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Abstract—In this research, we propose to store equi-join 
relationships of tuples on inexpensive and space abundant 
devices, such as disks, to facilitate query processing. The equi-
join relationships are captured, grouped, and stored as various 
tables on disks, which are collectively called the Join Core. 
Queries involving arbitrary legitimate sequences of equi-joins, 
semi-joins, outer-joins, anti-joins, unions, differences, and 
intersections can all be answered quickly by merely merging 
these tables without having to perform joins. The Join Core can 
also be updated dynamically. Preliminary experimental results 
showed that all test queries began to generate results instantly, 
and many completed instantly too. The proposed methodology 
can be very useful for queries with complex joins of large 
relations as there are fewer or even no relations or intermediate 
results needed to be retrieved, generated. 

Keywords—Query processing; join queries; equi-join; semi-
join; outer-join; anti-join; set operations 

I. INTRODUCTION 

As hardware technologies advance, the price of disks drops 
significantly while the capacity increases drastically. Database 
researchers now have the luxury of exploring innovative ways 
to utilize these cheap and abundant spaces to improve query 
processing. 

In relational databases, data are spread among relations. 
The equi-join operation, which includes the natural join, is the 
most commonly used operator to combine data spread across 
relations. Other join operators, such as semi-joins, outer-joins, 
and anti-joins, are also very useful. Unfortunately, these join 
operations are generally expensive to execute. Complex 
queries involving multiple joins of large relations can easily 
take minutes or even hours to compute. Consequently, much 
effort in the past few decades has been devoted to developing 
efficient join algorithms [10], [5], [9]. Even today, improving 
join operations remains a focus of database research [16], [2]. 

In this research, we propose to pre-store the equi-join 

relationships of tuples to facilitate query processing. We have 
designed a simple method to capture the equi-join relationships 
in the form of maximally extended match tuples. A simple and 
novel naming technique has been designed to group and store 
the equi-join relationships in tables on disks, which are 
collectively called the Join Core. 

Join Core is an efficient data structure from which not only 
the results of all possible equi-joins can be obtained, but also 
the results of all legitimate combinations of equi-joins, outer-
joins, anti-joins, unions, differences, and intersections can be 
derived. Without having to perform joins, memory 
consumptions are dramatically reduced. In addition, Join Core 
can be updated dynamically in the face of updates. 

In this research, we also discuss heuristics that can 
effectively cut down the sizes of Join Cores. We believe the 
benefits of Join Core, namely instant responses, fast query 
processing, and small memory consumptions, are well worth 
the additional storage space incurred. 

The rest of the paper is organized as follows. Section II 
surveys work in materialized views and join indices and 
Section III introduces the terminology. Section IV shows a 
sample Join Core and how it can be used to answer equi-join 
queries. Section V lays down the theoretical foundation for 
answering equi-join queries using the Join Core. Section VI 
extends the framework to queries with other types of joins and 
set operations. Section VII analyzes the time and space 
consumptions of the Join Core, and discusses measures to 
reduce the space consumption. Section VIII reports 
experimental results. Finally, conclusions are presented in 
Section IX. 

Due to space limitation, readers are referred to [18] for an 
extended version of the paper that includes detailed discussions 
on dynamic maintenance of the Join Core, proofs of theorems, 
applications to bag semantics, literature survey, and 
experimental results. 
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II. LITERATURE SURVEY 

In the literature, materialized views are, to a certain extent, 
related to our work as both attempt to use precomputed data to 
facilitate query processing. 

Materialized views generally focus on SPJ (Select-Project-
Join) queries and, perhaps, with final grouping and aggregate 
functions. The select and project operations in the views 
confine and complicate the uses of the views. As a result, much 
research has focused on how to select the most beneficial 
views to materialize [15], [13], [6], [8] and how to choose an 
appropriate set of materialized views to answer a query [7], [1], 
[14]. 

Materialized views materialize selected query results while 
Join Core materializes selected equi-join relationships. 
Therefore, materialized views may benefit queries that are 
relevant to the selected queries, while Join Core can benefit 
queries that are related to the selected equi-join relationships, 
which include queries with arbitrary sequences of equi-, semi-, 
outer-, anti-joins and set operators. 

A join index [12], [17] for a join stores the (equi-)join 
result in a concise manner as pairs of identifiers of tuples that 
would match in the join operation. It has been shown that joins 
can be performed more efficiently with join indices than the 
traditional join algorithms. However, it still requires at least 
one scan of the operand relations, writes and reads of 
temporary files (as large as the source relations), and 
generating intermediate result relations (for queries with more 
than one join). One the other hand, with Join Core, join results 
are readily available without accessing any source or 
intermediate relation. Very little memory and computations are 
required. In addition, join indices are not useful to other join 
operators, such as outer-joins and anti-joins. 

III. TERMINOLOGY 

In this paper, we assume all the data model and queries are 
based on the set semantics. Readers are referred to an extended 
version of the paper [16] for discussions on the bag semantics. 
The equi-join operator is the most commonly used operator to 
combine data spread across relations. Other useful joins, such 
as the semi-join, outer-join, and anti-join, are all related to the 
equi-join. Therefore, we shall first lay down the theoretical 
foundation of Join Core based on the equi-join, and then extend 
the framework to other joins in Section 6. Hereafter, we shall 
use, for simplicity, a join for an equi-join, unless otherwise 
stated. 

A join graph is commonly used to describe the equi-join 
relationships between pairs of relations. These relationships are 
generally defined before the database has been created. 
Certainly, one can also include other frequently referenced ad-
hoc equi-join relationships in the graph. 

For simplicity, we assume there is at most one equi-join 
relationship between each pair of relations. This assumption is 
relaxed in [18]. 

Definition 1. (Join Graph of a Database). Let D be a 
database with n relations R1, R2, …, Rn, and G (V, E) be the 
join graph of D, where V is a set of nodes that represents the set 

of relations in D, i.e., V = {R1, R2, R3, ..., Rn}, and E = {⟨Ri, Rj⟩ | 
Ri, Rj ∈ V, i ≠ j)}, is a set of edges, in which each represents an 
equi-join relationship that has been defined between Ri and Rj, i 
≠  j. 

If the join graph is not connected, one can consider each 
connected component separately. Therefore, we shall assume 
all join graphs are connected. 

