
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

385 | P a g e

Event-B Control Flow Modeling based on iUML-B
State Machine

Han Peng
College of Computer Science
Northwestern Polytechnical

University
Xi’an, China

hansbeng2016@gmail.com

Chenglie Du
College of Computer Science
Northwestern Polytechnical

University
Xi’an, China

Ducl@nwpu.edu.cn

Haobin Wang
College of Computer Science
Xi’an Aeronautical University

Xi’an, China
z83054539@163.com

Abstract—There are some limitations in expressing the order
of actions using Event-B. To solve this problem, the event
refinement structure method (ERS) is proposed to facilitate
modeling of the system’s control flow. However, the event
refinement structure cannot be translated to a behavior semantic
model such as the communication sequence process (CSP) or
labeled transition system (LTS) directly, thus it is not convenient
for engineers to verify the control flow. In this paper, we first
propose a general method to model the control flow of the Event-
B model with various iUML-B state machines. Then we prove by
simulation that the event trace of the iUML-B state machine is
the same as that of the event refinement structure method.
Finally, we use a case study of a lift control system to prove the
practicality of our method.

Keywords—Event-B; control flow modeling; iUML-B state
machine; atomicity decomposition; event refinement structure

I. INTRODUCTION

Event-B [1] is a formal method that evolved from B
method [2] and action system [3]. It uses set theory and first
order logic to model the system, and is applied in different
fields including control systems. In an Event-B model, the
behavior of the system is expressed in terms of the sequence of
events. For small systems that contain only a small number of
events, one can observe the behavior of the system by
simulation. However, when the number of events in the Event-
B model is relatively large, it is difficult to accurately observe
and predict the behavior of the system. The root cause of this
problem is that Event-B lacks a mechanism for explicitly
expressing system control flows.

To solve this problem, researchers have proposed a number
of methods to model the Event-B control flow. Some of the
outstanding methods include the CSP||B method [4], the flow
method [5] and the event refinement structure method (ERS)
[6]-[9]. The CSP||B method expresses the control flow of the
system using communication sequence process (CSP), which is
a formal language that is too difficult for most engineers to
learn. The Flow method uses a new set of graphical symbols to
express the order between events, which in fact increases the
difficulty of learning. Engineers need an intuitive, non-formal
or semi-formal symbolic system that can easily model the
control flow of the system and translate the control flow model
into a formal behavior model. ERS method meets this demand
to a large extent; it uses a tree structure based on the Jackson

structure diagram (JSD) to express the relationship between the
abstract event and the subsequent concrete events as well as the
order of concrete events. This tree structure can generate the
corresponding Event-B code. The ERS method also presents
eight atomicity decomposition patterns to express the
relationships between events, which make it very suitable for
Event-B modeling.

However, there are some limitations in the ERS method.
First of all, it uses an undirected graph to express the order of
events, which is easily misinterpreted. Secondly, although the
tree structure of ERS is very good in expressing the
relationship between abstract events and concrete events
(vertical direction), it cannot express the control flow of the
system in the same refinement level (horizontal direction)
explicitly. Thirdly, the tree structure of ERS cannot be directly
converted into a formal semantic model, such as CSP or
Labeled Transition System (LTS).The reason for this problem
is obvious, JSD diagrams can express the static relationship
between entities well, but cannot express the control flow
explicitly. In contrast, the state diagram of Unified Modeling
Language (UML) is better at expressing the system's control
flow.

iUML-B [10], [11] is a graphical “front end” of Event-B,
using “UML-like” class diagram and state machine to describe
the system’s states and actions. The graphical model drawing
by iUML-B can generate Event-B code directly on the Rodin
[12] platform, and the generated code can be filled into the
Event-B machine automatically, the proof obligations can be
discharged automatically as well. Fig. 1 shows an example of
iUML-B state machine.

In this paper, we propose a method to model control flow
of system using various iUML-B state machines, which has the
following advantages:

Fig. 1. Example of iUML-B state machine.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

386 | P a g e

Fig. 2. principles of atomicity decomposition.

 iUML-B state machine is a directed graph, so it can
express the order of events explicitly;

 iUML-B state machine is a variant of the UML state
diagram, so it is easily understood by engineers;

 iUML-B state machine can be easily converted to LTS
to verify its behavior properties.

