
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

31 | P a g e

User-Controlled Privacy-Preserving User Profile Data
Sharing based on Blockchain

Ajay Kumar Shrestha, Ralph Deters, Julita Vassileva
Department of Computer Science

University of Saskatchewan
Saskatoon, Saskatchewan

aks128@mail.usask.ca, {deters, jiv}@cs.usask.ca

Abstract—The tremendous technological advancement in the
last few decades has brought many enterprises to collaborate in a
better way while making intelligent decisions. The use of
Information Technology tools in obtaining data of people’s
everyday life from various autonomous data sources allowing
unrestricted access to user data has emerged as an important
practical issue and has given rise to legal implications. Various
innovative models for data sharing and management have
privacy and centrality issues. To alleviate these limitations, we
have incorporated blockchain in user modeling. In this paper, we
constructed a decentralized data sharing architecture with
MultiChain blockchain in the travel domain, which is also
applicable to other similar domains including education, health,
and sports. Businesses that operate in the tourism industries such
as travel and tour agencies, hotels and resorts, shopping malls
etc. are connected to the MultiChain and they share their user
profile data via stream in the MultiChain. The paper presents the
hotel booking service for an imaginary hotel as one of the
enterprise nodes, which collects users’ profile data with proper
validation and will allow users to decide which of their data to be
shared thus ensuring user control over their data and the
preservation of privacy. The data from the repository is
converted into an open data format while sharing via stream in
the blockchain so that other enterprise nodes, after receiving the
data, can easily convert them and store into their own
repositories. The paper presents an evaluation of the
performance of the model by measuring the latency and memory
consumption with three test scenarios that mostly affect the user
experience. The node responded quickly in all of these cases
building a better and more engaging user experience. The paper
also proposes a concept of the smart contract in the form of the
finite state in the expanding domain of privacy-preserving data
sharing and management.

Keywords—Privacy; user modeling; blockchain; data sharing;
stream; latency; memory consumption

I. INTRODUCTION

How many of the users are really concerned about the
privacy of their own data while using online services? Most
people want to have control of their data, what is gathered and
how it is used. In reality, this is not the case. For example, in
the case of travel, while people are booking their flight or
reserving their hotel room, they are also providing their profile
data. This is unfortunate that users are transferring the
ownership of their own data to those systems and this is one of
the problems addressed by this project.

The tourism industries within the hospitality domain
usually want to compete successfully and they must do so by
using technologies to drive value to all the parties associated
with them [1]. Personalization using real-time data about users
obtained from different companies is beneficial for their
business. This however, can only be achieved by sharing user
profile data across trusted companies. This is, however,
currently impossible, since informed consent is required to
collect, store and use user data by most legislations and there
are no existing mechanisms to request and obtain such
informed consent from users for secondary use of data (i.e. use
that is different from the original purpose for which the data
was collected by the company).

User data collected by companies is nearly always kept in
centralized servers, which is easy to implement and maintain
and is efficient to search and retrieve data. However, these
services present an attractive target for hacking and identity
theft, and they often get criticized for security issues. There are
other risks with centralized third party service provider for the
data storage and management of the entire database – the user
data may get lost or destroyed or it can be sold to another
company whenever the provider gets bankrupt. The new owner
of the data may use it for purposes to which the users have not
consented and have not been informed. It seems obvious that a
secured trustless distributed architecture is needed and a system
that guarantees the preservation of user-controlled privacy, as
well as it enables users to control if and how their data is
shared, with which other companies, for what purpose and
under what conditions.

To satisfy these requirements, we have developed a model
using blockchain and introduced a sample travel domain in
which we created one application owned by a hypothetical
company, part of the tourist domain consortium: an online
service for hotel booking for an imaginary hotel named
Grandee. The different nodes in the blockchain are the
participating enterprises in the travel domain, connected with
the blockchain on which they can share their user profile data.
Blockchain technology can be thought of as a decentralized
(peer-to-peer) ledger or database. All user data is encrypted and
hashed authenticated in the blockchain system. The content is
immutable and verifiable, stored in multitude of peers on the
network. The user can decide which data to share and for what
reward. This paper reports about an experimental
implementation and performance evaluation of the framework
for sharing user data among companies owning apps in a travel

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

32 | P a g e

domain. The performance evaluation is a necessary step to
ensure that the platform is scalable and responsive enough for
users to interact with in real time and make their decisions
about sharing their data.