Each join comes with a predicate, omitted in the graph, 
specifying the requirements that a result tuple of the join must 
satisfy, e.g., R1.attr1=R2.attr2. For simplicity, we shall use a 
join, a join edge, and a join predicate interchangeably. We also 
assume all relations and join edges are numbered. 

Example 1. (Join Graph). Fig. 1(a) shows the join graph of 
a database with five relations R1, R2, R3, R4, and R5, connected 
by join edges, numbered from 6 to 9. 

To round out the theoretical framework, we shall introduce 
a concept, called the trivial (equi-)join. Each tuple in a relation 
Ri can be considered as a result tuple of a trivial join between 
Ri and itself with a join predicate Ri.key = Ri.key, where key is 
the (set of) key attribute(s) of Ri. Trivial join predicates are not 
shown explicitly in the join graphs. All join edges in Fig. 1(a), 
such as 6, 7, 8, and 9, are non-trivial or regular joins. 

 
(a) A Join Graph 

 
(b) Matching of Join Attribute Values 

Fig. 1. A join graph and matching tuples. 

We have reserved predicate number i, 1≤ i ≤5, for trivial 
join predicate i, which is automatically satisfied by every tuple 
in relation Ri. The concept of trivial join predicates will be 
useful later when we discuss a query that contains outer-joins, 
anti-joins, or no joins. Hereafter, all joins and join predicates 
refer to non-trivial ones, unless otherwise stated. 

To conserve space, a database and its join graph refer to 
only the parts of the database and join graphs that are of our 
interest and for which we intend to build Join Cores. We will 
discuss other space conservation measures in Section VII. 

Definition 2. (Join Queries). Let ⋈({Ri, …, Rj}, E’) be a 
join query, representing joins of the set of relations {Ri, …, Rj} 
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⊆ V, 1 ≤ i, …, j ≤ n, with respect to the set of join predicates E’ 
⊆ E among them. 

1  4  5  1 2  2 4 

C  β      λ  B b  c γ 

J1  J4  J5  J1,2,6  J2,4,8 

1 2 3 4 5 

A a I α μ 

J1,2,3,4,5,6,7,8,9 

Fig. 2. Join core. 

Definition 3. (Join Graph of a Join Query). The join graph 
of a join query ⋈({Ri, …, Rj}, E’), denoted by G’(V’, E’), is a 
connected subgraph of G (V, E), where V’ = {Ri, …, Rj} ⊆ V, 
and E’ ⊆ E is the set of join predicates specified in the query. 

The join graph of a join query is also called a query graph. 
We shall exclude queries that must execute Cartesian products 
or θ-joins, where θ ≠ “=”, from discussion as Join Core cannot 
facilitate executions of such operators. 

Example 2. (Matching of Join Attribute Values). Fig. 1(b) 
shows the matching of join attribute values between tuples. 
Tuples are represented by their IDs in the figure. That is, R1 has 
3 tuples, A, B, C, i.e., R1 = {A, B, C}. R2 = {a, b, c}, R3 = {I}, R4 
= {α, β, γ}, R5 = {μ, λ}. 

The edges between tuples represent matches of join 
attribute values. For example, tuples A and B of R1 match 
tuples a and b of R2, respectively. Tuple a has two other 
matches, I of R3 and α of R4. c of R2 matches γ of R4, and α 
matches μ of R5. 

Definition 4. ((Maximally) Extended Match Tuple). Given 
a database D = {R1, …, Rn} and its join graph G, an extended 
match tuple (tk, …, tl), where 1≤ k, ..., l ≤ n, tk ∈ Rk, …,  tl ∈ Rl, 
and Rk, …,Rl are all distinct relations, represents a set of tuples 
{tk, …, tl} that generates a result tuple in {tk} ⋈ …⋈ {tl}. A 
maximally extended match tuple (tk, …, tl), is an extended 
match tuple if no tuple tm in Rm (∉ {Rk, …, Rl}) matches any of 
the tuples tk, …, tl in join attribute values. 

It can be observed that in Fig. 1(b), (A, a, I, α, μ) is a 
maximally extended match tuple. The same can be said of (B, 
b) because the match cannot be extended by any tuple in 
relations other than R1 and R2. Similarly, (c, γ), as well as (C), 
(β), and (λ), is also a maximally extended match tuple. 

IV. JOIN CORE STRUCTURE AND CONSTRUCTION 

In this section, we show an example of a Join Core and 
explain how it is structured and used to answer equ-join 
queries. 

A. Join Core Structure and Naming 

Consider Fig. 1 again. The join relationships we wish to 
store are (A, a, I, α, μ), (B, b), (c, γ), (C), (β), and (λ), each 
representing a maximally extended match tuple. We intend to 
store these maximally extended match tuples in various tables 

based on the join predicates, both trivial and non-trivial ones, 
they satisfy. These tables form the Join Core. 

Example 3. (Sample Join Core). Fig. 2 shows the Join Core 
for the database in Fig. 1. The attributes of the Join Core tables, 
i.e., 1, 2, 3, 4, and 5, represent the sets of (interested) attributes 
of R1, R2, R3, R4, and R5, respectively, and are called the R1, R2, 
…, R5 components of the tables. 

 (B, b) is stored in J1,2,6 because (B, b) satisfies join 
predicate 6, and trivial predicates 1 (B ∈ R1) and 2 (b ∈ R2). 
Similarly, (c, γ) is stored in J2,4,8 and (A, a, I, α, μ) is stored in 
J1,2,3,4,5,6,7,8,9. C (∈ R1), β (∈ R4), and λ (∈ R5) satisfy only trivial 
predicates and thus are stored in J1, J4, and J5, respectively. 

Assume join predicate numbers 1, …, n are reserved for 
trivial joins between R1, …, Rn and themselves, respectively, 
and non-trivial predicates are numbered from n+1 to n+e, 
where e is the number of join edges in the join graph. 

Definition 5. (Join Core). A join Core is composed of a set 
of tables Jk, …, l, 1 ≤ k, …, l ≤ n+e, each of which stores a set of 
maximally extended match tuples that satisfy all and only the 
join predicates k, …, l. Each table Jk, …, l is called a Join Core 
table (or relation). The indices k, …l of the table Jk, …, l is 
called the name of the table for convenience. 

For simplicity, we shall call a maximally extended match 
tuple in a Join Core table a match tuple, to be differentiated 
from a tuple in a regular relation. 