We use the iUML-B state machine to construct the And,
Sequence, Xor, and Loop decomposition patterns of ERS
method, and demonstrate that the order of events obtained by
this method is the same as that of the ERS method. We
illustrate our approach on a lift control system case study.

The remainder of this paper is organized as follows.
Section II presents preliminary details for ERS method and the
problem in it. In Section III, we present our approach for
modeling four decomposition patterns of ERS using iUML-B
state machine. We also verify the correctness of this method by
simulation. In Section IV, we model the control flow of a lift
control system using iUML-B state machine. Section V
discusses our approach and compares the results of this work
with existing work. Section VI presents related work. In
Section VII, we draw some conclusions and provide some
perspectives related to our future research.

II. BACKGROUND

A. Overview of ERS Methods

The ERS method, also known as atomicity decomposition
method, was first proposed by Butler. It uses the tree structure
to express the patterns of event refinement structure, as Fig. 3
shows.

The AbstractEvent of the root node is an abstract atomic
event. At the bottom of the graph, this abstract event is split
into three concrete events Event1, Event2 and Event3, where
Event1 and Event2 refine the skip, and Event3 refines the
AbstractEvent. The trace of concrete events is:

<Event1, Event2, Event3>.

In addition to the Sequence pattern shown in Fig. 3, the
ERS method also includes And, Xor and Loop patterns. The
meaning and event order of these patterns is:

1) And pattern
It indicates that an abstract event is split into many concrete

events that can occur in any interleaved manner. For example,
if abstract event is split into two concrete events AndEvent1
and AndEvent2, then the event order can be:

<Event1, AndEvent1, AndEvent2, Event3>

or

<Event1, AndEvent2, AndEvent1, Event3>.

It should be noted that in And pattern and the remaining
several patterns, Event1 and Event3 are not the result of the
decomposition of abstract events, but only two auxiliary
events.

2) Xor pattern
It indicates that an abstract event is split into many concrete

events. Only one of these events can be executed. For example,
if an abstract event is split into two concrete events XorEvent1
and XorEvent2, then the event order of concrete events can be:

<Event1, XorEvent1, Event3> or

<Event1, XorEvent2, Event3>

3) Loop pattern
It indicates that an abstract event is refined into one

concrete event that can occur many times. For example, if
abstract event is refined into one concrete event LoopEvent,
then the event order of concrete event can be (we use ‘*’ to
represent an event that can occur 0 or more times):

<Event1, (LoopEvent)*, Event3>.

B. The Problem of ERS Method

The advantage of ERS method lies mainly in the graphical
representation of the event decomposition architecture, as
shown in Fig. 3. This method facilitates the exploration and
evaluation of various event decomposition strategies and
refinement strategies for the entire system. At the same time,
one can deduce the event order of the system by traversing
each leaf node of the tree structure so that they can analyze
whether the behavior of the system is consistent with the
requirement.

However, ERS method also has the following problems:

 The event trace in the atomicity decomposition diagram
is not obvious. For example, in Fig. 3, if one were to
analyze the trace of the events in the lowest level, he
would need to trace back to the top of the abstract root
node, because the bottom layer does not provide this
information.

 Alkhammash [7] used ERS method to model the control
flow of the system and used UML-B to model the data-
oriented requirement, which separated the control flow
model and the functional model of the system. The idea
of this method is correct because it achieved the
separation of concerns. But in the final step, people will
have to compose the functional model FunctionM and
the control flow model ControllerM to get the system
model SystemM = (FunctionM || ControllerM). This step
will introduce unexpected changes in the behavior of
the system.

 The basic modeling elements of the ERS method are
events and connections. This modeling form cannot be
directly transformed into a behavioral semantic model,

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

387 | P a g e

Fig. 3. Atomicity decomposition architecture.

such as the CSP or LTS model, and is therefore not
conducive to the modeling and analysis of behavior
properties (e.g., safety and liveliness properties in
concurrent situations).