We have used MultiChain blockchain as a distributed
digital ledger in order to provide uneditable private record of
all transactions made by the participating users and companies
such as travel and tour agencies, hotels and resorts, airlines,
shopping malls, etc. Most importantly, being a private
blockchain, MultiChain has the potential to replace the
traditional centralized databases used in the business model
into a decentralized solution, offering more cryptographic
auditing features and known identities. Therefore the
implementation of the MultiChain blockchain will solve the
fraud problems and security issues of the traditional business
firms.

Alongside blockchain, smart contracts will aligns the
incentives for users to allow their data to be shared and this
kind of host profit model is mostly oriented around protecting
the uploaded data [2]. There will be an open marketplace
where people can provide their resources (profile data) to get
more profits just like in the bitcoin mining. The smart contracts
for handling user data are a topic of our future work and not
discussed in this paper.

The rest of the paper is organized as follows. In Section II,
we describe the overview of MultiChain blockchain and brief
analysis of the existing architectures with their limitations is
covered in Section III. Section IV presents the model that we
developed for data sharing in a distributed manner while
ensuring users’ privacy. In Section V, we evaluate the
performance of our model with some experiments. Section VI
presents the observation of latency and memory consumption
that most affect user experience (UX). In Section VII, we
provide the descriptive analysis of the result and in
Section VIII, we highlight our future work plan on smart
contract to ensure better utilization of user-controlled privacy
in the expanding domain of privacy-preserving data sharing
and management. Finally, we conclude our work in Section IX.

II. BACKGROUND

A. Blockchain

Where critical assets going through a supply chain, we
could use distributed ledger so that we could see where those
assets are, what they are doing and we will also have the trust
mechanism behind them so that it will be very difficult for the
fraudulent agents to inject false goods into the supply chain [2].
Blockchain is a data structure used to create a public or
semipublic distributed digital transaction ledger which, instead
of resting with a single provider, is shared among a distributed
network of computers. Blockchain was first described in the
original source code for the digital cash system, Bitcoin [3], but
its effect is much broader than just the alternative digital
currency. The blockchain is a decentralized database
containing every transaction which has ever taken place and is
distributed to the edge of the network. Each block aggregates a
timestamped batch of transactions to be placed in the chain.
There is a cryptographic signature to identify each block. All
those blocks refer to the signature of the previous block in the

chain, and that chain can be traced back to the very first
genesis block created in the chain.

The key idea is that there is no centralized authority to say
what is true or what is false, rather multiple independent and
distributed nodes come to a consensus on the truth of each new
transaction by a process involving proof and voting, after
which the transaction is entered into the ledger and thereafter
can be accessed by anyone in the future for verification [2].
Computationally, it is impracticable for anyone to go back in
order to alter the history because the blockchain has a
chronological chain of events, at one particular time one can
insert the proof into the public record. The proof is
cryptographically protected so only those who got the key can
see it and so there is no chance of fraudulence [2].

The Blockchain is on its way to really transform our society
from trust-based to truth-based trust-less society. The idea
behind the blockchain can be used to store data in different
areas. Many financial industries including banks are now
working on incorporating blockchain technology as distributed
ledgers for their transactions. The internet has now been
flooded with the ideas playing around the blockchain,
emphasizing it to be the next big thing.

There are three categories of the blockchain. One is public
in which anyone can participate in the chain and contribute to
the consensus-making process. Another one is the consortium
in which pre-selected nodes control the consensus process. And
the final type is the private blockchain, which has a closed
community storing the transactions that are of interest to only
those private participants present in the chain. In our work, we
have used a private blockchain in the form of MultiChain
which is explained in the next section. Most importantly,
MultiChain supports streams that can be exploited to send and
receive larger amount of data with a combination of symmetric
and asymmetric cryptography.

We have connected different tourism industries including
hotel booking system to the MultiChain and they share their
user profile data via stream in the blockchain. The permission
to send, receive and publish the stream for different nodes can
be granted partly or wholly, or restricted fully in that private
blockchain.

