
Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

483 | P a g e

An Efficient Data Structure for Fast Join Query
Processing

Mohammed Hamdi
Department of Computer Science

Southern Illinois University
Carbondale, IL, USA

mhamdi@siu.edu

Sarah Alswedani
Department of Computer Science

Southern Illinois University
Carbondale, IL, USA
sarah.swy@siu.edu

Feng Yu
Department of Computer Science and Information Systems

Youngstown State University
Youngstown, OH, USA

fyu@ysu.edu

Wen-Chi Hou
Department of Computer Science

Southern Illinois University
Carbondale, IL, USA

hou@cs.siu.edu

Abstract—In this research, we propose to store equi-join
relationships of tuples on inexpensive and space abundant
devices, such as disks, to facilitate query processing. The equi-
join relationships are captured, grouped, and stored as various
tables on disks, which are collectively called the Join Core.
Queries involving arbitrary legitimate sequences of equi-joins,
semi-joins, outer-joins, anti-joins, unions, differences, and
intersections can all be answered quickly by merely merging
these tables without having to perform joins. The Join Core can
also be updated dynamically. Preliminary experimental results
showed that all test queries began to generate results instantly,
and many completed instantly too. The proposed methodology
can be very useful for queries with complex joins of large
relations as there are fewer or even no relations or intermediate
results needed to be retrieved, generated.

Keywords—Query processing; join queries; equi-join; semi-
join; outer-join; anti-join; set operations

I. INTRODUCTION

As hardware technologies advance, the price of disks drops
significantly while the capacity increases drastically. Database
researchers now have the luxury of exploring innovative ways
to utilize these cheap and abundant spaces to improve query
processing.

In relational databases, data are spread among relations.
The equi-join operation, which includes the natural join, is the
most commonly used operator to combine data spread across
relations. Other join operators, such as semi-joins, outer-joins,
and anti-joins, are also very useful. Unfortunately, these join
operations are generally expensive to execute. Complex
queries involving multiple joins of large relations can easily
take minutes or even hours to compute. Consequently, much
effort in the past few decades has been devoted to developing
efficient join algorithms [10], [5], [9]. Even today, improving
join operations remains a focus of database research [16], [2].

In this research, we propose to pre-store the equi-join

relationships of tuples to facilitate query processing. We have
designed a simple method to capture the equi-join relationships
in the form of maximally extended match tuples. A simple and
novel naming technique has been designed to group and store
the equi-join relationships in tables on disks, which are
collectively called the Join Core.

Join Core is an efficient data structure from which not only
the results of all possible equi-joins can be obtained, but also
the results of all legitimate combinations of equi-joins, outer-
joins, anti-joins, unions, differences, and intersections can be
derived. Without having to perform joins, memory
consumptions are dramatically reduced. In addition, Join Core
can be updated dynamically in the face of updates.

In this research, we also discuss heuristics that can
effectively cut down the sizes of Join Cores. We believe the
benefits of Join Core, namely instant responses, fast query
processing, and small memory consumptions, are well worth
the additional storage space incurred.

The rest of the paper is organized as follows. Section II
surveys work in materialized views and join indices and
Section III introduces the terminology. Section IV shows a
sample Join Core and how it can be used to answer equi-join
queries. Section V lays down the theoretical foundation for
answering equi-join queries using the Join Core. Section VI
extends the framework to queries with other types of joins and
set operations. Section VII analyzes the time and space
consumptions of the Join Core, and discusses measures to
reduce the space consumption. Section VIII reports
experimental results. Finally, conclusions are presented in
Section IX.

Due to space limitation, readers are referred to [18] for an
extended version of the paper that includes detailed discussions
on dynamic maintenance of the Join Core, proofs of theorems,
applications to bag semantics, literature survey, and
experimental results.

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

484 | P a g e

II. LITERATURE SURVEY

In the literature, materialized views are, to a certain extent,
related to our work as both attempt to use precomputed data to
facilitate query processing.