III. EXPRESSING ERS PATTENRS BY IUML-B

In this section we will use the iUML-B state machine to
establish four atomicity decomposition patterns of the ERS
method, including Sequence pattern, Loop pattern, And pattern,
and Xor pattern. We first give a general event decomposition
method, and then present iUML-B state machine representation
for each pattern and analyze its event trace by simulation. The
simulation results show that the event trace of the iUML-B
state machine is the same as that of the ERS method.

A. Atomicity Decomposition Model Based on iUML-B State
Machine

1) General Method
The general approach to get atomicity decomposition using

the iUML-B state machine is described as follows:

a) An abstract state machine is used to describe the
event trace of the abstract model.

b) In the refinement model, a node in the abstract state
machine is changed into a super node of the concrete state
machine.

c) New states and events are added in the super node as
refinement events in the next level.

d) The refinement event is linked to the edge of the new
state machine, and ensures that its event trace meets the
requirements for decomposition and refinement.

According to the above general method, we first show the
initial abstract state machine model. Then we show the iUML-
B state machine representation of the four decomposition
patterns.

The initial abstract state machine model is shown in Fig. 4.

Fig. 4. Abstract state machine.

The corresponding code of event is:

AbstractEvent ≙
STATUS
Ordinary
WHEN

@Isin_S_0 : S_0 = TRUE
THEN

@leave_S_0 : S_0 ≔FALSE
@Enter_S_1 : S_1 ≔ TRUE

END

The event trace of abstract model is

<AbstractEvent>.

2) Sequence pattern
In order to get the correct event trace, in the Sequence

decomposition pattern, we change the S0 state of the abstract
state machine to super node and add three sub-states s0_1,
s0_2, s0_3 and two events Event1, Event2 in its nested state
machine, and then let Event3 refine the abstract event
AbstractEvent, as the Fig. 5 shows.

The resulting code of events and invariants are:

Event1 ≙
STATUS
Ordinary
WHEN

@Isin_S0_1 : S0_1 = TRUE
THEN

@leave_S0_1 : S0_1≔ FALSE
@Enter_S0_2 : S0_2 ≔ TRUE

END

Event2 ≙

STATUS
Ordinary
WHEN

@Isin_S0_2 : S0_2 = TRUE
THEN

@leave_S0_2 : S0_2 ≔ FALSE
@Enter_S0_3 : S0_3 ≔ TRUE

END

Event3 ≙
extended

STATUS
Ordinary
REFINES
AbstractEvent
WHEN
@isin_S0 : S0 = TRUE
@Isin_S0_3 : S0_3 = TRUE
THEN
@leave_S0 : S0 ≔ FALSE
@enter_S1 : S1 ≔ TRUE
@leave_S0_3 : S0_3 ≔ FALSEEND

@S0_1_substateof_S0 : (S0_1 = TRUE) ⇒ (S0 = TRUE)
@S0_2_substateof_S0 : (S0_2 = TRUE) ⇒ (S0 = TRUE)

@S0_3_substateof_S0 : (S0_3 = TRUE) ⇒ (S0 = TRUE)

The simulation result shows that the event trace of this
pattern is:

<Event1, Event2, Event3>.

3) Loop pattern

Fig. 5. Sequence decomposition pattern.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

388 | P a g e

In order to get the loop event, in the Loop decomposition
pattern, we change the S0 state of the abstract state machine to
the super node, and add two sub-states of s0_1, s0_2 and
Event1 and one event LoopEvent in its sub state machine,
where LoopEvent is the reflex edge of state s0_2, and then let
Event3 refine the abstract event AbstractEvent, as Fig. 6 shows:

The resulting code of events and invariants are:

Event1 ≙
STATUS
Ordinary
WHEN

@Isin_S0_1 : S0_1 = TRUE
THEN

@leave_S0_1 : S0_1≔ FALSE
@Enter_S0_2 : S0_2 ≔ TRUE

END

LoopEvent2 ≙
STATUS
Ordinary
WHEN

@Isin_S0_2 : S0_2 = TRUE
THEN
Skip
END

Event3 ≙
extended
STATUS
Ordinary
REFINES
AbstractEvent
WHEN

@isin_S0 : S0 = TRUE
@Isin_S0_3 : S0_3 = TRUE

THEN
@leave_S0 : S0 ≔ FALSE
@enter_S1 : S1≔ TRUE
@Leave_S0_3 : S0_3≔ FALSE

END
@S0_1_substateof_S0 : (S0_1 = TRUE) ⇒ (S0 = TRUE)
@S0_2_substateof_S0 : (S0_2 = TRUE) ⇒ (S0 = TRUE)

The event trace obtained by simulation is:

<Event1, (LoopEvent)*, Event3>.