B. MultiChain

MultiChain is an off-the-shelf private blockchain that
provides the privacy and control required in an easy to
configure and deploy package [4]. It supports UNIX and
Windows servers and comes up with a rich JSON-RPC API for
easy integration with existing systems. Unlike any other
blockchains, MultiChain solves the problems of mining,
privacy, and openness via integrated management of user
permissions, thereby three folding the core aims [4]:

 To ensure that the blockchain’s activity is only visible
to chosen participants,

 To introduce controls over which transactions are
permitted, and

 To enable mining to take place securely without proof
of work and its associated costs.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

33 | P a g e

Once a blockchain is private, problems relating to scale are
easily resolved, since the chain’s participants can control the
maximum block size. In addition, as a closed system, the
blockchain will only contain transactions which are of interest
to those participants. Basically, MultiChain allows the user to
set all of blockchain’s parameters in a configuration file.

C. Smart Contracts

Blockchain coupled with smart contract technology
removes the reliance on the central system between the
transaction parties. Basically, smart contracts are stored on the
Blockchain, which all the connected parties in the network
have a copy of. The Smart contract is an important piece of
software that

 Stores the rules which negotiate the terms of the
contract,

 Automatically verifies the contract, and

 Executes the agreed terms.

The smart contract can execute agreed stored process when
triggered by an authorized or agreed event just like traditional
systems. All contract transactions are stored in chronological
order for future access along with the complete audit trail of
events. If any party tries to change a contract or transaction on
the Blockchain, all other parties can detect and prevent it. If
any party fails, the system continues to functions with no loss
of data or integrity. It therefore creates a single large secure
computer system logically, without the risks, costs and trust
issues of a centralized model. Thus the smart contracts
represent the rules that manage the process of storing and
accessing data in the Blockchain regarding rights of access,
type of data, constraints etc. They can be used to handling the
storing and accessing of user profile data.

The next section introduces existing systems for sharing
user data and their limitations.

III. RELATED WORKS

Existing user data sharing models at an enterprise level are
networked information systems allowing creating and storing
user profile data, and making it accessible for others with
special agreement. Centralized architectures (user model
servers) are predominant because client-server architectures are
well established technology, efficient and scalable. In fact, the
physical storage of user data is not essential. There are cases in
which the user data is stored in distributed storage spaces, but
the schema is kept centrally [13], these are still centralized user
models.

There are examples of user data sharing systems are
experimental frameworks developed in Academia, aiming to
achieve interoperability of distributed user models. Different
architectures exist. For example, Mypes [5] has a centralized
server such as where the representation schemas of different
user models/profiles is “translated” to a standard one using
ontology mapping. There have been also data management
systems proposed, collaborative repositories such as Wikidata
[6], etc. Almost all of these systems implement different

specific architectures and their evaluation is based upon
different non-functional requirements, such as efficiency,
scalability, or reliability [7]. However, the technical
performance of a data sharing system alone does not guarantee
the practicality of the systems. The centralized architecture, at
most cases, doesn’t collect and share the diverse fragments of
user data coming from the enormous autonomous and
independent entities (applications, agents, devices, sensors,
services) comprising the service-oriented, mobile and
ubiquitous computing environment [14]. Often the centralized
user modeling technique has a predefined point of access that
leads to the central point of failure. Replication of the data via
mirroring the servers could be a solution, but that usually
comes with high communication cost as well. Therefore,
decentralized approaches for user modeling hold more promise
to overcome the limitations brought by the centralized user
modeling architecture.

In [8], the authors present a distributed architecture for
sharing and re-using multi-application life logs. All the life
logs from different systems are gathered by agents, which then
forward the information to a central broker which is
responsible for user modeling that comprises of request
analysis, source selection, source connection, semantic
mapping, data integration and response transformation.

Even in the IOT domain, there are systems such as
MobiTribe [9], which has distributed model. However, it uses a
centralized content management system as a moderator for the
exchange of information between the devices and the
applications. PersonisAD [10] is another active, distributed,
scrutable model that gathers information from different sensors
associated with different users and combines their preferences
in order to provide a richer experience.

