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Abstract—There are some limitations in expressing the order 
of actions using Event-B. To solve this problem, the event 
refinement structure method (ERS) is proposed to facilitate 
modeling of the system’s control flow. However, the event 
refinement structure cannot be translated to a behavior semantic 
model such as the communication sequence process (CSP) or 
labeled transition system (LTS) directly, thus it is not convenient 
for engineers to verify the control flow. In this paper, we first 
propose a general method to model the control flow of the Event-
B model with various iUML-B state machines. Then we prove by 
simulation that the event trace of the iUML-B state machine is 
the same as that of the event refinement structure method. 
Finally, we use a case study of a lift control system to prove the 
practicality of our method. 

Keywords—Event-B; control flow modeling; iUML-B state 
machine; atomicity decomposition; event refinement structure 

I. INTRODUCTION 

Event-B [1] is a formal method that evolved from B 
method [2] and action system [3]. It uses set theory and first 
order logic to model the system, and is applied in different 
fields including control systems. In an Event-B model, the 
behavior of the system is expressed in terms of the sequence of 
events. For small systems that contain only a small number of 
events, one can observe the behavior of the system by 
simulation. However, when the number of events in the Event-
B model is relatively large, it is difficult to accurately observe 
and predict the behavior of the system. The root cause of this 
problem is that Event-B lacks a mechanism for explicitly 
expressing system control flows. 

To solve this problem, researchers have proposed a number 
of methods to model the Event-B control flow. Some of the 
outstanding methods include the CSP||B method [4], the flow 
method [5] and the event refinement structure method (ERS) 
[6]-[9]. The CSP||B method expresses the control flow of the 
system using communication sequence process (CSP), which is 
a formal language that is too difficult for most engineers to 
learn. The Flow method uses a new set of graphical symbols to 
express the order between events, which in fact increases the 
difficulty of learning. Engineers need an intuitive, non-formal 
or semi-formal symbolic system that can easily model the 
control flow of the system and translate the control flow model 
into a formal behavior model. ERS method meets this demand 
to a large extent; it uses a tree structure based on the Jackson 

structure diagram (JSD) to express the relationship between the 
abstract event and the subsequent concrete events as well as the 
order of concrete events. This tree structure can generate the 
corresponding Event-B code. The ERS method also presents 
eight atomicity decomposition patterns to express the 
relationships between events, which make it very suitable for 
Event-B modeling. 

However, there are some limitations in the ERS method. 
First of all, it uses an undirected graph to express the order of 
events, which is easily misinterpreted. Secondly, although the 
tree structure of ERS is very good in expressing the 
relationship between abstract events and concrete events 
(vertical direction), it cannot express the control flow of the 
system in the same refinement level (horizontal direction) 
explicitly.  Thirdly, the tree structure of ERS cannot be directly 
converted into a formal semantic model, such as CSP or 
Labeled Transition System (LTS).The reason for this problem 
is obvious, JSD diagrams can express the static relationship 
between entities well, but cannot express the control flow 
explicitly. In contrast, the state diagram of Unified Modeling 
Language (UML) is better at expressing the system's control 
flow. 

iUML-B [10], [11] is a graphical “front end” of Event-B, 
using “UML-like” class diagram and state machine to describe 
the system’s states and actions. The graphical model drawing 
by iUML-B can generate Event-B code directly on the Rodin 
[12] platform, and the generated code can be filled into the 
Event-B machine automatically, the proof obligations can be 
discharged automatically as well. Fig. 1 shows an example of 
iUML-B state machine. 

In this paper, we propose a method to model control flow 
of system using various iUML-B state machines, which has the 
following advantages: 

 
Fig. 1. Example of iUML-B state machine. 
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Fig. 2. principles of atomicity decomposition. 

 iUML-B state machine is a directed graph, so it can 
express the order of events explicitly; 

 iUML-B state machine is a variant of the UML state 
diagram, so it is easily understood by engineers; 

 iUML-B state machine can be easily converted to LTS 
to verify its behavior properties. 

We use the iUML-B state machine to construct the And, 
Sequence, Xor, and Loop decomposition patterns of ERS 
method, and demonstrate that the order of events obtained by 
this method is the same as that of the ERS method. We 
illustrate our approach on a lift control system case study. 