Loop pattern can also be implemented using the pseudo-
state node of iUML-B state machine, as shown in Fig. 7.

Note that the Loop pattern shown in Fig. 6 indicates that
LoopEvent can occur “0 times or more times”, while the Loop
pattern shown in Fig. 7 ensures that LoopEvent occurs at least
once. Thus, the event trace of the state machine shown in Fig. 7
is (‘+’an event that can occur one or more times):

<Event1, (LoopEvent)+, Event3>.

4) And pattern
In the And pattern, we first change the S0 state of the

abstract state machine to super node and add two sub-states
s01, s02 and one event Event1 to its sub state machine. Then
state S02 is split into two orthogonal state machines into which
sub-states and events are added. Finally, let Event3 refine the
abstract event AbstractEvent, as Fig. 8 shows.

Fig. 6. Loop decomposition pattern 1.

Fig. 7. Loop decomposition pattern 2.

Fig. 8. And decomposition pattern.

The resulting code of event and invariant are:

Event1 ≙
STATUS
Ordinary
WHEN

@Isin_S01 : S01 = TRUE
THEN

@leave_S01 : S01≔ FALSE
@enter_S021 : S021 ≔ TRUE
@enter_S02 : S02 ≔ TRUE
@Enter_S023 : S023≔ TRUE

END

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

389 | P a g e

The event traces obtained by simulation are:

<Event1, AndEvent1, AndEvent2, Event3> or

<Event1, AndEvent2, AndEvent1, Event3>.

There is no other possible event trace in this state machine.

5) Xor pattern
In the Xor decomposition pattern, we change the S0 state of

the abstract state machine to super node and add three sub
states s0_1, s0_2, s0_3 and three events Event1, XorEvent1 and
XorEvent2 into the sub state machine. Let XorEvent1 and
XorEvent2 have the same source state but distinct target states,
and finally let Event3 refine the abstract event AbstractEvent,
as Fig. 9 shows.

The resulting code of events and invariants are:

Event1 ≙
STATUS
Ordinary
WHEN

@Isin_S0_1 : S0_1 = TRUE
THEN

@leave_S0_1 : S0_1≔ FALSE
@Enter_S0_2 : S0_2 ≔ TRUE

END

XorEvent1 ≙

STATUS
Ordinary
WHEN

@Isin_S0_2 : (S0_2 = TRUE)
THEN

@leave_S0_2 : S0_2≔ FALSE
@enter_S0_3 : S0_3 ≔ TRUE

END

XorEvent2 ≙

STATUS
Ordinary
WHEN

@Isin_S0_2 : (S0_2 = TRUE)
THEN

@leave_S0_2 : S0_2≔ FALSE
@Enter_S0_4 : S0_4≔ TRUE

END

The event traces obtained by simulation are:

<Event1, XorEvent1, Event3> or

<Event1, XorEvent2, Event3>

There will be no other possible event traces in this state
machine.

B. Summary

We implemented four atomicity decomposition patterns of
ERS method using the iUML-B state machine. The simulation
results show that the event traces obtained by the iUML-B state
machine are exactly the same as that of the ERS method.

Fig. 9. Xor decomposition pattern 2.

IV. CASE STUDY

In this section, we use the general method proposed in
Section III to model the lift control system of Alkhammash [7]
with the iUML-B state machine. The complete requirements
for the lift system can be found in Alkhammash’s article. In
this paper, we only care about the events added during the
system refinement and the constraints imposed by the
atomicity decomposition on event order.

A. The Original Decomposition Process of the Lift System

1) Control Flow Requirements of Lift System
The control flow requirements for the lift system are shown

in Table 1, which is cited from Alkhammash’s article [7].
Alkhammash called them flow requirements, and described
these requirements using ERS method, as shown in Fig. 2 of
Section II.