Like in [11], the distributed user model is represented by
single method standalone agents which store a single attribute
of a user model within the holistic vector (stored in a server).
In [15], [16], the model is decentralized, held by different
agents, and information is gathered from different agents only
temporary, for a given purpose of adaptation.

So we see that all existing approaches including those that
are distributed involve some form of centralization: it is either
permanent, where data from different sources is brought
together and aligned semantically, or is temporary, depending
on the request and purpose. Furthermore, it is observed that
accommodating the conflicting interests among the users is not
separable from the architectural design that applies
optimization of the specific system properties and involves
trade-offs with the participants’ autonomy [7]. Even in some
(structured) peer-to-peer architectures such as Chord [12],
participants are not given the privilege to connect to the other
peers of their choice, but rather they have to store data with
arbitrary other peers.

The next section describes the working of our model which
ensures decentralized sharing of user profile data among an
enterprise consortium for testing the usefulness of our model,
for the travel domain which includes the hospitality domain.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

34 | P a g e

Fig. 1. Basic user-controlled privacy preserving architecture based on MultiChain for data sharing.

IV. METHODOLOGIES AND DISCUSSION

Fig. 1 explains our model. We developed and deployed a
general hotel booking system in one UNIX machine. The
machine has MultiChain in it and acts as one of the nodes that
collect clients’ data with proper validation and sanitization.
Later on, we used other UNIX and Windows machine for the
performance evaluation, which is explained in Section VI. The
web application is developed in PHP with Apache server and
MySQL as backend. Users create their profile in the hotel
booking system on the first node (Node1) in the blockchain by
registering their information and choosing which of their data
can be shared with third parties. The user profile data includes
name, nationality, contact number, purpose of visit and the
dates of stay. The data stored in the repository is converted into
an open data JSON format, which can be published in the
MultiChain via stream. The stream in MultiChain is used for
general data storage and retrieval. Other nodes owned by other
companies, e.g. Saskatoon Travel and Tours, and Saskatoon
Shopping Mall also have Multichain in their system. They get
the address and are given permission to be in the closed
network of the blockchain. Public key encryption is an
underlying technology of MultiChain, so all the connected
nodes generate their own pair of public addresses and private
keys.

The MultiChain restricts blockchain access to a list of
permitted users, by expanding the “handshaking” process that
occurs when two blockchain nodes connect [4]:

As shown in Fig. 2, we first created a Multichain in the
Hotel Booking system for the first node (Node1) in the
blockchain. By default, this node acted as an Admin which
could further grant other nodes to be admins too. The
permissions for other nodes (connect, send, receive, issue,
create, mine, admin, activate) will be set by this node in our
case, but it can be made true for all nodes while setting chain
parameters as shown in Fig. 3, which gives the setting for the
basic and global blockchain parameters.

The multichain daemon was created exploiting the
following command with the chain name model:

multichain-util create model

multichaind model –daemon

Fig. 2. All connected nodes as seen from Node1-Grandee Hotel.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

35 | P a g e

This created the MultiChain Core Daemon, build 1.0 alpha
27 protocol 10007 such that other nodes can connect to this
node using command: multichaind model@[ip]:[port]

 (e.g. multichaind model@192.168.204.132:8353).

We then created other two nodes: Node2 and Node3
representing Saskatoon Travel and Tours, and Saskatoon
Shopping Mall, respectively as independent imaginary
companies in the travel domain. The creation of the nodes
offered the individual addresses for those new nodes which
were acknowledged by the first node in order to grant a
“connection” permission to them into the MultiChain since it is
the private blockchain. Back on the first server, we added
connection permissions for other node addresses as:

multichain-cli model grant [address] connect, send, …

This is the first step in creating the blockchain. While
granting the connection permission, further other permissions
can also be set for other nodes. As shown in Fig. 4, Node2
(Saskatoon Travel and Tour) is given connect, send, receive,
issue, create, mine, activate and admin permissions, and Node3
(Saskatoon Shopping Mall) is given all except admin and
activate. This means Node2 in the blockchain could be able to
act as admin but Node3 couldn’t. We further created other 7
nodes to evaluate the system performance (presented in
Section V). Fig. 5 is the snapshot of how the enterprise created
the stream containing user profile data and Fig. 6 shows how to
publish the stream with uploading the items containing user
profile data into the stream for sharing them to other
consortium enterprises nodes.