B. Join Core Construction 

Now, let us discuss how to construct a Join Core for a 
database. Tuples that find no match in one join may find 
matches in another join. For example, b finds no match in R2 ⋈ 
R3, but finds a match B in R1 ⋈ R2.  Unfortunately, such join 
relationships can be lost in successive joins, for example, in (R1 

⋈ R2) ⋈ R3. 

Full outer-joins, or simply outer-joins, retain matching 
tuples as well as dangling tuples, and thus can capture all the 
join relationships. Any graph traversal method can be used 
here as long as it incurs no Cartesian products during the 
traversal. 

For illustrative purpose, we assume a breadth-first traversal 
is adopted here. Relations are numbered based on the order 
encountered in the traversal. An outer-join is performed for 
each join edge. The output of the previous outer-join is used as 
an input to the next outer-join. The result tuples are distributed 
to Join Core tables based on the join predicates, both trivial and 
non-trivial ones, they have satisfied in the traversal. 

Example 4. (Join Core Construction). Assume a breadth-
first traversal of the join graph (Fig. 1(a)) from R1 is performed.  
An outer-join is first performed between R1 and R2. It generates 
(intermediate) result tuples (A, a), (B, b), (C, -), and (-, c). The 
next outer-join with R3 generates (A, a, I), (B, b, -), (C, -, -) and 
(-, c, -).  Then, the outer-join with R4 generates (A, a, I, α), (B, 
b, -, -), (C, -, -, -), (-, c, -, γ), and (-, -, -, β). The final outer-join 
with R5 generates (A, a, I, α, µ), (B, b, -, -, -), (C, -, -, -, -), (-, c, 
-, γ, -), (-, -, -, β, -), and (-, -, -, -, λ), which are written, without 
nulls, to J1,2,3,4,5,6,7,8,9, J1,2,6, J1, J2,4,8, J4, and J5, respectively, 
based on the join predicates they satisfy. 
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C. Answering Queries using Join Core 

The name of a Join Core table specifies the join predicates 
satisfied by the match tuples stored in it. On the other hand, a 
join query specifies predicates that must be satisfied by the 
result tuples. Therefore, to answer a query is to look for Join 
Core tables whose names contain the predicates of the query. 

Consider Fig.1 and 2 and the query ⋈ሺ{R1, R2, R3, R4, R5}, 
{6, 7, 8, 9}). The components of the result tuples must satisfy 
predicates 6, 7, 8, and 9. In addition, the components 
themselves also satisfy trivial predicates 1, 2, 3, 4, 5. Thus, we 
look for Join Core tables whose names contain predicates 1, 2, 
3, 4, 5, 6, 7, 8, and 9. That is, ⋈ሺ{R1, R2, R3, R4, R5}, {6, 7, 8, 
9}) = J1,2,3,4,5,6,7,8,9. 

As for ⋈ ሺ{R1, R2}, {6}), while J1,2,6 certainly contains 
some result tuples, J1,2,3,4,5,6,7,8,9 also contains some result tuples 
because tuples in J1,2,3,4,5,6,7,8,9 also satisfy 1, 2, and 6. That is, 
⋈ሺ{R1, R2}, {6}) = π 1,2 (J1,2,6) ∪ π 1,2 (J1,2,3,4,5,6,7,8,9). Similarly, 
⋈ሺ{R2, R4}, {8}) = π 2,4 (J2,4,8) ∪ π 2,4 (J1,2,3,4,5,6,7,8,9); ⋈ሺ{R2, 
R3}, {7}) = π 2,3 (J1,2,3,4,5,6,7,8,9). 

It even holds for queries containing no non-trivial joins. For 
example, R1 = π1J1 ∪ π1 (J1,2,6) ∪ π1 (J1,2,3,4,5,6,7,8,9), R2 = π2 

(J1,2,6) ∪ π2 (J2,4,8) ∪ π2 (J1,2,3,4,5,6,7,8,9), R3 = π3 (J1,2,3,4,5,6,7,8,9), R4 = 
π4J4 ∪ π4 (J2,4,8) ∪ π4 (J1,2,3,4,5,6,7,8,9), and R5 = π5J5 ∪ π5 
(J1,2,3,4,5,6,7,8,9). It is observed that Ri can be reconstructed from 
the Join Core, which implies that a Join Core can itself be the 
database, if one wishes to not store the relations in traditional 
ways. 

Notice that when a non-trivial join predicate, such as 6, is 
satisfied by a match tuple, the associated trivial predicates on 
its operand relations, i.e., 1 and 2, are also satisfied 
automatically. Therefore, there is no need to match the trivial 
predicates of a query with the Join Core table names. That is, 
given a join query with a non-empty set of predicates {u, …, 
v}, the result tuples can be found in Join Core tables whose 
names contain u, …, v, without regard to trivial predicates. 
Trivial predicates cannot be ignored when a query contains no 
non-trivial joins, such as those described above or contains 
outer- or anti-joins, discussed later. 

 
(a) A Cyclic Join Graph       (b) A Converted Join Graph 

Fig. 3. Converting a cyclic graph. 

Duplicates need not be eliminated in individual π i, …, j(Jk, …, 

l) above; they can be eliminated all at once when match tuples 
are merged in the final union operations. To identify duplicate 
result tuples, a simple hashing scheme is sufficient. Note that 
this is the only place that requires major memory consumption 
(in building a hash table). 

The database system can begin to generate result tuples 
once the first block of a relevant Join Core table is read into 
memory, that is, instantly. The total computation time is also 
drastically reduced because there are no (or fewer) joins to 
perform. 

V. ANSWERING EQUI-JOIN QUERIES 

In this section, we formally discuss how a join query can be 
answered using the Join Core. First, we consider databases 
with acyclic join graphs, followed by databases with cyclic join 
graphs. 

A. Acyclic Join Graph 

As illustrated in the previous section, join queries with 
acyclic join graphs can be answered by simply extracting the 
requested components from Join Core tables whose names 
contain the join predicates specified in the queries. 

Readers are referred to [18] for formal proofs of all the 
theorems. 