Materialized views generally focus on SPJ (Select-Project-
Join) queries and, perhaps, with final grouping and aggregate
functions. The select and project operations in the views
confine and complicate the uses of the views. As a result, much
research has focused on how to select the most beneficial
views to materialize [15], [13], [6], [8] and how to choose an
appropriate set of materialized views to answer a query [7], [1],
[14].

Materialized views materialize selected query results while
Join Core materializes selected equi-join relationships.
Therefore, materialized views may benefit queries that are
relevant to the selected queries, while Join Core can benefit
queries that are related to the selected equi-join relationships,
which include queries with arbitrary sequences of equi-, semi-,
outer-, anti-joins and set operators.

A join index [12], [17] for a join stores the (equi-)join
result in a concise manner as pairs of identifiers of tuples that
would match in the join operation. It has been shown that joins
can be performed more efficiently with join indices than the
traditional join algorithms. However, it still requires at least
one scan of the operand relations, writes and reads of
temporary files (as large as the source relations), and
generating intermediate result relations (for queries with more
than one join). One the other hand, with Join Core, join results
are readily available without accessing any source or
intermediate relation. Very little memory and computations are
required. In addition, join indices are not useful to other join
operators, such as outer-joins and anti-joins.

III. TERMINOLOGY

In this paper, we assume all the data model and queries are
based on the set semantics. Readers are referred to an extended
version of the paper [16] for discussions on the bag semantics.
The equi-join operator is the most commonly used operator to
combine data spread across relations. Other useful joins, such
as the semi-join, outer-join, and anti-join, are all related to the
equi-join. Therefore, we shall first lay down the theoretical
foundation of Join Core based on the equi-join, and then extend
the framework to other joins in Section 6. Hereafter, we shall
use, for simplicity, a join for an equi-join, unless otherwise
stated.

A join graph is commonly used to describe the equi-join
relationships between pairs of relations. These relationships are
generally defined before the database has been created.
Certainly, one can also include other frequently referenced ad-
hoc equi-join relationships in the graph.

For simplicity, we assume there is at most one equi-join
relationship between each pair of relations. This assumption is
relaxed in [18].

Definition 1. (Join Graph of a Database). Let D be a
database with n relations R1, R2, …, Rn, and G (V, E) be the
join graph of D, where V is a set of nodes that represents the set

of relations in D, i.e., V = {R1, R2, R3, ..., Rn}, and E = {⟨Ri, Rj⟩ |
Ri, Rj ∈ V, i ≠ j)}, is a set of edges, in which each represents an
equi-join relationship that has been defined between Ri and Rj, i
≠ j.

If the join graph is not connected, one can consider each
connected component separately. Therefore, we shall assume
all join graphs are connected.

Each join comes with a predicate, omitted in the graph,
specifying the requirements that a result tuple of the join must
satisfy, e.g., R1.attr1=R2.attr2. For simplicity, we shall use a
join, a join edge, and a join predicate interchangeably. We also
assume all relations and join edges are numbered.

Example 1. (Join Graph). Fig. 1(a) shows the join graph of
a database with five relations R1, R2, R3, R4, and R5, connected
by join edges, numbered from 6 to 9.

To round out the theoretical framework, we shall introduce
a concept, called the trivial (equi-)join. Each tuple in a relation
Ri can be considered as a result tuple of a trivial join between
Ri and itself with a join predicate Ri.key = Ri.key, where key is
the (set of) key attribute(s) of Ri. Trivial join predicates are not
shown explicitly in the join graphs. All join edges in Fig. 1(a),
such as 6, 7, 8, and 9, are non-trivial or regular joins.

(a) A Join Graph

(b) Matching of Join Attribute Values

Fig. 1. A join graph and matching tuples.