#Basic chain parameters
chain-protocol = multichain # Chain protocol
chain-description = MultiChain model # Chain Desc
root-stream-name = root # Root stream name
root-stream-open = true # Allow anyone to publish in root stream
chain-is-testnet = false # Content of the 'testnet' field of API
responses, for compatibility.
target-block-time = 15 # Target time between blocks (transaction
confirmation delay), seconds. (5 - 86400)
maximum-block-size = 8388608 # Maximum block size in bytes.
(1000 - 1000000000)
#Global permissions
anyone-can-connect = false # private blockchain.
anyone-can-send = false # transaction signing is not restricted by
address.
anyone-can-receive = false # transaction outputs are restricted by
address.
anyone-can-receive-empty = true #without permission grants, asset
transers and zero na$
anyone-can-create = false # selected can create new streams.
anyone-can-issue = false # selected can issue new native assets.
anyone-can-mine = false # selected can mine blocks (confirm
transactions).
anyone-can-activate = false # selected can grant or revoke connect, send
and receive permissions.
anyone-can-admin = false # selected can grant or revoke all
permissions.
support-miner-precheck = true # Require special metadata output with
cached scriptPubKey for input, to support advanced mine$

Fig. 3. Setting for the basic and global chain parameters.

Fig. 4. Permissions granted to connected nodes as seen from Hotel Booking
System (Node1).

Fig. 5. Creation of the stream.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

36 | P a g e

Fig. 6. Publishing stream of items.

Fig. 7. List of streams created by Node 1.

Fig. 8. Different files in the stream.

Fig. 7 shows the list of the streams created by the Node 1-
Grandee Hotel. The first node was the Hotel Booking System
which basically collected the users’ data while reserving rooms
in the hotel. This information is useful to other tourism
enterprises like the shopping mall, and travel and tours so that
they can provide attractive offers to users during their stay. So
the collected useful information of user profile is to be shared
among the enterprise consortium as per the predefined agreed
terms.

The collected data at Node1 were added as items into the
stream. Tthe added files into the stream were then published
and distributed into all the nodes. All files present in the stream
can be seen in the form of items as in Fig. 8. Only the nodes
with the receive permission can view the contents from the
streams.

All other nodes in the network can easily convert and store
the received stream file into their own repositories. In fact,
every node in the MultiChain blockchain can have access to
any stored raw data. In order to resolve this issue of
confidentiality, data is encrypted before being put into the
chain. The three blockchain streams with a combination of
symmetric and asymmetric cryptography have been used [4]:

a) Pubkeys stream: It is used by participants to
distribute their public keys under the RSA public-key
cryptography.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

37 | P a g e

b) Items stream: It is used to publish large pieces of
data, each of which is encrypted using symmetric AES
cryptography scheme.

c) Access stream: It provides data access. For each
participant who should see a piece of data, a stream entry is
created which contains that data’s secret password, encrypted
using that participant’s public key.

We have combined Multichain and off-blockchain
repository to create a data sharing and management model
focused on security and privacy. The next section will give the
insights of evaluating the performance of our model.

V. PERFORMANCE EVALUATION

It is very important to evaluate the system performance by
analyzing the performance metrics that mostly affect user
experience (UX). We evaluated the performance of the system
by carrying out successive experiments on the freshly created
nodes. We set three goals – to find out:

1) How long it takes the enterprise in the form of
multichain node to get connected to the network?

2) How long it takes the enterprise in the form of
multichain node to respond to actions (like starting stream,
viewing a stream item, loading or publishing the items into the
stream)?

3) How much memory the node consumes when
blockchain Daemon gets started.

A. Expected Outcomes

We expected that the node should respond quickly in all of
the cases mentioned before for our model, building a better and
more engaging UX. We tracked the network latency values in
three different scenarios involving different numbers of nodes,
and expected them to be within the acceptable range (below
500 milliseconds). The consumption of memory is the third
performance metric that we expected to be as low as an
acceptable value around 50 MB, so that the system can operate
and be handled in an efficient way.