Theorem 1. Let ⋈ ሺ{Ri, …, Rj}, {u, …, v}) be joins of the 
set of relations {Ri, …, Rj} with respect to a set of join 
predicates {u, …, v}≠ø. Let e be the number of join edges in 
the join graph, 

⋈ ({Ri, …, Rj}, {u, …, v})  = ∪{k, …, l} ⊇ {u, …, v} π i, …, j (Jk, …, l) 

where 1 ≤ i, …,  j ≤ n, 1 ≤ k, …,  l, u, …, v  ≤ n+e. 

Here, we shall call {k, …, l} ⊇ {u, …,  v} or equivalently, k 
∈{u, …,  v} ˄… ˄ l ∈{u, …,  v} shall be called (table name) 
selection criteria. 

B. Cyclic Join Graph 

Fig. 3(a) shows a cyclic join graph. When a relation is 
visited in a, for example, breadth-first traversal, its attributes 
are added to the resulting schema. In a cyclic join graph 
however, a node may be visited more than once. For example, 
R4 is visited through edge ⟨R2, R4⟩ for the first time, and then 
through ⟨R3, R4⟩ for the second time when the cycle forms. To 
differentiate matches associated with different edges, we shall 
create two copies of R4, named R4 (the original name) and R5 
(the next available relation number). Note that this is 
effectively converting a cyclic graph into an acyclic one. We 
shall call all copies of R4, i.e., R4 and R5, alias relations of R4. 
Note that a cycle-completing relation, such as R4, may replicate 
more than once if it completes more than one cycle in the 
traversal. Fig. 3(b) shows the converted graph. 

With a cyclic join graph converted into an acyclic one, a 
Join Core can be constructed in the same way as before. 
However, to determine whether an extended match tuple 
contains a cycle or not, we need to check if the alias 
components have the same value. 

Example 5. (Answering Cyclic Join Queries). Fig. 4 shows 
the join relationships and the Join Core for Fig. 3. Consider a 
cyclic join query: ⋈ ({R1, R2, R3, R4}, {6, 7, 8, 9}). To ensure 
that it is the same tuple in the cycle-completing relation that 
satisfies both predicates 8 and 9, the alias components R4 and 
R5 must be the same. That is, a selection condition, σ4=5, must 
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be imposed. Thus, ⋈({R1, R2, R3, R4}, {6, 7, 8, 9}) = π 1,2,3,4 
(σ4=5 (J1,2,3,4,5,6,7,8,9)) = {(A, a, α, I)}. On the other hand, (B, b, β, 
II, III) does not contain an answer to the query because its R4 
and R5 components (i.e., II and III) are not the same. 

 
(a) Cyclic Join Relationship 

1 2 3 4 5 
A a α I I

B b β II III

J1,2,3,4,5,6,7,8,9 
(b) Join Core Tables 

Fig. 4. Cyclic join relationship and join core. 

Consequently, cycles in a query graph can be treated like 
ordinary acyclic join predicates, with the exception that 
additional constraints on the equalities of alias components 
must be added. 

Theorem 2. Let ⋈ ({Ri, …, Rj}, {u, …, v}), 1 ≤ i, …, j ≤ n, 
be a query contains cycles. 

⋈({Ri, …, Rj}, {u, …, v}) = ∪{k, …, l} ⊇ {u, …,  v} π i, …,  j(σF 

(Jk,…,l)) 

Readers are referred to [18] for discussions on more 
complicated issues for cyclic queries. 

C. Multiple Join Edges between Relations 

It is possible that there is more than one joins edge between 
a pair of relations. This situation can be easily resolved by 
treating it as a cycle. 

Example 6. (Multiple Edges between Relations) Assume 
there are two join edges, e1 and e2, between R1 and R2. Then, 
one can pick any relation, say R2, as the cycle completing 
relation, replicate it, and call the replica R3. Finally, let e1 be 
the edge between R1 and R2, and e2 be the edge between R1 and 
R3. 

VI. QUERIES WITH OTHER JOINS 

Now, a join can be an equi-, semi-, outer- or anti-join. A 
join generates result tuples dependent upon whether the equi-
join predicate between the operand relations are satisfied (in an 
equi- or semi-join) or not satisfied (in an anti-join). A little 
deliberation reveals that match tuples that do not satisfy an 
equi-join predicate can be found in Join Core tables whose 
names do not contain that predicate, recalling that Join Core 
table names specify all and only the equi-join predicates 
satisfied. An outer-join generates a result tuple no matter 
whether the equi-join predicate is satisfied or not. 

A join query consisting of a sequence of join operators has 
a query predicate that is a logical combination of the individual 

predicates of constituent joins. We attempt to obtain query 
result tuples from Join Core tables whose names satisfy the 
query predicates. Here, we focus on how to formula the query 
predicates as (table name) selection criteria for Join Core 
tables that contain the query result tuples. For example, 
satisfying predicate p is rewritten as p ∈ {k, …, l}, where {k, 
…, l} is the set of indices of a Join Core table name. 

Afterward, specific handlings, such as removal of 
unwanted attributes, equality checking for alias components 
(for cycle-completing relations), and padding null values for 
“missing” attributes (for outer-joins), are performed. For 
simplicity, we shall only briefly describe these afterward 
handlings. 

A. Single-Join Queries 

We start by deriving the selection criteria, denoted by S, for 
queries with only one join operator. Let p be the equi-join 
predicate between Ri and Rj. Consider Ri op Rj, where op is 
either an equi-join, semi-join, outer-join, or anti-join. 

1) Equi-Join. As discussed, to compute Ri ⋈ Rj with a join 
predicate p, we look for Join Core tables Jk,…,l whose indices 
contain p, i.e., S= p ∈ {k, …, l}. As mentioned, trivial 
predicates i and j need not, but can, be included in S because 
they are satisfied automatically and must have appeared as part 
of the names of the tables satisfying p. 

2) Semi-Join. The left semi-join Ri ⋉ Rj  and right semi-
join Ri ⋊ Rj extract only the Ri and Rj components from Ri ⋈ Rj, 
respectively. Here, we shall not be concerned about the 
projection operations. Consequently, the selection criterion S 
for a semi-join is the same as that for an equi-join, that is, S = p 
∈ {k, …, l}. 