The remainder of this paper is organized as follows. 
Section II presents preliminary details for ERS method and the 
problem in it. In Section III, we present our approach for 
modeling four decomposition patterns of ERS using iUML-B 
state machine. We also verify the correctness of this method by 
simulation. In Section IV, we model the control flow of a lift 
control system using iUML-B state machine. Section V 
discusses our approach and compares the results of this work 
with existing work. Section VI presents related work. In 
Section VII, we draw some conclusions and provide some 
perspectives related to our future research. 

II. BACKGROUND 

A. Overview of ERS Methods 

The ERS method, also known as atomicity decomposition 
method, was first proposed by Butler. It uses the tree structure 
to express the patterns of event refinement structure, as Fig. 3 
shows. 

The AbstractEvent of the root node is an abstract atomic 
event. At the bottom of the graph, this abstract event is split 
into three concrete events Event1, Event2 and Event3, where 
Event1 and Event2 refine the skip, and Event3 refines the 
AbstractEvent. The trace of concrete events is: 

<Event1, Event2, Event3>. 

In addition to the Sequence pattern shown in Fig. 3, the 
ERS method also includes And, Xor and Loop patterns. The 
meaning and event order of these patterns is: 

1) And pattern 
It indicates that an abstract event is split into many concrete 

events that can occur in any interleaved manner. For example, 
if abstract event is split into two concrete events AndEvent1 
and AndEvent2, then the event order can be: 

<Event1, AndEvent1, AndEvent2, Event3> 

or 

<Event1, AndEvent2, AndEvent1, Event3>. 

It should be noted that in And pattern and the remaining 
several patterns, Event1 and Event3 are not the result of the 
decomposition of abstract events, but only two auxiliary 
events. 

2) Xor pattern 
It indicates that an abstract event is split into many concrete 

events. Only one of these events can be executed. For example, 
if an abstract event is split into two concrete events XorEvent1 
and XorEvent2, then the event order of concrete events can be: 

<Event1, XorEvent1, Event3> or 

<Event1, XorEvent2, Event3> 

3) Loop pattern 
It indicates that an abstract event is refined into one 

concrete event that can occur many times. For example, if 
abstract event is refined into one concrete event LoopEvent, 
then the event order of concrete event can be (we use ‘*’ to 
represent an event that can occur 0 or more times): 

<Event1, (LoopEvent)*, Event3>. 

B. The Problem of ERS Method 

The advantage of ERS method lies mainly in the graphical 
representation of the event decomposition architecture, as 
shown in Fig. 3. This method facilitates the exploration and 
evaluation of various event decomposition strategies and 
refinement strategies for the entire system. At the same time, 
one can deduce the event order of the system by traversing 
each leaf node of the tree structure so that they can analyze 
whether the behavior of the system is consistent with the 
requirement. 

However, ERS method also has the following problems: 

 The event trace in the atomicity decomposition diagram 
is not obvious. For example, in Fig. 3, if one were to 
analyze the trace of the events in the lowest level, he 
would need to trace back to the top of the abstract root 
node, because the bottom layer does not provide this 
information. 

 Alkhammash [7] used ERS method to model the control 
flow of the system and used UML-B to model the data-
oriented requirement, which separated the control flow 
model and the functional model of the system. The idea 
of this method is correct because it achieved the 
separation of concerns. But in the final step, people will 
have to compose the functional model FunctionM and 
the control flow model ControllerM to get the system 
model SystemM = (FunctionM || ControllerM). This step 
will introduce unexpected changes in the behavior of 
the system. 

 The basic modeling elements of the ERS method are 
events and connections. This modeling form cannot be 
directly transformed into a behavioral semantic model, 
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Fig. 3. Atomicity decomposition architecture. 

such as the CSP or LTS model, and is therefore not 
conducive to the modeling and analysis of behavior 
properties (e.g., safety and liveliness properties in 
concurrent situations). 

III. EXPRESSING ERS PATTENRS BY IUML-B 

In this section we will use the iUML-B state machine to 
establish four atomicity decomposition patterns of the ERS 
method, including Sequence pattern, Loop pattern, And pattern, 
and Xor pattern. We first give a general event decomposition 
method, and then present iUML-B state machine representation 
for each pattern and analyze its event trace by simulation. The 
simulation results show that the event trace of the iUML-B 
state machine is the same as that of the ERS method. 