B. Workload Justification

The theoretical peak bandwidth of a network connection is
fixed as per the technology used. However, the actual number
of packets to be sent over network is affected by higher and
lower latencies. Excessive latency prevents data from filling
the network pipe, thus decreasing throughput and limiting the
maximum effective bandwidth of a connection. Therefore we
set our goal of the evaluation to retrieve the latency in each
case which is explained in the next Experimental Setup section.

C. Experimental Setup

To evaluate the implementation prototype, we performed
an evaluation plan to simulate the real-world interactions. The
evaluation involved three scenarios to simulate different levels

of concurrency while monitoring latencies. The three scenarios
are shown in Table 1.

We carried out the experiments in the Windows and the
UNIX machines. We stopped all extra processes except the
basic OS processes to run in the background alongside the
Multichain daemon so as to ensure that no other process would
affect our experiments. The detailed list of the used computer
system for fresh nodes is given in Table 2.

TABLE I. TEST SCENARIO DESCRIPTION

 Scenario Descriptions
S1 Two enterprise nodes connected
S2 Three enterprise nodes connected
S3 Eight enterprise nodes connected

TABLE II. MACHINES DESCRIPTION

Nodes System Description

N1

Windows 10 Home; Lenovo
ThinkCneter M900 Signature Edition

Intel® Core™ i7-6700 CPU @ 3.4 GHz 3.41GHz
Memory 32 GB

64-bit OS, x64-based processor

N2

Window 10 Pro;
HP

Intel® Core™ i5-3427U CPU @ 2.3 GHz
Memory 4 GB

64-bit OS, x64-based processor

N3

Windows 7 Professional Education
Sony Vaio

Interl®Core™i3-2310M CPU @ 2.1 GHz
Memory 4GB

64-bit OS, x64-based processor

N4

Windows 10 Education;
Lenovo

Intel® Core™ i7-3770 CPU @ 3.4 GHz 3.40GHz
Memory 32 GB

64-bit OS, x64-based processor

N5

Window 8 Enterprise,
Lenovo

ThinkCneter M900 Signature Edition
Intel® Core™ i7-4770 CPU @ 3.40 GHz 3.40GHz

Memory 32 GB
64-bit OS, x64-based processor

N6

Window 10 Home, Lenovo
ThinkCneter M900 Signature Edition

Intel® Core™ i7-6700 CPU @ 3.4 GHz 3.41GHz
Memory 16 GB

64-bit OS, x64-based processor

N7

Window 8 Professional
Mac

Intel® Core™ i7-2640 CPU @ 2.8 GHz 2.8GHz
Memory 4 GB

64-bit OS

N8

Window 10 Home, Lenovo
ThinkCneter M900 Signature Edition

Intel® Core™ i7-6700 CPU @ 3.4 GHz 3.41GHz
Memory 16 GB

64-bit OS, x64-based processor

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

38 | P a g e

Fig. 9. Memory status at normal instance.

Fig. 10. Memory status after multichain daemon started.

.
1) Node Setting:
The experiment was carried out on the newly created

Multichain nodes. Since the MultiChain uses the cryptography
mechanism, it restricts block index and chainstate access to the
list of permitted users; so we created blockchain nodes as fresh
ones. The block index maintains information for every block,
and where it is stored on disk. The chain state maintains
information about the resulting state of validation as a result of
the currently best-known chain. Basically, node parameters
have been set up as stated before in order to store the key-value
pairs of all the block and state hashes. More specifically, the
nodes use the following interaction protocol:

a) Each node presents its identity as a public address on
the permitted list.

b) Each node verifies that the other’s address is on its
own version of the permitted list.

c) Each node sends a challenge message to the other
party.

d) Each node sends back a signature of the challenge
message, proving their ownership of the private key
corresponding to the public address they presented.

If either node is not satisfied with the results, it aborts the
peer-to-peer connection.

VI. OBSERVATIONS

Our experiment focuses on observing the values of two
factors: latency and memory consumption. To observe the
effect of the multichain core daemon being stopped and
reconnected into the network, we made the scripts that run with
the gap of 1 minute for every new observation using the
following multichain commands:

multichain-cli model stop

multichaind model daemon

We observed the latency from the first node Node1, when it
got connected to another single node N2 for scenario S1, other
two nodes N2 and N3 for scenario S3 and other seven nodes
N2-N7 for scenario S3 in a total of 20 observations.