3) Outer-Join. While computing Ri ⟗ Rj during the 
construction of the Join Core, each pair of tuples satisfying 
predicate p forms an output tuple. In addition, each non-
matching tuple from either Ri (satisfying the trivial predicate i) 
or Rj (satisfying the trivial predicate j) also forms an output 
tuple. Consequently, to answer the query Ri ⟗ Rj, we look for 
Join Core tables Jk, …, l such that ሺi ∈ {k, …, l} ˄ (¬ (p ∈ {k, …, 
l}))) ˅  (j ∈ {k, …, l} ˄ (¬(p ∈ {k, …, l}))) ˅ p ∈ {k, …, l}, 
where ¬ is the logical “not” operator and ˅ is the logical “or” 
operator. Since  p ∈ {k, …, l} implies i ∈ {k, …, l} ˄  j ∈ {k, 
…, l}, the selection criteria S can be simplified to S= i ∈ {k, …, 
l} ˅  j ∈ {k, …, l}. Trivial predicates i and j cannot be omitted 
from S because no non-trivial predicates that reference i and j 
are satisfied. 

A left outer-join Ri ⟕ Rj asks for matching tuple pairs and 
non-matching tuples from Ri. Therefore, S= i ∈ {k, …, l}. 
Similarly, for a right outer-join Ri ⟖ Rj, S=j ∈ {k, …, l}. 

After identifying the Join Core tables, tuples that do not 
find a match in the other operand relation need to be padded 
with null values for those attributes of the other relation. 

Example 7. (Outer-Join). Let us consider Fig. 1 and 2. 

R1 ⟗ R2:  S= 1 ∈ {k, …, l} ˅ 2 ∈ {k, …, l}. Only J1, J1,2,6, 
J2,4,8, and J1,2,3,4,5,6,7,8,9 satisfy S. The answer is {(C, -), (B, b), (-, 
c) (A, a)}. Note that tuples in J1 and J8 need to be padded with 
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null values for the set of attributes of the other operand 
relations, while unwanted components 3, 4, and 5 need to be 
removed from J1,2,3,4,5,6,7,8,9. 

R1 ⟕ R2:  S= 1 ∈ {k, …, l}. Only J1, J1,2,6, J1,2,3,4,5,6,7,8,9 
satisfy S, and the result is {(C, -), (B, b), (A, a)}. 

R1 ⟖ R2: S= 2 ∈ {k, …, l}. Only J1,2,6, J2,4,8, J1,2,3,4,5,6,7,8,9 
satisfy S, and the result is {(B, b), (-, c) (A, a)}. 

4) Anti-Join. An anti-join Ri ⊳ Rj, defined as Ri – (Ri ⋉ Rj), 
returns tuples in Ri that do not find a match in Rj.  When the 
outer-join for the edge p was performed during the construction 
of the Join Core, such tuples (from Ri) must have found no 
match in Rj and were stored in tables whose names contain i, 
but not p. Therefore, to answer the query Ri ⊳ Rj, we look for 
Jk, …, l,  i ∈ {k, …, l}  ˄ ¬ (p ∈{k, …, l}), namely, S= i ∈ {k, …, 
l}  ˄ ¬ (p ∈{k, …, l}). Trivial predicate i cannot be omitted. 

Example 8. (Anti-Join). 

R1 ⊳ R2: S= 1 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …, l}). Only J1 
satisfies and the answer is {C}. 

R2 ⊳ R4: S= 2 ∈ {k, …, l} ˄ ¬ (8 ∈ {k, …, l}). Only J1,2,6 
satisfies and the answer is {b}. 

B. Multi-Join Queries 

A Join Core consists of regular and extended Join Core 
tables. For simplicity, we shall not mention explicitly what 
types of Join Core tables the query predicates are applied to. 
Readers are advised that if the query is of Type (i), then the 
selection criteria should be applied to both types of Join Core 
tables; otherwise, they should only be applied to regular Join 
Core tables. 

Let E = E1 op E2, where E, E1, and E2 are expressions that 
contain arbitrary legitimate sequences of equi-, semi, outer- 
and anti-join operators, and op is one of these join operators 
with a join predicate p. We assume the query graphs for E, E1, 
and E2 are all connected subgraphs of G. Let S1 and S2 be the 
selection criteria on the Join Core tables for E1 and E2, 
respectively, and S the criteria for E. We discuss how to derive 
S from S1 and S2. 

1) Equi-Join. Consider E = E1 ⋈ E2. Each tuple in E is a 
concatenation of a pair of extended matches in E1 and E2 that 
satisfy p, and such “longer” extended matches must have been 
captured by successive outer-joins (and complementary joins 
for cycle-completing relations) performed during the Join Core 
construction and stored in Join Core tables whose names 
satisfy S1 ˄ S2 ˄ p∈ {k, …, l}. On the other hand, the 
components of each tuple in such Join Core tables that satisfy 
S1 and S2 must be result tuples of E1 and E2, respectively. In 
addition, the two components satisfy the join predicate p and 
thus can generate a result tuple in E. Thus, S = S1 ˄ S2 ˄ p ∈ {k, 
…, l}. 

2) Semi-Join. E = E1 ⋉ E2 and E = E1 ⋊ E2. As explained, 
a semi-join is basically an equi-join, except that only the 
attribute values of one of the operands is retained. Thus, S = 
S1˄S2˄p∈{k,…,l}. 

3) Outer-Join.  E = E1 ⟗ E2. Tuples in E represent 
extended matches that come from non-matching tuples of E1 
and E2, and matching pairs of E1 and E2. All these extended 
match tuples in E were captured by successive outer-joins (and 
complementary joins for cycle-completing relations) performed 
during construction of the Join Core and stored in tables whose 
names satisfy (S1 ˄ (¬p∈ {k, …, l})) ˅ (S2 ˄ (¬p∈ {k, …, l})) ˅ 
(S1 ˄ S2 ˄ p∈ {k, …, l}), which can be simplified to S1 ˅ S2 
because p∈ {k, …, l} implies S1 ˄ S2.  On the other hand, each 
tuple in a Join Core table whose name satisfies S1 ˅ S2 must 
provide a result tuple to E1, E2, or E. Thus, S = S1 ˅ S2. 
Similarly, for E1 ⟕ E2, S = S1; for E1 ⟖ E2, S = S2. 

4) Anti-Join. E = E1 ⊳ E2. Tuples in E are extended 
matches in E1 that do not find matches in E2. Thus, tuples in E 
must have been captured by successive outer-joins (and 
complementary joins) performed and stored in Join Core tables 
whose names satisfy S1 but not (S2 ˄ p∈ {k, …, l}). One the 
other hand, Join Core tables whose names satisfy S1 but not (S2 
˄ p∈ {k, …, l}) contain tuples of E1 that do not join with tuples 
in E2, which are exactly the result tuples of E. That is, S = S1 ˄ 
¬(S2 ˄ p ∈ {k, …, l}). 