We have reserved predicate number i, 1≤ i ≤5, for trivial
join predicate i, which is automatically satisfied by every tuple
in relation Ri. The concept of trivial join predicates will be
useful later when we discuss a query that contains outer-joins,
anti-joins, or no joins. Hereafter, all joins and join predicates
refer to non-trivial ones, unless otherwise stated.

To conserve space, a database and its join graph refer to
only the parts of the database and join graphs that are of our
interest and for which we intend to build Join Cores. We will
discuss other space conservation measures in Section VII.

Definition 2. (Join Queries). Let ⋈({Ri, …, Rj}, E’) be a
join query, representing joins of the set of relations {Ri, …, Rj}

R1

R4

7

6

8
9

R5

R3

R2

9

7

8

6

R1 R2

R5 R4

R3

I

C
B
A

c
b
a

γ
β
α

λ

μ

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

485 | P a g e

⊆ V, 1 ≤ i, …, j ≤ n, with respect to the set of join predicates E’
⊆ E among them.

1 4 5 1 2 2 4

C β λ B b c γ

J1 J4 J5 J1,2,6 J2,4,8

1 2 3 4 5

A a I α μ

J1,2,3,4,5,6,7,8,9

Fig. 2. Join core.

Definition 3. (Join Graph of a Join Query). The join graph
of a join query ⋈({Ri, …, Rj}, E’), denoted by G’(V’, E’), is a
connected subgraph of G (V, E), where V’ = {Ri, …, Rj} ⊆ V,
and E’ ⊆ E is the set of join predicates specified in the query.

The join graph of a join query is also called a query graph.
We shall exclude queries that must execute Cartesian products
or θ-joins, where θ ≠ “=”, from discussion as Join Core cannot
facilitate executions of such operators.

Example 2. (Matching of Join Attribute Values). Fig. 1(b)
shows the matching of join attribute values between tuples.
Tuples are represented by their IDs in the figure. That is, R1 has
3 tuples, A, B, C, i.e., R1 = {A, B, C}. R2 = {a, b, c}, R3 = {I}, R4
= {α, β, γ}, R5 = {μ, λ}.

The edges between tuples represent matches of join
attribute values. For example, tuples A and B of R1 match
tuples a and b of R2, respectively. Tuple a has two other
matches, I of R3 and α of R4. c of R2 matches γ of R4, and α
matches μ of R5.

Definition 4. ((Maximally) Extended Match Tuple). Given
a database D = {R1, …, Rn} and its join graph G, an extended
match tuple (tk, …, tl), where 1≤ k, ..., l ≤ n, tk ∈ Rk, …, tl ∈ Rl,
and Rk, …,Rl are all distinct relations, represents a set of tuples
{tk, …, tl} that generates a result tuple in {tk} ⋈ …⋈ {tl}. A
maximally extended match tuple (tk, …, tl), is an extended
match tuple if no tuple tm in Rm (∉ {Rk, …, Rl}) matches any of
the tuples tk, …, tl in join attribute values.

It can be observed that in Fig. 1(b), (A, a, I, α, μ) is a
maximally extended match tuple. The same can be said of (B,
b) because the match cannot be extended by any tuple in
relations other than R1 and R2. Similarly, (c, γ), as well as (C),
(β), and (λ), is also a maximally extended match tuple.

IV. JOIN CORE STRUCTURE AND CONSTRUCTION

In this section, we show an example of a Join Core and
explain how it is structured and used to answer equ-join
queries.

A. Join Core Structure and Naming

Consider Fig. 1 again. The join relationships we wish to
store are (A, a, I, α, μ), (B, b), (c, γ), (C), (β), and (λ), each
representing a maximally extended match tuple. We intend to
store these maximally extended match tuples in various tables

based on the join predicates, both trivial and non-trivial ones,
they satisfy. These tables form the Join Core.

Example 3. (Sample Join Core). Fig. 2 shows the Join Core
for the database in Fig. 1. The attributes of the Join Core tables,
i.e., 1, 2, 3, 4, and 5, represent the sets of (interested) attributes
of R1, R2, R3, R4, and R5, respectively, and are called the R1, R2,
…, R5 components of the tables.