For S3, first, we recorded the latency from Node1 to
connect it with the other 7 nodes in the network and then
finally took their average to get the mean latencies for
connecting 7 different nodes from Node1.

Furthermore, we also carried out another experiment to
observe the memory consumption for the nodes when the
corresponding multichain core daemon got started on that
particular node. The total of five observations was carried out,
one of which is highlighted as in Fig. 9 and Fig. 10, showing
the total memory usage during the pre and post activation of
multichain Daemon. Next section will give the detailed
analysis of the results obtained during the observations.

VII. RESULT ANALYSIS

The data on latency for the first part of the observation is
shown in Table 3 and Fig. 11. All the scenarios have the
minimum and maximum latency around 100ms and 150ms
respectively, giving the average latency time around 125ms,
which is within the acceptable margin. It can be concluded that
there is no scalability limit in terms of node count, because
each node doesn't need to connect to every other to create a
fully connected peer-to-peer network.

Moreover, for all the node catch-up time, it can be
concluded that new nodes joining the chain have to replay all
transactions from the beginning, and so it can take them
significant time before they are up-to-date. The exact amount
of time will depend on how many blocks and transactions are
in the chain. Our experiment had been carried out with only 10
streams with 100 items in total which was below 100MB. It is
because we were only concerned with the latency. In addition
to that, since no smart contract is running in the Multichain
blockchain unlike other blockchains such as Ethereum, there is
no execution of any automated program for every message on
every blockchain node. That surely contributed to the low
latency that we observed here. Also, today’s main issue within
distributed applications is not the TX cost as people can handle
a cent, but probably is the latency as people want 200ms, not
2s and multichain nodes are really fast in making a connection
to the existing blockchain.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

39 | P a g e

TABLE III. LATENCY (MS) SUMMARY FOR THREE SCENARIOS

Scenarios N Min Max Avg. SD
S1 20 85 159.5 122.57 19.32
S2 20 80 156 126.2 24.24
S3 20 106.86 144.7 127.22 11.01

Fig. 11. Latency test result in chart for three scenarios.

TABLE IV. TESTING MEMORY CONSUMPTION

Memory usage (MB)

Initial
Later-
daemon started

Total
multichain -daemon

938 970 28
938 970 28
938 970 28
938 970 28
938 970 28

Furthermore, we also analyzed the memory consumption
for nodes when their multichain core daemons started. We
carried out 5 successive observations as provided in Table 4
and found that latency stayed the same - 28MB. So it can be
concluded that the memory usage is not huge to operate our
model with the Multichain blockchain. Moreover, it is also
based on the number of the unspent transaction. In fact, there is
also around 300 bytes held in memory for each block in the
chain. Therefore, if the node is subscribed to millions of
streams, then that would definitely increase memory usage.
However, our model has focused on storing the user profile
data and even 1 million of those data will have a size just
around 100 MB. So this model is very effective in terms of
quick start, quick response and fewer memory consumptions.

VIII. FUTURE WORK

The major concern with online applications including our
model is that users have their own characteristics, e.g.
preferences, interests etc. which comprise the user model of the
system. Users are often required to grant a set of permissions
upon sign up. In our model, to ensure the user-controlled
privacy, the permissions are granted indefinitely and the only
way to alter the agreement is by opting-out. In future, we will
extend our model to include smart contracts so that access-
control policies would be stored securely on the blockchain
while retaining the same user-interface and only the user is
allowed to change the permissions. Through smart contract
which will be in the form of a piece of software, we will

automate the functionality that supports the user-controlled
privacy: whom to share the users data with, how long the data
is to be kept, and how will the user be incentivized for
providing access to their data, how to ensure compliance with
the contract once the data has been sold to other third parties
etc. Since the MultiChain blockchain doesn’t have smart
contract feature, alternatively we can have a finite state
machine coupled with the blockchain, so at any given state, the
user can alter the set of permissions (state1) and withdraw
access (state2) to previously collected users’ profile data.