2) Event Execution Trace Specified by ERS Method
The event refinement structure shown in Fig. 3 specifies the

following requirements of system event orders:

 In the top-level abstraction model, the AbstractLiftStop
event and the AbstractLiftMove event occur
alternatively, that is to say, two or more
AbstractLiftStop events cannot occur continuously. For
the AbstractLiftMove event, this constraint is the same.

 In the first layer refinement model, the LiftStop1 event
refined the AbstractLiftStop event of the abstract model.
The event LiftStop1 can be followed by the
OpenLiftDoor event or the NotOpenLiftDoor event. The
Xor in Fig. 3 indicates that these two events cannot
occur at same time. The leaf nodes order of the tree
structure indicates that the LiftStop1 event must occur
before the OpenLiftDoor event or the NotOpenLiftDoor
event (requirement LIFT8). Similarly, the LiftMove
event refined the AbstractLiftMove event of the abstract
model, and it must occur after the CloseLiftDoor event
(requirement LIFT7).

 The third layer of refinement introduces a RequestFloor
event that can occur more than one time. RequestFloor
is put before LiftStop2, which indicates that only after
the passengers have made a choice, the elevator will
stop at the required floor (requirement LIFT9).

B. Control Flow Modeling Based on iUML-B State Machine

We use the iUML-B state machine to model the control
flow of lift control system. The original model of the system is
shown in Fig.10.

1) Abstract model.
The top-level abstract model is shown in Fig. 10. Since

there is no interaction between the elevator and the door, it is
only necessary to describe the relationship between LiftMove
event and the LiftStop event. This relationship has been
modeled in the liftStatemachine0.

2) First refinement
Three events are introduced in the first refinement to

express the behavior of the door, namely, OpenLiftDoor,
CloseLiftDoor and NotOpenLiftDoor, as shown in Fig. 11.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

390 | P a g e

TABLE I. DESCRIPTION OF FLOW REQUIREMENTS

Flow
Requirements

Example Description

Sequencing
requirements

LIFT7-The floor door closes before the lift is allowed
to move

Selection
requirements

LIFT8-If a lift is stopped then the floor door for that
lift may be open. In this requirement the lift door can
be either opened or left closed when the lift is
stopped.

Repetition
requirements

LIFT9-There might be more than one external floor
request in a particular floor, the lift will respond to
them (stop) only once

We use another state machine, FlowStateMachine1, to
constrain the events trace of the system, as shown in Fig. 12.
We use the pseudo-state to express the Xor relationship
between OpenLiftDoor and NotOpenLiftDoor, and put them
into a super state. Then we make the LiftStop event to be an
ingoing event of super-state, which requires the LiftStop event
to be executed just before OpenLiftDoor or NotOpenLiftDoor.
Similarly, we make the LiftMove event to be the outgoing edge
of the super-state, which specifies that the LiftMove can be
executed only after these two events.

FlowStateMachine1 generates the following control flow
code:

MoveLift ≙
extended
STATUS
Ordinary
REFINES
MoveLift
WHEN

@isin_stopped : lift = stopped

@isin_LiftStoped : LiftStoped = TRUE
@Isin_Liftdoorclosed : Liftdoorclosed = TRUE

THEN
@leave_LiftStoped : LiftStoped ≔ FALSE

@enter_moving : lift ≔ moving
@enter_LiftMoving : LiftMoving≔ TRUE
@Leave_Liftdoorclosed : Liftdoorclosed ≔ FALSE

END

StopLift ≙
extended
STATUS
Ordinary
REFINES
StopLift
WHEN

@isin_moving : lift = moving
@Isin_LiftMoving : LiftMoving = TRUE

THEN
@leave_LiftMoving : LiftMoving ≔ FALSE

@enter_stopped : lift ≔ stopped
@enter_LiftStoped : LiftStoped≔ TRUE
@Enter_LiftStoped_1 : LiftStoped_1 ≔ TRUE

END

OpenLiftDoor ≙
STATUS
Ordinary
WHEN

@isin_LiftStoped_1 : (LiftStoped_1 = TRUE)
@Isin_closed : door = closed

THEN
@leave_LiftStoped_1 : LiftStoped_1 ≔ FALSE
@enter_Liftdooropen : Liftdooropen ≔ TRUE
@Enter_open : door ≔ open