A. Atomicity Decomposition Model Based on iUML-B State 
Machine 

1) General Method 
The general approach to get atomicity decomposition using 

the iUML-B state machine is described as follows: 

a) An abstract state machine is used to describe the 
event trace of the abstract model. 

b) In the refinement model, a node in the abstract state 
machine is changed into a super node of the concrete state 
machine. 

c) New states and events are added in the super node as 
refinement events in the next level. 

d) The refinement event is linked to the edge of the new 
state machine, and ensures that its event trace meets the 
requirements for decomposition and refinement. 

According to the above general method, we first show the 
initial abstract state machine model. Then we show the iUML-
B state machine representation of the four decomposition 
patterns. 

The initial abstract state machine model is shown in Fig. 4. 

 
Fig. 4. Abstract state machine. 

The corresponding code of event is: 

AbstractEvent ≙
STATUS
Ordinary
WHEN

@Isin_S_0   :   S_0 = TRUE
THEN

@leave_S_0 : S_0 ≔FALSE
@Enter_S_1 : S_1 ≔ TRUE

END
 

The event trace of abstract model is 

<AbstractEvent>. 

2) Sequence pattern 
In order to get the correct event trace, in the Sequence 

decomposition pattern, we change the S0 state of the abstract 
state machine to super node and add three sub-states s0_1, 
s0_2, s0_3 and two events Event1, Event2 in its nested state 
machine, and then let Event3 refine the abstract event 
AbstractEvent, as the Fig. 5 shows. 

The resulting code of events and invariants are: 

Event1   ≙   
STATUS
Ordinary
WHEN

@Isin_S0_1 : S0_1 = TRUE
THEN

@leave_S0_1   :   S0_1≔ FALSE
@Enter_S0_2 : S0_2 ≔ TRUE

END

Event2   ≙   

STATUS
Ordinary
WHEN

@Isin_S0_2   :  S0_2 = TRUE
THEN

@leave_S0_2 : S0_2 ≔ FALSE
@Enter_S0_3   :   S0_3 ≔ TRUE

END

 

Event3 ≙
extended

STATUS
Ordinary
REFINES
AbstractEvent
WHEN
@isin_S0 : S0 = TRUE
@Isin_S0_3   :   S0_3 = TRUE
THEN
@leave_S0   :   S0 ≔ FALSE
@enter_S1 : S1 ≔ TRUE
@leave_S0_3   :   S0_3 ≔ FALSEEND

 
@S0_1_substateof_S0   :   (S0_1 = TRUE) ⇒ (S0 = TRUE)
@S0_2_substateof_S0   :   (S0_2 = TRUE) ⇒ (S0 = TRUE)

@S0_3_substateof_S0   :   (S0_3 = TRUE) ⇒ (S0 = TRUE)
 

The simulation result shows that the event trace of this 
pattern is: 

<Event1, Event2, Event3>. 

3) Loop pattern 

 
Fig. 5. Sequence decomposition pattern. 
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In order to get the loop event, in the Loop decomposition 
pattern, we change the S0 state of the abstract state machine to 
the super node, and add two sub-states of s0_1, s0_2 and 
Event1 and one event LoopEvent in its sub state machine, 
where LoopEvent is the reflex edge of state s0_2, and then let 
Event3 refine the abstract event AbstractEvent, as Fig. 6 shows: 

The resulting code of events and invariants are: 

Event1   ≙   
STATUS
Ordinary
WHEN

@Isin_S0_1 : S0_1 = TRUE
THEN

@leave_S0_1   :   S0_1≔ FALSE
@Enter_S0_2 : S0_2 ≔ TRUE

END

LoopEvent2   ≙   
STATUS
Ordinary
WHEN

@Isin_S0_2 : S0_2 = TRUE
THEN
Skip
END

Event3   ≙   
extended
STATUS
Ordinary
REFINES
AbstractEvent
WHEN

@isin_S0   :   S0 = TRUE
@Isin_S0_3   :   S0_3 = TRUE

THEN
@leave_S0   :   S0 ≔ FALSE
@enter_S1   :   S1≔ TRUE
@Leave_S0_3 : S0_3≔ FALSE

END  
@S0_1_substateof_S0   :   (S0_1 = TRUE) ⇒ (S0 = TRUE)
@S0_2_substateof_S0   :   (S0_2 = TRUE) ⇒ (S0 = TRUE)  

The event trace obtained by simulation is: 

<Event1, (LoopEvent)*, Event3>. 