IX. CONCLUSION

In summary, we have performed an experimental study of
the use of blockchain in the user modeling and evaluated the
system performance by observing the latency and memory
consumption. To share the users’ profile data in a decentralized
fashion, the concept of streams from the Multichain has been
successfully interpreted by taking as an example the case of
travel domain. This eliminates the single point of failure and
centrality issues which are often present in the centralized user
model servers. This blockchain based user model is not just
limited to travel domain but also applicable to other similar
domains such as education, health, sports etc. The paper has
evaluated the system performance of our implementation and it
met our expectations in terms of the latency and memory
consumption. In our future work, we will use the concept of the
smart contract to allow the user decide for how long his/her
profile data is going to be stored in the system and, with whom
his/her data is going to be shared for, and how will he/she get
rewarded for sharing. The future model with smart contract
will ensure that active ownership and control of user data stays
with the users.

REFERENCES

[1] Cassidy C., Chae B. Consumer information use and misuse in electronic
business: An alternative to privacy regulation // Information Systems
Management. – 2006. – No. 23. – P. 75– 87.

[2] Shrestha A. K. and Vassileva J. (2016). Towards decentralized data
storage in general cloud platform for meta-products. In the Proceedings
of the International Conference on Big Data and Advanced Wireless
Technologies (BDAW '16). ACM, New York, NY, November 10 - 11,
2016.

[3] GitHub, original-bitcoin/main.h at master trottier/original-bitcoin
https://github.com/trottier/original-bitcoin/blob/master/src/main.h#L795-
L803. (Accessed Feb 10, 2017).

[4] Greenspan, G. MultiChain Private Blockchain — White Paper; 1st ed.;
2015.

[5] Abel, F., Herder, E., Houben, G.J., Henze, N., Krause, D.: Cross-system
user modeling and personalization on the social web. User Modeling and
User-Adapted Interaction 23(2-3), 169–209 (Apr 2013).

[6] Vrandecic, D. and Krotzsch, M. “Wikidata: A free collaborative
knowledge- base,” Commun. ACM, vol. 57, pp. 78–85, Sept. 2014.

[7] Davoust, A. 2015. Decentralized Social Data Sharing. Carleton
University.

[8] Iyilade, J., Vassileva, J. 2013. A decentralized architecture for sharing
and reusing lifelogs. In UMAP Workshops..

[9] Thilakarathna, K., Petander, H., Mestre, J., Seneviratne, A.:
{MobiTribe}: Cost Efficient Distributed User Generated Content
Sharing on Smartphones. IEEE Transactions on Mobile Computing
PP(99), 1–1 (2013).

[10] Assad, M., Carmichael, D. J., Kay, J., Kummerfeld, B. : PersonisAD:
Distributed, Active, Scrutable Model Framework for Context-Aware
Services. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.)

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25

La
te
n
cy
 (
m
ill
is
ec
o
n
d
s)

Observations

S1

S2

S3

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

40 | P a g e

Pervasive Computing, pp. 55–72. No. 4480 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg (Jan 2007).

[11] Dim, E., Kuflik, T. 2012. User models sharing and reusability: a
component-based approach In: UMAP Workshops.

[12] I. Stoica, R.Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F.
Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for in- ternet applications,” Networking, IEEE/ACM
Transactions on, vol. 11, no. 1, pp. 17–32, 2003.

[13] Carmagnola, F., Cena, F., and Gena, C. (2011). “User Model
Interoperability: a Survey”. User Model User - Adapted Interaction, pp.
1-47, Springer, Netherland.

[14] Dolog, P. and Vassileva, J. (2005). Decentralized, Agent-based and
social approaches to User Modeling. In: Workshop DASUM-05, at the
9th International Conference on User Modeling (UM '05). Edinburgh,
Scotland.

[15] Niu X., McCalla G. I., and Vassileva J. (2004). Purpose-based Expert
Finding in a Portfolio Management System. Computational Intelligence
Journal, 20 (4), 548-561.

[16] Vassileva J., McCalla G., Greer J. (2003). Multi-Agent Multi-User
Modeling, User Modeling and User-Adapted Interaction, 13:(1), 179-
210.

