much of the research in volume rendering has
been published in the field of medical imaging [12]-[19].
Medical imaging techniques such as computed tomography
(CT), magnetic resonance imaging (MRI), and single-photon
emission computed tomography (SPECT) use scanners to
create volumes by imaging a series of cross-sections, resulting
in multiple 2D slices of information [16]. Between two
consecutive slices, there are several rectangular parallelepiped
regions or voxels. Every voxel is assigned a value, called its
density, which represents some object property [17]. Ray
tracing is a technique that considers the effect of light by
tracing rays in the scene. An excellent reference on this subject
is [18]. Often one ray per pixel on the projection plane is

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

269 | P a g e

traced. In this case, the values encountered along the path of
the ray contribute to the pixel’s final color. Ray casting [14],
[15] is a simpler variation of ray tracing where no secondary
rays are considered. Only a set of primary rays is traced
through the volume. These rays accumulate color, based on the
intensities of the points on 2D slices encountered along the
path of the ray. When the accumulated opacity reaches a value
of 1 or greater, or the ray is outside the boundary of the
volume, the ray traversal is terminated [17]. Since no surface
construction is required, ray casting models are relatively fast.
Schlusselberg et al. [12] and Levoy [13] have proposed models
that composite the values along the path of the ray in a back-to-
front ordering. Upson and Keeler [14] suggest a front-to-back-
volume rendering approach. In their model, the color and
opacity for the ray are accumulated until the ray traverses the
volume or the accumulated opacity reaches a specified value.
Drebin et al. [18] presented a voxel-based technique for
rendering images of volumes containing mixtures of materials.
In the following sections, we will explain the method we
followed so that an extension isolating gray matter and bones
can be integrated as a plug-in to 3D Slicer.

III. CREATING OR IMPORTING AN EXTENSION IN 3D SLICER

Code for a boilerplate extension is provided by the 3D
Slicer when the extension is first created. Several tutorials on
the website (Slicer.org) explain such methods. The code was
then adapted to our needs as necessary. To create an extension,
the first step is to enable developer mode. First 3D Slicer is
opened, and then navigates to Edit -> Application Settings ->
Developer, and check the box labeled “Enable developer
mode” [6]. Once completed, select Modules -> Developer
Tools -> Extension Wizard and click “Create Extension” [6] to
create a new extension.

At this point, a new window will open that says “The
following module can be loaded. Would you like to load it
now?” and the module that was just created will be visible.
Ensure it is checked, and check the box labeled “Add selected
module to search paths” [6]. A folder will be created in the
destination chosen for saving the extension. In this folder will
be a python code file (.py). This file can be opened for editing
in Notepad++, a Python interface, or any other software that
supports reading and editing Python files, then executed in 3D
Slicer.

To import an existing extension, open 3D Slicer and
navigate to Edit -> Application Settings -> Developer and
check the box labeled “Enable developer mode” [6]. Once
completed, select Modules -> Developer Tools -> Extension
Wizard and click “Select Extension”. Navigate to the folder
containing the extension to import and choose the folder. The
software will automatically find the extension itself and a
window will open that says “The following module can be
loaded. Would you like to load it now?” Ensure the extension
name is checked, and check the box “Add selected module to
search path”.

Fig. 1. Create extension.

Fig. 2. Add module to extension.

As shown in Fig. 1, first choose the name for the extension.
To update the “Destination” textbox, click on the ellipses
button to choose the folder the extension will be saved in, then
click “OK”. A new window will open labeled “SlicerApp-
real”. No changes are necessary in this window, click “OK” to
continue.

A module must now be added to the extension that has
been created. Select “Add Module to Extension” and provide a
name for the module, then click “OK” (see Fig. 2).

Once an extension has been loaded or created, find the
“Modules” dropdown menu and click on it. Hover over “All
Modules” and a menu will open to the right. In this menu, find
the name of the extension that has been created or imported
and choose it. The GUI on the left side of the 3D Slicer
window should update.

IV. ISOLATING GREY MATTER AND BONE

To load the code used for isolating gray matter and bone,
follow the steps above to import the extension. Once imported,
choose All Modules -> Sample Data from the Modules drop-
down menu. Click “Download MRBrainTumor 1”. When the
volume has been imported and is showing in the images on the
right of the GUI, select the loaded extension from the “All
Modules” options in the Modules drop-down menu. The
window should match Fig. 3.

Click the button “View Bone”. Following this, either
selects View -> Python Interactor, or push Ctrl+3 to open the
Python Interactor window. Errors encountered while executing

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

270 | P a g e

the code will be shown in red in the Python Interactor window,
while a successful execution will show all words in green.
Once the Python Interactor window is opened, the images on
the right will update and should look similar to Fig. 4.