 (B, b) is stored in J1,2,6 because (B, b) satisfies join
predicate 6, and trivial predicates 1 (B ∈ R1) and 2 (b ∈ R2).
Similarly, (c, γ) is stored in J2,4,8 and (A, a, I, α, μ) is stored in
J1,2,3,4,5,6,7,8,9. C (∈ R1), β (∈ R4), and λ (∈ R5) satisfy only trivial
predicates and thus are stored in J1, J4, and J5, respectively.

Assume join predicate numbers 1, …, n are reserved for
trivial joins between R1, …, Rn and themselves, respectively,
and non-trivial predicates are numbered from n+1 to n+e,
where e is the number of join edges in the join graph.

Definition 5. (Join Core). A join Core is composed of a set
of tables Jk, …, l, 1 ≤ k, …, l ≤ n+e, each of which stores a set of
maximally extended match tuples that satisfy all and only the
join predicates k, …, l. Each table Jk, …, l is called a Join Core
table (or relation). The indices k, …l of the table Jk, …, l is
called the name of the table for convenience.

For simplicity, we shall call a maximally extended match
tuple in a Join Core table a match tuple, to be differentiated
from a tuple in a regular relation.

B. Join Core Construction

Now, let us discuss how to construct a Join Core for a
database. Tuples that find no match in one join may find
matches in another join. For example, b finds no match in R2 ⋈
R3, but finds a match B in R1 ⋈ R2. Unfortunately, such join
relationships can be lost in successive joins, for example, in (R1

⋈ R2) ⋈ R3.

Full outer-joins, or simply outer-joins, retain matching
tuples as well as dangling tuples, and thus can capture all the
join relationships. Any graph traversal method can be used
here as long as it incurs no Cartesian products during the
traversal.

For illustrative purpose, we assume a breadth-first traversal
is adopted here. Relations are numbered based on the order
encountered in the traversal. An outer-join is performed for
each join edge. The output of the previous outer-join is used as
an input to the next outer-join. The result tuples are distributed
to Join Core tables based on the join predicates, both trivial and
non-trivial ones, they have satisfied in the traversal.

Example 4. (Join Core Construction). Assume a breadth-
first traversal of the join graph (Fig. 1(a)) from R1 is performed.
An outer-join is first performed between R1 and R2. It generates
(intermediate) result tuples (A, a), (B, b), (C, -), and (-, c). The
next outer-join with R3 generates (A, a, I), (B, b, -), (C, -, -) and
(-, c, -). Then, the outer-join with R4 generates (A, a, I, α), (B,
b, -, -), (C, -, -, -), (-, c, -, γ), and (-, -, -, β). The final outer-join
with R5 generates (A, a, I, α, µ), (B, b, -, -, -), (C, -, -, -, -), (-, c,
-, γ, -), (-, -, -, β, -), and (-, -, -, -, λ), which are written, without
nulls, to J1,2,3,4,5,6,7,8,9, J1,2,6, J1, J2,4,8, J4, and J5, respectively,
based on the join predicates they satisfy.

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

486 | P a g e

C. Answering Queries using Join Core

The name of a Join Core table specifies the join predicates
satisfied by the match tuples stored in it. On the other hand, a
join query specifies predicates that must be satisfied by the
result tuples. Therefore, to answer a query is to look for Join
Core tables whose names contain the predicates of the query.

Consider Fig.1 and 2 and the query ⋈ሺ{R1, R2, R3, R4, R5},
{6, 7, 8, 9}). The components of the result tuples must satisfy
predicates 6, 7, 8, and 9. In addition, the components
themselves also satisfy trivial predicates 1, 2, 3, 4, 5. Thus, we
look for Join Core tables whose names contain predicates 1, 2,
3, 4, 5, 6, 7, 8, and 9. That is, ⋈ሺ{R1, R2, R3, R4, R5}, {6, 7, 8,
9}) = J1,2,3,4,5,6,7,8,9.