END

CloseLiftDoor ≙

STATUS
Ordinary
WHEN

@isin_Liftdooropen : Liftdooropen = TRUE
@Isin_open : door = open

THEN
@leave_Liftdooropen : Liftdooropen ≔ FALSE
@enter_Liftdoorclosed : Liftdoorclosed ≔ TRUE
@Enter_closed : door ≔ closed

END

NotOpenLiftDoor ≙
STATUS
Ordinary
WHEN

@isin_LiftStoped_1 : (LiftStoped_1 = TRUE)
@Isin_closed : door = closed

THEN
@leave_LiftStoped_1 : LiftStoped_1 ≔ FALSE
@Enter_Liftdoorclosed : Liftdoorclosed ≔ TRUE

END
@Distinct_states_in_LiftStoped_statemachine1 : (LiftStoped = TRUE)
⇒ partition({TRUE}, {LiftStoped_1} ∩ {TRUE}, {Liftdooropen} ∩ {TRUE}, {Liftdoorclosed} ∩ {TRUE})
@LiftStoped_1_substateof_LiftStoped : (LiftStoped_1 = TRUE) ⇒ (LiftStoped = TRUE)
@Liftdooropen_substateof_LiftStoped : (Liftdooropen = TRUE) ⇒ (LiftStoped = TRUE)
@Liftdoorclosed_substateof_LiftStoped : (Liftdoorclosed = TRUE) ⇒ (LiftStoped = TRUE)

Fig. 10. liftStateMachine0

Fig. 11. DoorStateMachine1.

Fig. 12. FlowStateMachine 1.

It should be noted that, OpenLiftDoor, CloseLiftDoor and
NotOpenLiftDoor are events belonging to the door object. The
relationship between these three events is also expressed in
Fig. 11. However, the relationship between events that belong
to the lift object and that belong to the door object must
specified by FlowStateMachine1, otherwise we can only write
some Event-B code manually to achieve the same effect. In
fact, we use the Flow state machine to replace the event
refinement structure graph in the ERS method.

3) The Second Refinement
A loop event named RequestFloor, is introduced in this

refinement level. It means that the passenger has pressed a lift
button, which is a floor number. We note that this event should
not be attributed to the lift object, nor should it belong to the
door object, rather the environment (people) issued the event.
So, we think the RequestFloor event is a global event, it should
not be added to the door or elevator state machine, but should
be manually added in the Event-B model.

As we know, passengers should choose at least one floor
and the lift will stop at the corresponding floor. That is, the
RequestFloor event should occur at least once before the
LiftStop event occurs. ERS method cannot specify this
requirement directly. But the iUML-B state machine can
express it, as shown in Fig. 13.

The source state of the event LiftStop is extended into a
super-state and RequestFloor event is inserted into it. This does
not mean that RequestFloor event belongs to the elevator
object. In fact, the control flow state machine is more like a
composed state machine, where the state is a composition of
states.

C. Summary

Fig. 13. FlowStateMachine2 - refined control flow model.

In this section we use the iUML-B state machine to
construct a simple lift control system. We use iUML-B state
machine, instead of ERS method, to model and refine the
control flow. At each refinement level, we use an object state

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

391 | P a g e

machine to specify the action of an object (lift, door) itself,
while using control flow state machine to constrain the overall
event order of the lift control system. We obtained event traces
that satisfy the requirements of lift system by combining these
two types of state machines. The results of this method are the
same as that of ERS method.

V. DISCUSSION

Modeling the system control flow is an unavoidable step
for all formal methods, but Event-B does not have behavioral
semantics. Researchers have proposed many approaches to
solve this problem. We use iUML-B state machine to model
control flow of Event-B, and compare it with other methods in
this field, as shown in Table 2.

We can see that, compared with the ERS method, the
iUML-B state machine cannot express the relationship (that is,
event structure) between the different refinement levels.
However, iUML-B state machine has some advantages in the
expression of event trace. Moreover, the two types of iUML-B
state machines (object state machine and flow state machine)
can be directly converted into Event-B code and embedded into
the Event-B model. However, in the ERS method, this step
requires the support of other plugins. Finally, ERS graph
cannot be translated into LTS directly, while for iUML-B state
machine, this translation is easy.