Example 9. (Multi-Anti-Join Queries). 

(R1 ⋈ R2) ⊳ R3: S= 6 ∈ {k, …, l} ˄ ¬ (7 ∈ {k, …, l}). Only 
J1,2,6 satisfies S and the answer is {(B, b)}. 

(R2 ⊳ R1) ⊳ (R4 ⋈ R5): S=(2 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …, 
l})) ˄ ¬ (9 ∈ {k, …, l} ˄ 8∈ {k, …, l}). Only J2,4,8 satisfies S, 
and the answer is {(c)}. 

Theorem 3. Let E = E1 op E2, where E, E1, and E2 are 
arbitrary legitimate expressions that contain equi-, semi-, outer- 
and anti-joins, and op is one of these join operations with a join 
predicate p. Let S1 and S2 be the selection criteria for 
identifying Join Core tables from which the resulting tuples of 
E1 and E2 can be derived, respectively. Then, the selection 
criteria S for E is (i) if op = ⋈, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (ii) if 
op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if op = ⟗, S = S1 
˅ S2; if op = ⟕; S = S1; if op = ⟖, S = S2; (iv) if op = ⊳, S = S1 
˄ ¬(S2 ˄ p∈ {k, …, l}). 

C. Join Queries with Intersections, Unions, and Differences 

Here, we consider join queries with commonly encountered 
set operators, intersections, unions, and differences. Note that 
an intersection can be treated as an equi-join in which the join 
attribute is the primary key. Here, we assume that the join 
graph includes edges specifying the equalities of primary keys 
between two schema compatible relations. 

Let p be a join predicate specifying the equality of primary 
key attributes of two schema compatible relations. The 
intersection operation requires matches in the key values. 
Consequently, the resulting tuples of Ri ∩ Rj can only be found 
in Join Core tables Jk, …, l whose names contain predicate p 
i.e., S = p ∈ {k, …, l}.  This is exactly the same selection 
criterion as that for an equi-join or a (left or right) semi-join. 
As for the union operation, the resulting tuples of Ri U Rj  can 
be found in Join Core tables  whose names contain trivial 
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predicate i or j, i.e., S = i ∈ {k, …, l} ˅ j ∈{k, …, l}, the same 
selection criteria as for a full outer-join. Similarly, for the 
difference operation, the resulting tuples of Ri – Rj can be 
found in Join Core tables whose indices contain the trivial 
predicate i, but not j, i.e., S = i ∈ {k, …, l} ˄ ¬ (j ∈ {k, …, l}), 
the same selection criteria as for an anti-join. 

By the same reasoning as presented in the previous section 
(B) and Theorem 3, we can extend the usage of Join Core 
tables to queries with arbitrary legitimate sequences of unions, 
differences, and intersections, in addition to equi-, semi-, outer- 
and anti-joins. The theorem follows. 

Theorem 4. Let E = E1 op E2, where E, E1, and E2 are 
arbitrary legitimate expressions that contain equi-joins, semi-
joins, outer-joins, anti-joins, unions, differences, and 
intersections, and op is one of these operations with a join 
predicate p. Let S1 and S2 be the selection criteria for 
identifying Join Core tables from which the result tuples of E1 
and E2 can be derived, respectively. Then, the selection criteria 
S for E is (i) if op = ⋈ or ∩, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (ii) if 
op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if op = ⟗ or U, S 
= S1 ˅ S2; if op = ⟕, S = S1; if op = ⟖, S = S2; (iv) if op = ⊳ or 
–, S = S1 ˄ ¬(S2 ˄ p ∈ {k, …, l}). 

VII. COST ANALYSIS 

In this section, we analyze the time and space consumption 
of using Join Core. In addition, we also discuss measures to 
reduce the size of Join Core. 

A. Time Consumptions 

1) Disk Accesses Time 
To answer a query, Join Core tables containing the result 

tuples are read into memory. Thus, the total number of disk 
accesses is dependent upon the size of the query result, not the 
complexity of the query. 

2) CPU Time 
Once desired Join Core tables are read into memory, all that 

is remaining is to perform equality checking between alias 
components (of cycle-completing relations), pad “missing” 
attributes with null values (for outer-join operations), and 
eliminate unwanted attributes and duplicates. All these tasks 
should take only a very small amount of CPU time. 

B. Space Consumptions 

To simplify discussions, we assume no dangling tuple 
exists in any of the equi-joins in the graph, which represents a 
worst case space consumption scenario since dangling tuples 
can shorten the matches. We further assume that in each join, 
all tuples of a relation find exactly the same number of matches 
in the other relation, namely a uniformity assumption on the 
matching of a join. 

Consider a join between Ri (with Ti tuples), and Rj (with Tj 
tuples). We shall call Tj/Ti, denoted as rij, the join ratio of Ti 
with respect to Tj, that is, the average number of matches found 
in Rj for each tuple in Ri. In a one-many relationship from Ri to 
Rj, rij ≥1. On the other hand, in a many-one relationship from Ri 
to Rj, Tj/Ti ≤ 1. Since each tuple in Ri still can find one match in 
Rj, as we have assumed no dangling tuples exist in the joins, rij 
is set to 1 (i.e., rij=1) when Tj/Ti ≤ 1. 

To estimate the size of a Join Core, we first estimate the 
total number of match tuples, denoted by M, in the Join Core, 
and multiply it by the length of each match tuple. 

To estimate the number of different matches, we can start 
from any relation, say Ri, by setting M = Ti, and then marking 
Ri as visited. For each edge ⟨Ri, Rj⟩, where Ri is a visited node 
while Rj is not, M=M ×rij. Once all relations are visited, the 
final M is the estimate. 

Now, let us compute the length of each match tuple. Let e 
be the number of join edges and n the number of relations in 
the join graph. Each outer-join adds the set of attributes of one 
relation to the schema of the output, recalling the construction 
of a Join Core. Therefore, the final output of the outer-joins 
consists of the values of the attributes of e+1 relations, e+1 ≥ 
n. For simplicity of analysis, we assume tuples in all relations 
have the same or a similar length L. Therefore, the size the Join 
Core is 

                                      M×(e+1)×L                            (1) 

As compared to the database size Tavg×n×L, where 
Tavg=Avg{T1, …, Tn} is the average number of tuples in a 
relation. 