By clicking on and dragging the slider-bars above each
image, the individual slices can be viewed. In each slice, the
bone alone should be readily visible. To view the gray matter,
click “View Gray Matter” and open the Python Interactor

Window again. Once again, the images should update and look
similar to Fig. 5.

As with the bone, by moving the sliders above each image,
different slices can be viewed and the gray matter alone in each
slice should be clearly visible. To restore the original image,
click the button “View Original Image” and open the Python
Interactor. Once completed, the 3D Slicer interface should
update to match Fig. 3.

Fig. 3. Initial window with extension loaded.

Fig. 4. View bone.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

271 | P a g e

Fig. 5. View gray matter.

To isolate the bone in the MRI volume, the average pixel
value of each slice in the image is taken and averaged again
with the maximum pixel value of each slice. The value defined
on the sliding bar labeled “Bone Standard Deviation” is added
and subtracted from the calculated average and all pixel values
outside of this range are set to zero. As an example, assume the
average of the middle slice in a volume is 100, and the
maximum value is 300. The average of 100 and 300 is
calculated, returning 200. If the “Bone Standard Deviation”
value is 50, all pixel values that are not in the range of 150 and
250 are set to zero and the image is updated.

To isolate the gray matter in the MRI volume, the average
pixel value of each slice in the image is taken and the value
defined on the sliding bar labeled “Gray Matter Standard
Deviation” is added to and subtracted from this average. All
pixel values outside of this range are set to zero. As an
example, assume the average pixel value of the middle slice in
a volume is calculated as 100 and the “Gray Matter Standard
Deviation” is set to 25. All pixel values outside of the range
75-125 are set to zero, and the image is updated, visually
isolating only the pixels showing the gray matter.

V. IMPLEMENTATION

When an extension is first created and boilerplate code is
generated, there is a class generated with a function named
“setup” within it. The setup function is used to create all of the
buttons, slider bars, drop-down menus, etc. shown in the left
panel of the 3D Slicer when running an extension. In this
function, the object “self” is used to refer to the created
elements. For example, a slider is created with the following
code:

self.slider = ctk.ctkSliderWidget()

self.slider.singleStep = 1

self.slider.minimum = 0

self.slider.maximum = 100

self.slider.value = 50

parametersFormLayout.addRow(“Slider”, self.slider)

This code will create a slider bar with a default value of 50,
increments of 1, a minimum of 0, and a maximum of 100. If
the value of the slider bar is needed, it can be accessed with the
command self.slider.value and applied to any necessary
calculations.

To create a pushbutton, the following code is used under
the “setup” function.

self.buttonEx = qt.QPushButton(“Pushbutton Testing”)

self.buttonEx.toolTip = “Testing”

self.buttonEx.enabled = True

parametersFormLayout.addRow(self.buttonEx)

self.buttonEx.connect(‘clicked(bool)’, self.onButtonEx)

This code creates a pushbutton labeled “Pushbutton
Testing” that is enabled (so it can be pushed), and with a
tooltip (shown when the button is hovered over) saying
“Testing”. Once this button is clicked, the function
“onButtonEx” will be accessed. This function must be created
under the same class as setup and have an input of self.

A common obstacle encountered during the coding process
was using tabs instead of spaces. The code in this case was
edited using Notepad++, and by default, when the “Enter” key
was pushed, the next line was tabbed in from the edge.
However, with the Python Interactor through 3D Slicer, tabs
are not acceptable. Instead spaces need to be used. If the code
is executed with tabs included instead of spaces, the following
message, or a very similar one, will be shown in the Python
Interactor:

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

272 | P a g e

Fig. 6. Python interactor indentation error.

Assuming no errors are shown in the Python Interactor
when the code is loaded, once the Pushbutton Testing button is
pushed, the function onButtonEx is executed. In this function,
a new object is created that accesses another class. Within this
class is a “run” function. The run function is where the image
calculations isolating the gray matter and bone are completed
and applied. Once the software has completed execution, the
Python Interactor will be updated and will display any
messages that were defined in the code. These messages can be
displayed two ways. First, by using the “logging.info”
command (logging.info(‘This message will be displayed’))
Second, by using “print”. In the code relevant to this paper,
print was used to display variable information. For example,
print(inputVolume) will display all the information in the
inputVolume variable. When either of these two commands
attempted to combine a string and a variable value, an error
was given and the execution couldn’t complete. Also included
in the setup section of code was the use of functionality from
the “NumPy” library.