Loop pattern can also be implemented using the pseudo-
state node of iUML-B state machine, as shown in Fig. 7. 

Note that the Loop pattern shown in Fig. 6 indicates that 
LoopEvent can occur “0 times or more times”, while the Loop 
pattern shown in Fig. 7 ensures that LoopEvent occurs at least 
once. Thus, the event trace of the state machine shown in Fig. 7 
is (‘+’an event that can occur one or more times): 

<Event1, (LoopEvent)+, Event3>. 

4) And pattern 
In the And pattern, we first change the S0 state of the 

abstract state machine to super node and add two sub-states 
s01, s02 and one event Event1 to its sub state machine. Then 
state S02 is split into two orthogonal state machines into which 
sub-states and events are added. Finally, let Event3 refine the 
abstract event AbstractEvent, as Fig. 8 shows. 

 
Fig. 6. Loop decomposition pattern 1. 

 
Fig. 7. Loop decomposition pattern 2. 

 
Fig. 8. And decomposition pattern. 

The resulting code of event and invariant are: 

Event1   ≙   
STATUS
Ordinary
WHEN

@Isin_S01   :   S01 = TRUE
THEN

@leave_S01 : S01≔ FALSE
@enter_S021 : S021 ≔ TRUE
@enter_S02   :   S02 ≔ TRUE
@Enter_S023 : S023≔ TRUE

END
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The event traces obtained by simulation are: 

<Event1, AndEvent1, AndEvent2, Event3> or 

<Event1, AndEvent2, AndEvent1, Event3>. 

There is no other possible event trace in this state machine. 

5) Xor pattern 
In the Xor decomposition pattern, we change the S0 state of 

the abstract state machine to super node and add three sub 
states s0_1, s0_2, s0_3 and three events Event1, XorEvent1 and 
XorEvent2 into the sub state machine. Let XorEvent1 and 
XorEvent2 have the same source state but distinct target states, 
and finally let Event3 refine the abstract event AbstractEvent, 
as Fig. 9 shows. 

The resulting code of events and invariants are: 

Event1   ≙   
STATUS
Ordinary
WHEN

@Isin_S0_1   :   S0_1 = TRUE
THEN

@leave_S0_1   :   S0_1≔ FALSE
@Enter_S0_2   :   S0_2 ≔ TRUE

END

XorEvent1   ≙   

STATUS
Ordinary
WHEN

@Isin_S0_2   :   (S0_2 = TRUE)
THEN

@leave_S0_2 : S0_2≔ FALSE
@enter_S0_3   :   S0_3 ≔ TRUE

END

XorEvent2   ≙   

STATUS
Ordinary
WHEN

@Isin_S0_2   :   (S0_2 = TRUE)
THEN

@leave_S0_2 : S0_2≔ FALSE
@Enter_S0_4   :   S0_4≔ TRUE

END

 
The event traces obtained by simulation are: 

<Event1, XorEvent1, Event3> or 

<Event1, XorEvent2, Event3> 

There will be no other possible event traces in this state 
machine. 

B. Summary 

We implemented four atomicity decomposition patterns of 
ERS method using the iUML-B state machine. The simulation 
results show that the event traces obtained by the iUML-B state 
machine are exactly the same as that of the ERS method. 

 
Fig. 9. Xor decomposition pattern 2. 

IV. CASE STUDY 

In this section, we use the general method proposed in 
Section III to model the lift control system of Alkhammash [7] 
with the iUML-B state machine. The complete requirements 
for the lift system can be found in Alkhammash’s article. In 
this paper, we only care about the events added during the 
system refinement and the constraints imposed by the 
atomicity decomposition on event order. 

A. The Original Decomposition Process of the Lift System 

1) Control Flow Requirements of Lift System 
The control flow requirements for the lift system are shown 

in Table 1, which is cited from Alkhammash’s article [7]. 
Alkhammash called them flow requirements, and described 
these requirements using ERS method, as shown in Fig. 2 of 
Section II. 

2) Event Execution Trace Specified by ERS Method 
The event refinement structure shown in Fig. 3 specifies the 

following requirements of system event orders: 

 In the top-level abstraction model, the AbstractLiftStop 
event and the AbstractLiftMove event occur 
alternatively, that is to say, two or more 
AbstractLiftStop events cannot occur continuously. For 
the AbstractLiftMove event, this constraint is the same. 