Note that when all relations are of similar sizes, i.e., Tavg≈T1 
≈…≈ Tn, all rij’s ≈1 and M≈Tavg. In addition, if the graph has no 
(or few) cycles, i.e., e+1=(≈) n,  the Join Core size would be 
close to the database size, that is, M× (e+1)× L≈ Tavg×n× L, 
which is the best case scenario. 

C. Join Core Size Estimation by Example 

In the following, we shall use the TPC-H benchmark 
dataset to illustrate the use of the estimation formula (1) and 
check its accuracy. Although each database has its unique 
features, the TPC-H dataset may give us a general idea how 
large the Join Core can be because “the data populating the 
database in TPC-H have been chosen to have broad industry-
wide relevance” [19]. 

Fig. 5 shows the join graph of the TPC-H dataset, which 
will also be used in our experimental section. For simplicity, 
relations are numbered from 1 to 8. The arrows indicate many-
one relationships. In the 1GB dataset, the largest relation 
“lineitem” (i.e., R3) has 6,000,000 tuples, while the smallest 
one “region” (R8) has only 5 tuples. The average length of a 
tuple is 128 bytes. 

 
Fig. 5. TPC-H join graph. 

3-lineitem  5-partsupp 

6-supplier 4-part 2-orders 

1-customer  7-nation  8-region 
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Example 10. (Estimating the Join Core Size).  We start 
from the largest relation “lineitem”, following the arrows to 
visit smaller relations, until all edges are traversed. Note that 
all join ratios are 1 along the way as we always visit smaller 
relations. Thus, the total number of match tuples in the Join 
Core is 6,000,000 (=M). There are 11 edges and the average 
length of tuple is 128. So, the Join Core size is estimated, 
following (1), as 6,000,000×12×128=  9.1GB. As shown later 
in the experimental section, the actual Join Core is 4GB. The 
overestimation is due to there being many dangling tuples in 
the joins, shortening the length of match tuples. 

In general, the Join Core could be several time larger than 
the database. However, as the disk space is becoming cheaper 
and cheaper, the space requirements should not be a big issue. 

D. Space Reduction Methods 

Many data compression techniques [3], [4], [11] can be 
used to compress the Join Core. Here, we shall only discuss 
methods that are specifically related to the reduction of the Join 
Core structure. 

Storing all join relationships of a complex graph can 
consume large amounts of space. Here, we discuss heuristics 
that can significantly reduce the space consumption of the Join 
Cores, however, at the price of incurring additional join 
operations. Further research is still needed to analyze the cost 
and benefits of these heuristics. 

(H1). Store only useful relations, relationships, and 
attribute values. Statistics and knowledge on the usages of 
relations, relationships, and attributes may be available or can 
be collected to assist in making such decisions. 

(H2). Remove smaller relations from a join graph. Smaller 
relations, in terms of the numbers of tuples in the relations, 
need replicate their tuples more times to generate M match 
tuples, which will make updates (on smaller relations) more 
expensive. In addition, if a removed relation is referenced in a 
join query, then a join operation must be performed. Removing 
smaller relations incurs less penalty because joins with smaller 
relations are faster to perform. Moreover, smaller relations 
have better chances of fitting in memory to make the joins 
faster. 

(H3). Remove cycle-completing relations. Removal of a 
cycle-completing relation from a graph implies removal of all 
its aliases too, which can significantly reduce the storage 
consumption. Since any graph traversal method can be used in 
construction a Join Core, one is given the opportunity to select 
“good” relations to be cycle-completing relations. Here, we 
recommend relations that are small (following H2) and, if 
possible, complete multiple cycles. 

1) Constructing Join Core with Space Constraint 
Without detailed cost-benefit measures, here is a simple 

way to construct a Join Core that satisfies a given space limit. 
First, one can, following (H1), remove unwanted relations, 
relationships, and attributes if a priori knowledge or statistics 
are available. If the Join Core is still too large, one can consider 
removing a smallest relation, following (H2), or a cycle-
completing relation, following (H3), until the desirable size is 
met. 

VIII. EXPERIMENTAL RESULTS 

We have implemented the proposed methodology and 
performed experiments to compare its time and space 
consumptions with a MySQL database system. Many factors, 
such as the number of CPUs, disks (and types of disks, 
magnetic or SSD), etc., can affect the performance of query 
processing. In this preliminary study, we will use only the 
simplest set up to see how the proposed method alone can 
improve query processing, leaving other performance 
improving factors to future work. All experiments are 
performed on a laptop computer with a 1.60 GHz CPU, 8GB 
RAM, and a 1 TB hard drive. 

A. Datasets 

We generate 1, 4, and 10GB TPC-H datasets for 
experiments. Fig. 5 shows the join graph of the TPC-H datasets 
with arrows indicating many-one relationships. The datasets 
are stored as relations in a MySQL database and as Join Core 
tables in the proposed method, which is implemented in the 
Java programing language. 

TABLE I. SPACE CONSUMPTIONS 

Join Core Size 
Datasets 

1GB 4GB 10GB 
Full 4 GB 13.8 GB 39.7 GB 

Reduced 1 2.3 GB 7.1 GB 20.1 GB 

Reduced 2 1.7 GB 5.4 GB 15.8 GB 

B. Space Consumptions 

As shown in Table 1, the full Join Core sizes, without 
applying any space reduction methods [18], are 4, 13.8, and 
39.7GB for the 1, 4, and 10GB TPC-H datasets, respectively. 
“Reduced 1” is obtained by removing the smallest relations 
Region, Nation, and Supplier, which have 5, 25, and 10,000 
tuples from the graph, respectively. “Reduced 2”, is obtained 
by further removing the Customer relation from “Reduced 1”. 

While removing relations can certainly reduce the space 
consumption, joins would have to be performed when removed 
relations are referenced in the queries. Fortunately, removed 
relations are generally small and joins with them are relatively 
quick. 

1) Query Processing Time 
We measure the response and elapsed time of the test 

queries that come with the TPC-H datasets. While keeping 
(most of) the selections and projections, we remove any “group 
by”, “order by”, “limit”, aggregate functions, etc., from the 
queries so that we can focus mainly on the join query 
processing. We add “distinct” to the queries as we have 
implicitly assumed the set semantics in the paper. 