The NumPy library was imported using the following line
of code: “import numpy as np”. Once imported, the following
code was executed:

curVolDataOrig =
slicer.util.array(self.inputSelector.currentNode().GetName())

self.curVolData = np.copy(curVolDataOrig)

The first line saves the array containing the image data in
the variable curVolDataOrig. The array returned is 3-
dimensional, containing all the pixel values for each slice of
the imported volume. The second line creates a copy of the
array data. This was necessary because any changes made to
the array data in corresponding functions were made to the
original image itself. As a result, if the original image needed
to be displayed or updated again, the original image was
replaced with the updated one. The copy of the original image
data is stored in a separate memory location that preserves the
original image pixel values, allowing the original image data to
be restored as/if needed.

Both gray matter and bone were isolated in their
corresponding run functions by using the functionality
provided by the numpy library. The inputs to the run function
are the “self” object created in the setup function, the current
array data information, and the original volume data. The
np.copy function is utilized first in both of the “run” functions,
for the purpose of making a copy of the original image data.
Once again, this was done to prevent changes made in to the
image data from affecting the original image. The dimensions
of the volume data are then found using the following line of
code:

Dim =inputVolumeBone.GetImageData().GetDimensions()

An array is stored in the Dim variable, and the first element
is isolated. Initially, working under the assumption that the
values in the array correspond to the x, y, and z dimensions in
that order, the third element was isolated and saved in a
variable (numSlices = Dim[2]). However, when the next
coding statement, a “for” loop, was executed (this loop runs
through each slice and updates the pixel values), only half the
image was updated. However, when the first element was
saved in numSlices (numSlices = Dim[0]), the entire volume
image was updated. While running through this loop, the code
to isolate bone and gray matter diverges. To isolate bone, the
mean and the maximum values of the current slice are
averaged using the code below:

maxValCur = np.amax(curSlice)

meanImgCur = np.mean(curSlice)

arrayValues = [maxValCur,meanImgCur]

meanMaxMean = np.mean(arrayValues)

and the value defined on the “Bone Standard Deviation” slider
bar (saved in the variable boneThreshold) is both added and
subtracted from meanMaxMean. All pixel values outside of
this range are set to 0 with the following code:

threshBone1 = meanMaxMean + boneThreshold

threshBone2 = meanMaxMean - boneThreshold

curSlice[curSlice > threshBone1] = 0

curSlice[curSlice < threshBone2] = 0

To isolate gray matter, the mean value of the current slice is
calculated, and the value defined in the “Gray Matter Standard
Deviation” slider bar (saved in the variable gmThreshold) is
added and subtracted from the calculated mean. All pixel
values outside of this range are set to 0. The code to execute
this is:

meanValCur = np.mean(curSlice)

threshGm1 = meanValCur + gmThreshold

threshGm2 = meanValCur – gmThreshold

curSlice[curSlice > threshGm1] = 0

curSlice[curSlice < threshGm2] = 0

While the code above for both the bone and the gray matter
certainly sets the pixel values of the image to 0 if they are
outside the designated range, the volume image itself is not
updated until the following is executed:

curArrayGm[:,:,index] = curSlice[:,:]

curNodeGm.GetImageData().Modified()

Initially, instead of using the code curArrayGm[:,:,index] =
curSlice[:,:] to update the slice values, curArrayGm[:,:,index] =
curSlice[:] was attempted. Unfortunately, as a result, the entire
volume was shown as black when it was updated.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

273 | P a g e

VI. USER MANUAL INSTRUCTIONS

Instructions for Use: Isolating Bone and Gray Matter in
MRI Images Using 3D Slicer.

1) Open the 3D Slicer Interface.
2) Click the button “Download Sample Data”.
3) Choose “Download MRBrainTumor1”.
4) Click on the drop-down menu with a default label of

“Sample Data”.
 Choose Developer Tools -> Extension Wizard.

5) Push the button labeled “Select Extension”.
6) Navigate to the folder used to store the folder

“GetImageDataAttempt1” and click “Select Folder”.
7) Select “Add Module to Extension” and give it a name

of your choice.
 This name should be relevant to what the code is being

used for – it is what will be seen from this point forward
when trying to run the code.

8) Click “OK”.
9) A window will open saying “The following module can

be loaded. Would you like to load it now?”
 Check the box labeled “Add selected module to search

paths”.

 Click “Yes”.

10) The drop-down menu that had “Sample Data” chosen
as the default will now read “Extension Wizard”.

 From this drop-down, select “All Modules” and choose
the name of the module added in Step 7.

11) The left-side part of the GUI should update. Buttons
labeled “Reload”, “Reload and Test”, “View Bone”, “View
Gray Matter”, and “View Original Image” should be visible.