Compared with the flow method, which express the event
order using an event based style, the iUML-B state machine
uses the state based style to express the control flow. This
makes the control flow easier for engineers to understand.

CSP has strict process algebra semantics, so the CSP||B
method is more stringent than the iUML-B state machine.
Therefore, we can consider the conversion between the CSP
and iUML-B state machine, so that our approach can have
more rigorous formal behavior semantics.

VI. REALTED WORK

Our method is inspired by Hallerstede’s paper [13], [14].
He presents a method of defining a structured Event-B model,
using assertions as nodes, and labels events on the transition
edge. Hallerstede also pointed out that, during the refinement
of the Event-B model, edge refinement (event refinement) and
node refinement (state refinement) are similar, and proved the
equivalence between edge refinement diagram and node
refinement diagram.

iUML-B has been applied to various fields as a “UML-
like” semi-formal modeling language. Fathabadi [15] uses
iUML-B state machine to establish the thread scheduling
model of the many-core system. Hoang [11] used iUML-B to
model and verify the behavior of hemodialysis machine. Snook
[10] used iUML-B state-machines to model the protocol
execution involving the entities’ interactions of Virtual local
area network. Said and Butler [16] extended the UML-B meta-
model to support the refinement of the UML-B state machine,
and define a series of rules to verify the correctness of the
refinement. However, all of the above work has not explicitly
put forward to the concept of flow state machine and control
flow of Event-B.

CSP is a formal system based on process algebra, which
explicitly supports the control flow modeling. The CSP||B
method [4], [17], [18] is an integrated formal method that
combines Event-B with CSP to explicitly model control flows
in Event-B. Schneider has proved that, as long as the CSP
control flow model is deadlock-free, and the Event-B
functional model is non-divergent, it can be concluded that the
model obtained by the composition of these two models is
deadlock-free. IUML-B state machines are not as powerful as
CSP in expressing formal behavioral semantics. But as a semi-
formal modeling language, it is easier than CSP to learn.

Alexei [5] proposed a method of applying a control flow
constraint to an Event-B model without having to modify it,
named flow language. The flow language uses ena, dis, and fis
to express the order of the events, and uses the flow plug-in to
provide graphical symbols to model the event orders. The flow
language also uses OR, AND, and XOR to express the “non-
exclusion or”, “concurrency” and “exclusion or” relationships
between events. However, the modeling elements of the flow
method are the events and the relationship between events,
rather than state and conversion of the state transition system.
This makes flow language difficult to convert to a formal
semantic model.

ERS method [6]-[9] presents a method that integrates
structural refinement and control flow refinements for building
an Event-B model, as described in Section II. In order to get
the system model, one has to combine ERS model (ERSM) and
UML-B model (UML-BM). That is to say, SystemM = UML-BM
|| ERSM, where the ERS model is a control flow model, while
the iUML-B model is a functional Event-B model. If we use
the iUML-B state machine instead of ERS to construct the
system’s control flow model, the above-mentioned
combination process can be completed directly by code
generation.

TABLE II. COMPARISON OF MAJOR CONTROL FLOW MODELING
METHODS

Ability

Method

Formal
behavior
semantics

Express ability
Convertible
to LTS

ERS No Event structure No

Flow Method No Event order No

CSP||B Yes Event order Yes

iUML-B No Event order Yes

VII. CONCLUSION

In this paper, we have proposed a method that facilitates the
establishment of an Event-B control flow model through a
semi-formal iUML-B state machine, which explicitly expresses
the control flow of the Event-B model using state transitions.
This control flow model can be directly converted to Event-B's
state variables and embedded into its functional model. The
JSD-style control flow model in ERS method is replaced by the
state machine, which makes it easier to observe and analyze the
control flow model.

In the future, we intend to translate iUML-B state machine
to a behavioral semantic model such as CSP or LTS, which

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

392 | P a g e

allows us to verify the behavior properties of the system as
early as possible.

ACKNOWLEDGMENT

The authors are very grateful to the chief editor and
reviewers for their comments and suggestions, which are
helpful in improving the paper.

REFERENCES

[1] J.-R. Abrial, Modeling in Event-B: System and Software Engineering:
Cambridge University Press, 2010.