Join Core tables are read from disks into memory for 
processing, and the result tuples are written back to the disks. 
Response time measures the time up until the first result tuple 
is written to the disk, while elapsed time measures the time 
from beginning to end, after writing all result tuples to the 
disks. 
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TABLE II. TIME CONSUMPTIONS 

Query 
Join Core MySQL 

Result Tuples 
Response 1/4/10GB Elapsed 1/4/10GB Response 1/4/10GB Elapsed 1/4/10GB 

12: ⋈ {R2, R3} 

0.008  5.456    360    367   38,928 

0.008 22.409    701    725 155,585 

0.008 56.023 2,084 2,107 388,058 

14: ⋈ {R3, R4} 

0.008   0.502    411    411    1,717 

0.008   1.865 1,307 1,310    6,718 

0.008   3.865 2,014 2,018  16,943 

19: ⋈ {R3, R4} 

0.007   0.012    516    516       200 

0.007   0.041  1,485 1,485       864 

0.007   0.103 2,386 2,387     2,096 

4: ⋈ {R2, R3} 

0.009   0.397    284    285    3,040 

0.009   1.518    656    660  11,889 

0.009   3.625  1,963 1,969   29,447 

16: ⋈ {R4, R5} 

0.008   0.812      79      81     3,795 

0.008   3.005    300    306   15,208 

0.008   9.686    856     867   38,195 

3: ⋈ {R1, R2, R3} 

0.008   1.579      6,782  6,785  11,620 

0.008      8.016 - -  45,395 

0.008    17.455 - - 114,003 

18: ⋈ {R1, R2, R3} 

0.007   0.010        61       61           6 

0.007   0.012        91       91          11 

0.007   0.013      291     291          22 

10: ⋈ {R1, R2, R3, R7} 

0.009   1.706   5,060  5,063     3,773 

0.009   5.667   7,562  7,573   14,800 

0.009    14.560 - -   36,975 

2: ⋈ {R4, R5, R6, R7, R8} 

0.010   1.890       322      325     3,162 

0.010   7.005       838      845   12,723 

0.010 18.609    2,112    2,131   31,871 

5: ⋈ {R1, R2, R3, R6, R7, R8} 

0.010   1.760 - -   15,196 

0.010   6.809 - -   60,798 

0.010  16.355 - - 152,102 

Table 2 shows the query processing time with a full-sized 
Join Core. In the first column, the ID of the TPC-H query is 
shown first, followed by the relations involved in the join 
operations. For simplicity, relations are referenced by the 
numbers assigned to them in Fig. 5. For each query, we 
measured the time spent on all three datasets. Queries were 
aborted if they took more than 4 hours (= 14,400 sec), as 
indicated by –‘s in the table. 

With Join Core, all queries saw their first responses 
instantly. As explained, all it takes is the retrieval of a block of 
a relevant Join Core table into memory and simple 
manipulations before output it after simple manipulations. On 
the other hand, MySQL took minutes to hours to output its first 
result tuples. 

As explained, the result size, not the complexity, of the 
query determines the query processing time because the join 
result is  readily  available in the  Join Core.  Queries 12 and 18 
best illustrate this characteristic. Query 12 has only one join 

but generates large numbers of result tuples. On the other hand, 
Query 18 has two joins, including the join of Query 12, but 
generates much smaller numbers of result tuples. Therefore, it 
took much longer to process Query 12 than Query 18. As 
shown in Table 2, it took 5.456, 22.409, and 56.023 seconds to 
process Query 12 for 1, 4, and 10GB datasets, respectively, but 
it took only 0.010, 0.012, and 0.013 seconds, respectively, to 
process Query 18. Note that all these times were mainly spent 
on the disk accesses, namely, reading Join Cores and writing 
the result tuples. Since there were no joins to perform in the 
proposed method, many queries completed instantly too. On 
the other hand, many queries took hours to complete on 
MySQL. 

The response time remained similar for all cases. The 
elapsed time was, however, longer for larger datasets than for 
smaller datasets because the former generated larger Join Cores 
and larger join results, which required more time to read and 
write. 
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Join Core is used to answer queries with anti-joins and 
outer-joins. Table 3 shows the processing time. The response 
and elapsed times of Query 22 are less than 10 millisecond for 
both 1, 4, and 10GB datasets while the same query consumes 
more time to be processed with MySQL. As shown in Table 3, 

Query 13 saw its first responses instantly and took 4.5, 18.4, 
and 40.0 to be completed for 1, 4, and 10GB datasets, 
respectively. On the other hand, the response and elapsed times 
were longer on MySQL for the same query. 

TABLE III. TIME CONSUMPTIONS FOR QUERIES WITH ANTI-JOINS AND OUTER-JOINS 

Query 
Join Core MySQL 

Result Tuples 
Response 1/4/10GB Elapsed 1/4/10GB Response 1/4/10GB Elapsed 1/4/10GB 

22: ⊳ {R1, R2} 

0.007 0.009 7.8 8 3 

0.007 0.009 32.9 33 6 

0.007 0.009 122.4 123 9 

13: ⟕ {R1, R2} 

0.008  4.5    360    367 15504 

0.008 18.4    701    725 71013 

0.008 40.0 2,084 2,107 155018 

 

Another advantage of the proposed methodology is that it 
does not consume much memory. All it needs is to build a hash 
table for the final duplicate elimination. 

We believe the instant responses, fast query processing, and 
small memory consumption of the Join Core are well worth its 
required additional storage space. 

IX. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented an innovative way to 
process queries without having to perform expensive joins and 
set operations. We proposed to store the equi-join relationships 
in the form of maximally extended match tuples to facilitate 
query processing. We have designed an innovative way to 
group the join relationships into tables, called the Join Core, so 
that queries can be answered quickly, if not instantly, by 
merely merging subsets of these tables. The Join Core is 
applicable to queries involving arbitrary sequences of equi-
joins, semi-joins, outer-joins, anti-joins, unions, differences, 
and intersections. Preliminary experimental results have 
confirmed that with Join Core, join queries can be responded to 
instantly and the total elapsed time can also be dramatically 
reduced. We will discuss concurrency control in the face of 
updates, and perform extensive experiments in different 
environments in the future. 
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