 Also visible should be a drop-down menu labeled
“Input Volume” that defaults to MRBrainTumor1.

 There should be two slider bars as well, one labeled
“Bone Standard Deviation”, with a default value of 150,
and one labeled “Gray Matter Standard Deviation” with
a default value of 50.

12) Push “View Bone”, then open the Python Interactor.
 The Python Interactor can be opened in two ways.

o First, by using a shortcut of Ctrl+F3 (essentially,
just push the Ctrl button, followed by the F3
button).

o Second, by choosing View -> Python Interactor.

13) Once the Python Interactor has opened, the images
should visibly update, isolating parts of the image that show
bone. At this point, the Python Interactor can be closed and
the different slices for each image can be viewed as desired.

14) Click the button “View Gray Matter” and open the
Python Interactor again (as discussed in Step 12)

15) Close the Python Interactor once the images have
updated. Areas containing gray matter should be clearly

visible and the different slices for each image can be viewed
as desired.

16) Click the button “View Original Image” and open the
Python Interactor again to restore the original demo image that
was loaded.

Tips and Tricks

 The three buttons – “View Bone”, “View Gray Matter”,
and “View Original Image” can be pressed in any order.

 To update the image so it shows the bone only, the
average pixel values in each slice and the maximum
pixel values in each slice are averaged together.
Following this, all pixel values outside of the average +
the Bone Standard Deviation (defined by the user), and
the average – the Bone Standard Deviation (defined by
the user) are set to 0.

o For example, if the average of an image is 100
and the maximum value is 300, the average of
100 and 300 is calculated (200). If the Bone
Standard Deviation is set to 150, all pixel values
that have a value between 50 and 350 are
preserved, and all values outside of this range are
set to 0.

 To update the image so it shows the gray matter only,
the average pixel values in each slice are calculated,
then all pixel values outside of the average + Gray
Matter Standard Deviation and the average – Gray
Matter Standard Deviation are set to 0

o For example, if the average of an image is 100
and the Gray Matter Standard Deviation is 50, all
pixel values in the range of 50-150 are preserved,
while all outside of that range are set to 0.

 To test additional demo images (for example, the
MRHead Sample Data), currently the most efficient
way is to close out of 3D Slicer, then reopen it and load
the sample data from MRHead instead of
MRBrainTumor1 in Step 3. If Steps 4-9 above have
already been executed, they can be skipped if continued
testing of the GetImageDataAttempt1 is to be done.

o We have tried loading different Sample Data
without closing 3D Slicer. While the drop-down
menu does update to include the new data, if any
of the buttons are pushed, it is not executed
properly. Furthermore, while the drop-down
menu does have the name of the selected file, the
images to the right do not update when a new file
name is selected.

 Once you have completed Step 10, as long as 3D Slicer
is open, the name you created in Step 7 (the module tied
to GetImageDataAttempt1), will be visible under the
drop-down menu that shows different shades of gray
from the top to the bottom. When hovered over, it reads
“Modules History”. This is a shortcut to finding the
module under the list of all modules (the drop-down
menu that by default has “Sample Data” selected).

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

274 | P a g e

VII. RESULTS AND FUTURE EXTENSIONS

To test additional demo images (for example, to run the
code on both the MRHead and MRBrainTumor1 sample data),
3D Slicer currently needs to be closed and reopened. To
continue the example, assume 3D Slicer is opened and the
MRBrainTumor1 sample data is downloaded. The extension to
isolate bone and gray matter is loaded and run, and there are no
problems. If the code then needs to be run on the MRHead
sample data, 3D Slicer needs to be closed, then opened again.
This time, select the MRHead sample data to download, and
then load the extension to isolate bone and gray matter. Once
run, there should be no errors. If the MRBrainTumor1 sample
data is downloaded initially, then File -> Download Sample
Data is selected and the MRHead sample data is downloaded,
the drop-down menu labeled “Input Volume” will update to
include both of the sample data names. However, if any of the
buttons are pushed while “MRHead” is selected from the drop-
down, errors similar to Fig. 7 will be shown in the Python
Interactor. Note that Fig. 3 to 5 shows the working of our
plugin extension.

Fig. 7. Python interactor error.