 In the first layer refinement model, the LiftStop1 event 
refined the AbstractLiftStop event of the abstract model. 
The event LiftStop1 can be followed by the 
OpenLiftDoor event or the NotOpenLiftDoor event. The 
Xor in Fig. 3 indicates that these two events cannot 
occur at same time. The leaf nodes order of the tree 
structure indicates that the LiftStop1 event must occur 
before the OpenLiftDoor event or the NotOpenLiftDoor 
event (requirement LIFT8). Similarly, the LiftMove 
event refined the AbstractLiftMove event of the abstract 
model, and it must occur after the CloseLiftDoor event 
(requirement LIFT7). 

 The third layer of refinement introduces a RequestFloor 
event that can occur more than one time. RequestFloor 
is put before LiftStop2, which indicates that only after 
the passengers have made a choice, the elevator will 
stop at the required floor (requirement LIFT9). 

B. Control Flow Modeling Based on iUML-B State Machine 

We use the iUML-B state machine to model the control 
flow of lift control system. The original model of the system is 
shown in Fig.10. 

1) Abstract model. 
The top-level abstract model is shown in Fig. 10. Since 

there is no interaction between the elevator and the door, it is 
only necessary to describe the relationship between LiftMove 
event and the LiftStop event. This relationship has been 
modeled in the liftStatemachine0. 

2) First refinement 
Three events are introduced in the first refinement to 

express the behavior of the door, namely, OpenLiftDoor, 
CloseLiftDoor and NotOpenLiftDoor, as shown in Fig. 11. 
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TABLE I. DESCRIPTION OF FLOW REQUIREMENTS 

Flow 
Requirements 

Example Description 

Sequencing 
requirements 

LIFT7-The floor door closes before the lift is allowed 
to move 

Selection 
requirements 

LIFT8-If a lift is stopped then the floor door for that 
lift may be open. In this requirement the lift door can 
be either opened or left closed when the lift is 
stopped. 

Repetition 
requirements 

LIFT9-There might be more than one external floor 
request in a particular floor, the lift will respond to 
them (stop) only once 

We use another state machine, FlowStateMachine1, to 
constrain the events trace of the system, as shown in Fig. 12. 
We use the pseudo-state to express the Xor relationship 
between OpenLiftDoor and NotOpenLiftDoor, and put them 
into a super state. Then we make the LiftStop event to be an 
ingoing event of super-state, which requires the LiftStop event 
to be executed just before OpenLiftDoor or NotOpenLiftDoor. 
Similarly, we make the LiftMove event to be the outgoing edge 
of the super-state, which specifies that the LiftMove can be 
executed only after these two events. 

FlowStateMachine1 generates the following control flow 
code: 

MoveLift   ≙   
extended
STATUS
Ordinary
REFINES
MoveLift
WHEN

@isin_stopped   :   lift = stopped

@isin_LiftStoped   :  LiftStoped = TRUE
@Isin_Liftdoorclosed : Liftdoorclosed = TRUE

THEN
@leave_LiftStoped   :   LiftStoped ≔ FALSE

@enter_moving   :   lift ≔ moving
@enter_LiftMoving   :   LiftMoving≔ TRUE
@Leave_Liftdoorclosed   :   Liftdoorclosed ≔ FALSE

END

StopLift ≙
extended
STATUS
Ordinary
REFINES
StopLift
WHEN

@isin_moving   :   lift = moving
@Isin_LiftMoving : LiftMoving = TRUE

THEN
@leave_LiftMoving   :   LiftMoving ≔ FALSE

@enter_stopped   :   lift ≔ stopped
@enter_LiftStoped : LiftStoped≔ TRUE
@Enter_LiftStoped_1   :   LiftStoped_1 ≔ TRUE

END

OpenLiftDoor   ≙   
STATUS
Ordinary
WHEN

@isin_LiftStoped_1   :   (LiftStoped_1 = TRUE)
@Isin_closed   :   door = closed

THEN
@leave_LiftStoped_1   :   LiftStoped_1 ≔ FALSE
@enter_Liftdooropen   :   Liftdooropen ≔ TRUE
@Enter_open   :   door ≔ open