As for ⋈ ሺ{R1, R2}, {6}), while J1,2,6 certainly contains
some result tuples, J1,2,3,4,5,6,7,8,9 also contains some result tuples
because tuples in J1,2,3,4,5,6,7,8,9 also satisfy 1, 2, and 6. That is,
⋈ሺ{R1, R2}, {6}) = π 1,2 (J1,2,6) ∪ π 1,2 (J1,2,3,4,5,6,7,8,9). Similarly,
⋈ሺ{R2, R4}, {8}) = π 2,4 (J2,4,8) ∪ π 2,4 (J1,2,3,4,5,6,7,8,9); ⋈ሺ{R2,
R3}, {7}) = π 2,3 (J1,2,3,4,5,6,7,8,9).

It even holds for queries containing no non-trivial joins. For
example, R1 = π1J1 ∪ π1 (J1,2,6) ∪ π1 (J1,2,3,4,5,6,7,8,9), R2 = π2

(J1,2,6) ∪ π2 (J2,4,8) ∪ π2 (J1,2,3,4,5,6,7,8,9), R3 = π3 (J1,2,3,4,5,6,7,8,9), R4 =
π4J4 ∪ π4 (J2,4,8) ∪ π4 (J1,2,3,4,5,6,7,8,9), and R5 = π5J5 ∪ π5
(J1,2,3,4,5,6,7,8,9). It is observed that Ri can be reconstructed from
the Join Core, which implies that a Join Core can itself be the
database, if one wishes to not store the relations in traditional
ways.

Notice that when a non-trivial join predicate, such as 6, is
satisfied by a match tuple, the associated trivial predicates on
its operand relations, i.e., 1 and 2, are also satisfied
automatically. Therefore, there is no need to match the trivial
predicates of a query with the Join Core table names. That is,
given a join query with a non-empty set of predicates {u, …,
v}, the result tuples can be found in Join Core tables whose
names contain u, …, v, without regard to trivial predicates.
Trivial predicates cannot be ignored when a query contains no
non-trivial joins, such as those described above or contains
outer- or anti-joins, discussed later.

(a) A Cyclic Join Graph (b) A Converted Join Graph

Fig. 3. Converting a cyclic graph.

Duplicates need not be eliminated in individual π i, …, j(Jk, …,

l) above; they can be eliminated all at once when match tuples
are merged in the final union operations. To identify duplicate
result tuples, a simple hashing scheme is sufficient. Note that
this is the only place that requires major memory consumption
(in building a hash table).

The database system can begin to generate result tuples
once the first block of a relevant Join Core table is read into
memory, that is, instantly. The total computation time is also
drastically reduced because there are no (or fewer) joins to
perform.

V. ANSWERING EQUI-JOIN QUERIES

In this section, we formally discuss how a join query can be
answered using the Join Core. First, we consider databases
with acyclic join graphs, followed by databases with cyclic join
graphs.

A. Acyclic Join Graph

As illustrated in the previous section, join queries with
acyclic join graphs can be answered by simply extracting the
requested components from Join Core tables whose names
contain the join predicates specified in the queries.

Readers are referred to [18] for formal proofs of all the
theorems.

Theorem 1. Let ⋈ ሺ{Ri, …, Rj}, {u, …, v}) be joins of the
set of relations {Ri, …, Rj} with respect to a set of join
predicates {u, …, v}≠ø. Let e be the number of join edges in
the join graph,

⋈ ({Ri, …, Rj}, {u, …, v}) = ∪{k, …, l} ⊇ {u, …, v} π i, …, j (Jk, …, l)

where 1 ≤ i, …, j ≤ n, 1 ≤ k, …, l, u, …, v ≤ n+e.