VIII. CONCLUSIONS AND FUTURE WORK

The isolation of gray matter and bone in MR brain volume
images was completed through the application of pixel
averaging and a user-defined standard deviation. Combined,
these values created upper and lower thresholds for each slice
and all pixels outside of these bounds were set to 0. However,
the current code limits the number of images that can be
analyzed to one at a time, and any new image needs to be
loaded after 3D Slicer has been closed and reopened.
Furthermore, the code was tested on a limited sample size. To
determine its effectiveness for a wide range of volume images,
many more need to be tested so that both qualitattive and
quantitative analysis can be further prerformed. Visually
isolating the bone and gray matter in MR Images via 3D Slicer
has the potential to dramatically increase the number of images
that can be processed and interpreted by removing the need for
highly-trained, skilled individuals to interpret each image
themselves. Our system was tested by two other graduate
students who are working in this area. Our future plans include
both qualitative and quantitative analysis of thresholding itself,
validation of false positives and false negatives, and
comparison to other similar techniques. Further extensions to
3D surface extractions and interpretations using Slicer are also
planned.

ACKNOWLEDGMENT

This work and the corresponding code is only valid for
research purposes. We are grateful for 3D Slicer community
for their open source software, as that allowed us to perform
this Independent Study at University of Colorado, Colorado
Springs, Summer 2016.

REFERENCES

[1] T. S. Community, “What is NumPy?,” Scipy, 29 May 2016. [Online].
Available: http://docs.scipy.org/doc/numpy/user/whatisnumpy.html.
[Accessed 23 July 2016].

[2] X. He, X. Li, G. Yang, J. Xu and Q. Jin, “Adaptive Tag Selection for
Image Annotation,” Springer International Publishing, Switzerland,
2014.

[3] W. T. Ooi, C. G. Snoek, H. K. Tan, C.-K. Ho, B. Huet and C.-W. Ngo,
“Advances in Multimedia Information Processing - PCM 2014,” 15th
Pacific-Rim Conference on Multimedia, Kuching, 2014.

[4] V. E. Balas, L. C. Jain and B. Kovacevic, “Soft Computing
Applications,” Springer, 2016, 2014.

[5] Medical Perspective by SK Semwal, pp. 1-17, Internal Document, GMI
Lab, Department of Computer Science, University of Colorado,
Colorado Springs, 2016.

[6] “3D Slicer - Documentation/4.5/Announcements,” SlicerWiki, 15
December 2015. [Online]. Available:
http://wiki.slicer.org/slicerWiki/index.php/Documentation/4.5/Announce
ments. [Accessed 15 July 2016].

[7] A. Wallin, Constructing isosurfaces from CT data, IEEE Compuf.
Graphics Applic. 11, 28-33 (1991).

[8] G. Frieder, D. Gordon and R. A. Reynolds, Back-to-front display of
voxel-based objects, IEEE Comput. Graphics Appfic. 5, 52-60 (1985).

[9] L. Chen, G. T. Herman, R. A. Reynolds and J. K. Udupa, Surface
shading in the cuberille environment, IEEE Comput. Graphics Applic. 5,
33-43 (1985).

[10] W. E. Lorenson and H. E. Cline, Marching cubes: a high resolution 3D
surface reconstruction algorithm, Comput. Graphics (SIGGRAPH ‘87
Proc.), 21, 163-169 (1987).

[11] L. Axel, P. H. Arger and R. A. Zimmerman, Applications of
computerized tomography to diagnostic radiology, Proc. IEEE 71, 293-
372 (1980).

[12] D. S. Schlusselberg, W. K. Smith and D. J. Woodward, Three-
dimensional display of medical image volumes, Proc. NCGA 3, 114-123
(1986).

[13] M. Levoy, Display of surfaces from volume data, IEEE Comput.
Graphics Applic. 8, 29-37 (1988).

[14] C. Upson and M. Keeler, V-BUFFER: visible volume rendering,
Comput. Graphics (SIGGRAPH‘88 Proc.) 22, 59-64 (1988).

[15] R. Drebin, L. Carpenter and P. Hanrahan, Volume rendering, Cdmput.
Graphics (SIGGRAPH ‘88Proc.) 22, 65-74 (1988).

[16] V. M. Spitzer and D. G. Whitlock, High resolution electronic imaging of
the human body, Biol. Photogr. 60, 167-172 (1992).

[17] Darin Buchanan and Sudhanshu Kumar Semwal, A Front to Back
Technique for Volume Rendering, Computer Graphics International,
Computer Graphics Around the World, Singapore, pp. 149-174.
Springer-Verlag (1990).

[18] Sudhanshu Kumar Semwal and Mark Freiheit, Mesh Splitting for the
Enclosing Net Algorithm, Proceedings of the International Conference
on Imaging Science, Systems and Technology, Las Vegas, Nevada,
USA, pp. 375-382, (July 1998).

[19] P. Swann and S. K. Semwal, Flow visualization of point data, IEEE
Visualization 91 Conference, IEEE Computer Societv Press. San Diego,
California. PP. 25-32 (1991).