END

CloseLiftDoor   ≙   

STATUS
Ordinary
WHEN

@isin_Liftdooropen   :   Liftdooropen = TRUE
@Isin_open   :   door = open

THEN 
@leave_Liftdooropen   :   Liftdooropen ≔ FALSE
@enter_Liftdoorclosed   :   Liftdoorclosed ≔ TRUE
@Enter_closed : door ≔ closed

END

NotOpenLiftDoor   ≙   
STATUS
Ordinary
WHEN

@isin_LiftStoped_1   :   (LiftStoped_1 = TRUE)
@Isin_closed   :   door = closed

THEN
@leave_LiftStoped_1 : LiftStoped_1 ≔ FALSE
@Enter_Liftdoorclosed   :   Liftdoorclosed ≔ TRUE

END  
@Distinct_states_in_LiftStoped_statemachine1 : (LiftStoped = TRUE)
⇒ partition({TRUE}, {LiftStoped_1} ∩ {TRUE}, {Liftdooropen} ∩ {TRUE}, {Liftdoorclosed} ∩ {TRUE})
@LiftStoped_1_substateof_LiftStoped : (LiftStoped_1 = TRUE) ⇒ (LiftStoped = TRUE)
@Liftdooropen_substateof_LiftStoped : (Liftdooropen = TRUE) ⇒ (LiftStoped = TRUE)
@Liftdoorclosed_substateof_LiftStoped   :   (Liftdoorclosed = TRUE) ⇒ (LiftStoped = TRUE)  

 
Fig. 10. liftStateMachine0 

 
Fig. 11. DoorStateMachine1. 

 

Fig. 12. FlowStateMachine 1. 

It should be noted that, OpenLiftDoor, CloseLiftDoor and 
NotOpenLiftDoor are events belonging to the door object. The 
relationship between these three events is also expressed in 
Fig. 11. However, the relationship between events that belong 
to the lift object and that belong to the door object must 
specified by FlowStateMachine1, otherwise we can only write 
some Event-B code manually to achieve the same effect. In 
fact, we use the Flow state machine to replace the event 
refinement structure graph in the ERS method. 

3) The Second Refinement 
A loop event named RequestFloor, is introduced in this 

refinement level. It means that the passenger has pressed a lift 
button, which is a floor number. We note that this event should 
not be attributed to the lift object, nor should it belong to the 
door object, rather the environment (people) issued the event. 
So, we think the RequestFloor event is a global event, it should 
not be added to the door or elevator state machine, but should 
be manually added in the Event-B model. 

As we know, passengers should choose at least one floor 
and the lift will stop at the corresponding floor. That is, the 
RequestFloor event should occur at least once before the 
LiftStop event occurs. ERS method cannot specify this 
requirement directly. But the iUML-B state machine can 
express it, as shown in Fig. 13. 

The source state of the event LiftStop is extended into a 
super-state and RequestFloor event is inserted into it. This does 
not mean that RequestFloor event belongs to the elevator 
object. In fact, the control flow state machine is more like a 
composed state machine, where the state is a composition of 
states. 

C. Summary 

 
Fig. 13. FlowStateMachine2 - refined control flow model. 

In this section we use the iUML-B state machine to 
construct a simple lift control system. We use iUML-B state 
machine, instead of ERS method, to model and refine the 
control flow. At each refinement level, we use an object state 
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machine to specify the action of an object (lift, door) itself, 
while using control flow state machine to constrain the overall 
event order of the lift control system. We obtained event traces 
that satisfy the requirements of lift system by combining these 
two types of state machines. The results of this method are the 
same as that of ERS method. 

V. DISCUSSION 

Modeling the system control flow is an unavoidable step 
for all formal methods, but Event-B does not have behavioral 
semantics. Researchers have proposed many approaches to 
solve this problem. We use iUML-B state machine to model 
control flow of Event-B, and compare it with other methods in 
this field, as shown in Table 2. 

We can see that, compared with the ERS method, the 
iUML-B state machine cannot express the relationship (that is, 
event structure) between the different refinement levels. 
However, iUML-B state machine has some advantages in the 
expression of event trace. Moreover, the two types of iUML-B 
state machines (object state machine and flow state machine) 
can be directly converted into Event-B code and embedded into 
the Event-B model. However, in the ERS method, this step 
requires the support of other plugins. Finally, ERS graph 
cannot be translated into LTS directly, while for iUML-B state 
machine, this translation is easy. 