[2] J.-R. Abrial, The B-book: assigning programs to meanings: Cambridge
University Press, 1996.

[3] R. J. R. Back and F. Kurki-Suonio, "Distributed cooperation with action
systems," Acm Transactions on Programming Languages & Systems,
vol. 10, pp. 513-554, 1988.

[4] S. Schneider, H. Treharne, and H. Wehrheim, "A CSP approach to
control in event-B," presented at the Proceedings of the 8th international
conference on Integrated formal methods, Nancy, France, 2010.

[5] A. Iliasov, "Use Case Scenarios as Verification Conditions: Event-
B/Flow Approach," in Software Engineering for Resilient Systems -
Third International Workshop, SERENE 2011, Geneva, Switzerland,
September 29-30, 2011. Proceedings, 2011, pp. 9-23.

[6] A. S. Fathabadi, M. Butler, and A. Rezazadeh, "Language and tool
support for event refinement structures in Event-B," Formal Aspects of
Computing, vol. 27, pp. 499-523, 2015.

[7] E. Alkhammash, M. Butler, A. S. Fathabadi, and C. Cîrstea, "Building
traceable Event-B models from requirements," Science of Computer
Programming, vol. 111, pp. 318-338, 2015.

[8] A. S. Fathabadi, A. Rezazadeh, and M. Butler, "Applying Atomicity and
Model Decomposition to a Space Craft System in Event-B," in
International Conference on NASA Formal Methods, 2011, pp. 328-342.

[9] A. Salehi Fathabadi and M. Butler, "Applying Event-B Atomicity
Decomposition to a Multi Media Protocol," in Formal Methods for
Components and Objects: 8th International Symposium, FMCO 2009,
Eindhoven, The Netherlands, November 4-6, 2009. Revised Selected
Papers, F. S. de Boer, M. M. Bonsangue, S. Hallerstede, and M.

Leuschel, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 89-104.9.

[10] C. Snook, T. S. Hoang, and M. Butler, "Analysing Security Protocols
Using Refinement in iUML-B," in NASA Formal Methods Symposium,
2017, pp. 84-98.

[11] T. S. Hoang, C. Snook, L. Ladenberger, and M. Butler, "Validating the
Requirements and Design of a Hemodialysis Machine Using iUML-B,
BMotion Studio, and Co-Simulation," in International Conference on
Abstract State Machines, Alloy, B, TLA, VDM, and Z, 2016, pp. 360-
375.

[12] J. R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L.
Voisin, "Rodin: an open toolset for modelling and reasoning in Event-
B," International Journal on Software Tools for Technology Transfer,
vol. 12, pp. 447-466, 2010.

[13] S. Hallerstede and C. Snook, "Refining Nodes and Edges of State
Machines," in Formal Methods and Software Engineering: 13th
International Conference on Formal Engineering Methods, ICFEM
2011, Durham, UK, October 26-28, 2011. Proceedings, S. Qin and Z.
Qiu, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
569-584.

[14] S. Hallerstede, "Structured event-b models and proofs," in International
Conference on Abstract State Machines, Alloy, B and Z, 2010, pp. 273-
286.

[15] A. Salehi Fathabadi, C. Snook, and M. Butler, "Applying an Integrated
Modelling Process to Run-time Management of Many-Core Systems," in
Integrated Formal Methods: 11th International Conference, IFM 2014,
Bertinoro, Italy, September 9-11, 2014, Proceedings, E. Albert and E.
Sekerinski, Eds., ed Cham: Springer International Publishing, 2014, pp.
120-135.

[16] M. Y. Said, M. Butler, and C. Snook, "A method of refinement in UML-
B," Software & Systems Modeling, vol. 14, pp. 1557-1580, 2015.

[17] S. Schneider, H. Treharne, and H. Wehrheim, "The behavioural
semantics of Event-B refinement," Formal Aspects of Computing, vol.
26, pp. 251-280, 2014.

[18] S. Schneider, H. Treharne, and H. Wehrheim, "Bounded Retransmission
in Event-B||CSP: a Case Study," Electronic Notes in Theoretical
Computer Science, vol. 280, pp. 69–80, 2011.