Compared with the flow method, which express the event 
order using an event based style, the iUML-B state machine 
uses the state based style to express the control flow. This 
makes the control flow easier for engineers to understand. 

CSP has strict process algebra semantics, so the CSP||B 
method is more stringent than the iUML-B state machine. 
Therefore, we can consider the conversion between the CSP 
and iUML-B state machine, so that our approach can have 
more rigorous formal behavior semantics. 

VI. REALTED WORK 

Our method is inspired by Hallerstede’s paper [13], [14]. 
He presents a method of defining a structured Event-B model, 
using assertions as nodes, and labels events on the transition 
edge. Hallerstede also pointed out that, during the refinement 
of the Event-B model, edge refinement (event refinement) and 
node refinement (state refinement) are similar, and proved the 
equivalence between edge refinement diagram and node 
refinement diagram. 

iUML-B has been applied to various fields as a “UML-
like” semi-formal modeling language. Fathabadi [15] uses 
iUML-B state machine to establish the thread scheduling 
model of the many-core system. Hoang [11] used iUML-B to 
model and verify the behavior of hemodialysis machine. Snook 
[10] used iUML-B state-machines to model the protocol 
execution involving the entities’ interactions of Virtual local 
area network. Said and Butler [16] extended the UML-B meta-
model to support the refinement of the UML-B state machine, 
and define a series of rules to verify the correctness of the 
refinement. However, all of the above work has not explicitly 
put forward to the concept of flow state machine and control 
flow of Event-B. 

CSP is a formal system based on process algebra, which 
explicitly supports the control flow modeling. The CSP||B 
method [4], [17], [18] is an integrated formal method that 
combines Event-B with CSP to explicitly model control flows 
in Event-B. Schneider has proved that, as long as the CSP 
control flow model is deadlock-free, and the Event-B 
functional model is non-divergent, it can be concluded that the 
model obtained by the composition of these two models is 
deadlock-free. IUML-B state machines are not as powerful as 
CSP in expressing formal behavioral semantics. But as a semi-
formal modeling language, it is easier than CSP to learn. 

Alexei [5] proposed a method of applying a control flow 
constraint to an Event-B model without having to modify it, 
named flow language. The flow language uses ena, dis, and fis 
to express the order of the events, and uses the flow plug-in to 
provide graphical symbols to model the event orders. The flow 
language also uses OR, AND, and XOR to express the “non-
exclusion or”, “concurrency” and “exclusion or” relationships 
between events. However, the modeling elements of the flow 
method are the events and the relationship between events, 
rather than state and conversion of the state transition system. 
This makes flow language difficult to convert to a formal 
semantic model. 

ERS method [6]-[9] presents a method that integrates 
structural refinement and control flow refinements for building 
an Event-B model, as described in Section II. In order to get 
the system model, one has to combine ERS model (ERSM) and 
UML-B model (UML-BM). That is to say, SystemM = UML-BM 
|| ERSM, where the ERS model is a control flow model, while 
the iUML-B model is a functional Event-B model. If we use 
the iUML-B state machine instead of ERS to construct the 
system’s control flow model, the above-mentioned 
combination process can be completed directly by code 
generation. 

TABLE II. COMPARISON OF MAJOR CONTROL FLOW MODELING 
METHODS 

Ability 
 
Method 

Formal 
behavior 
semantics 

Express ability 
Convertible  
to LTS  

ERS No Event structure No 

Flow Method No Event order No 

CSP||B Yes Event order Yes 

iUML-B No Event order Yes 

VII. CONCLUSION 

In this paper, we have proposed a method that facilitates the 
establishment of an Event-B control flow model through a 
semi-formal iUML-B state machine, which explicitly expresses 
the control flow of the Event-B model using state transitions. 
This control flow model can be directly converted to Event-B's 
state variables and embedded into its functional model. The 
JSD-style control flow model in ERS method is replaced by the 
state machine, which makes it easier to observe and analyze the 
control flow model. 

In the future, we intend to translate iUML-B state machine 
to a behavioral semantic model such as CSP or LTS, which 
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allows us to verify the behavior properties of the system as 
early as possible. 

ACKNOWLEDGMENT 

The authors are very grateful to the chief editor and 
reviewers for their comments and suggestions, which are 
helpful in improving the paper. 

REFERENCES 

[1] J.-R. Abrial, Modeling in Event-B: System and Software Engineering: 
Cambridge University Press, 2010. 

[2] J.-R. Abrial, The B-book: assigning programs to meanings: Cambridge 
University Press, 1996. 

[3] R. J. R. Back and F. Kurki-Suonio, "Distributed cooperation with action 
systems," Acm Transactions on Programming Languages & Systems, 
vol. 10, pp. 513-554, 1988. 

[4] S. Schneider, H. Treharne, and H. Wehrheim, "A CSP approach to 
control in event-B," presented at the Proceedings of the 8th international 
conference on Integrated formal methods, Nancy, France, 2010. 

[5] A. Iliasov, "Use Case Scenarios as Verification Conditions: Event-
B/Flow Approach," in Software Engineering for Resilient Systems - 
Third International Workshop, SERENE 2011, Geneva, Switzerland, 
September 29-30, 2011. Proceedings, 2011, pp. 9-23. 

[6] A. S. Fathabadi, M. Butler, and A. Rezazadeh, "Language and tool 
support for event refinement structures in Event-B," Formal Aspects of 
Computing, vol. 27, pp. 499-523, 2015. 

[7] E. Alkhammash, M. Butler, A. S. Fathabadi, and C. Cîrstea, "Building 
traceable Event-B models from requirements," Science of Computer 
Programming, vol. 111, pp. 318-338, 2015. 

[8] A. S. Fathabadi, A. Rezazadeh, and M. Butler, "Applying Atomicity and 
Model Decomposition to a Space Craft System in Event-B," in 
International Conference on NASA Formal Methods, 2011, pp. 328-342. 

[9] A. Salehi Fathabadi and M. Butler, "Applying Event-B Atomicity 
Decomposition to a Multi Media Protocol," in Formal Methods for 
Components and Objects: 8th International Symposium, FMCO 2009, 
Eindhoven, The Netherlands, November 4-6, 2009. Revised Selected 
Papers, F. S. de Boer, M. M. Bonsangue, S. Hallerstede, and M. 

Leuschel, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, 
pp. 89-104.9. 

[10] C. Snook, T. S. Hoang, and M. Butler, "Analysing Security Protocols 
Using Refinement in iUML-B," in NASA Formal Methods Symposium, 
2017, pp. 84-98. 

[11] T. S. Hoang, C. Snook, L. Ladenberger, and M. Butler, "Validating the 
Requirements and Design of a Hemodialysis Machine Using iUML-B, 
BMotion Studio, and Co-Simulation," in International Conference on 
Abstract State Machines, Alloy, B, TLA, VDM, and Z, 2016, pp. 360-
375. 

[12] J. R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. 
Voisin, "Rodin: an open toolset for modelling and reasoning in Event-
B," International Journal on Software Tools for Technology Transfer, 
vol. 12, pp. 447-466, 2010. 

[13] S. Hallerstede and C. Snook, "Refining Nodes and Edges of State 
Machines," in Formal Methods and Software Engineering: 13th 
International Conference on Formal Engineering Methods, ICFEM 
2011, Durham, UK, October 26-28, 2011. Proceedings, S. Qin and Z. 
Qiu, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 
569-584. 

[14] S. Hallerstede, "Structured event-b models and proofs," in International 
Conference on Abstract State Machines, Alloy, B and Z, 2010, pp. 273-
286. 

[15] A. Salehi Fathabadi, C. Snook, and M. Butler, "Applying an Integrated 
Modelling Process to Run-time Management of Many-Core Systems," in 
Integrated Formal Methods: 11th International Conference, IFM 2014, 
Bertinoro, Italy, September 9-11, 2014, Proceedings, E. Albert and E. 
Sekerinski, Eds., ed Cham: Springer International Publishing, 2014, pp. 
120-135. 

[16] M. Y. Said, M. Butler, and C. Snook, "A method of refinement in UML-
B," Software & Systems Modeling, vol. 14, pp. 1557-1580, 2015. 

[17] S. Schneider, H. Treharne, and H. Wehrheim, "The behavioural 
semantics of Event-B refinement," Formal Aspects of Computing, vol. 
26, pp. 251-280, 2014. 

[18] S. Schneider, H. Treharne, and H. Wehrheim, "Bounded Retransmission 
in Event-B||CSP: a Case Study," Electronic Notes in Theoretical 
Computer Science, vol. 280, pp. 69–80, 2011. 

 