Here, we shall call {k, …, l} ⊇ {u, …, v} or equivalently, k
∈{u, …, v} ˄… ˄ l ∈{u, …, v} shall be called (table name)
selection criteria.

B. Cyclic Join Graph

Fig. 3(a) shows a cyclic join graph. When a relation is
visited in a, for example, breadth-first traversal, its attributes
are added to the resulting schema. In a cyclic join graph
however, a node may be visited more than once. For example,
R4 is visited through edge ⟨R2, R4⟩ for the first time, and then
through ⟨R3, R4⟩ for the second time when the cycle forms. To
differentiate matches associated with different edges, we shall
create two copies of R4, named R4 (the original name) and R5
(the next available relation number). Note that this is
effectively converting a cyclic graph into an acyclic one. We
shall call all copies of R4, i.e., R4 and R5, alias relations of R4.
Note that a cycle-completing relation, such as R4, may replicate
more than once if it completes more than one cycle in the
traversal. Fig. 3(b) shows the converted graph.

With a cyclic join graph converted into an acyclic one, a
Join Core can be constructed in the same way as before.
However, to determine whether an extended match tuple
contains a cycle or not, we need to check if the alias
components have the same value.

Example 5. (Answering Cyclic Join Queries). Fig. 4 shows
the join relationships and the Join Core for Fig. 3. Consider a
cyclic join query: ⋈ ({R1, R2, R3, R4}, {6, 7, 8, 9}). To ensure
that it is the same tuple in the cycle-completing relation that
satisfies both predicates 8 and 9, the alias components R4 and
R5 must be the same. That is, a selection condition, σ4=5, must

7

6
9

R5

R2

R3

R4

R1 R3 R1

R4 R2 8

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

487 | P a g e

be imposed. Thus, ⋈({R1, R2, R3, R4}, {6, 7, 8, 9}) = π 1,2,3,4
(σ4=5 (J1,2,3,4,5,6,7,8,9)) = {(A, a, α, I)}. On the other hand, (B, b, β,
II, III) does not contain an answer to the query because its R4
and R5 components (i.e., II and III) are not the same.

(a) Cyclic Join Relationship

1 2 3 4 5
A a α I I

B b β II III

J1,2,3,4,5,6,7,8,9
(b) Join Core Tables

Fig. 4. Cyclic join relationship and join core.

Consequently, cycles in a query graph can be treated like
ordinary acyclic join predicates, with the exception that
additional constraints on the equalities of alias components
must be added.

Theorem 2. Let ⋈ ({Ri, …, Rj}, {u, …, v}), 1 ≤ i, …, j ≤ n,
be a query contains cycles.

⋈({Ri, …, Rj}, {u, …, v}) = ∪{k, …, l} ⊇ {u, …, v} π i, …, j(σF

(Jk,…,l))

Readers are referred to [18] for discussions on more
complicated issues for cyclic queries.

C. Multiple Join Edges between Relations

It is possible that there is more than one joins edge between
a pair of relations. This situation can be easily resolved by
treating it as a cycle.

Example 6. (Multiple Edges between Relations) Assume
there are two join edges, e1 and e2, between R1 and R2. Then,
one can pick any relation, say R2, as the cycle completing
relation, replicate it, and call the replica R3. Finally, let e1 be
the edge between R1 and R2, and e2 be the edge between R1 and
R3.

VI. QUERIES WITH OTHER JOINS

Now, a join can be an equi-, semi-, outer- or anti-join. A
join generates result tuples dependent upon whether the equi-
join predicate between the operand relations are satisfied (in an
equi- or semi-join) or not satisfied (in an anti-join). A little
deliberation reveals that match tuples that do not satisfy an
equi-join predicate can be found in Join Core tables whose
names do not contain that predicate, recalling that Join Core
table names specify all and only the equi-join predicates
satisfied. An outer-join generates a result tuple no matter
whether the equi-join predicate is satisfied or not.

A join query consisting of a sequence of join operators has
a query predicate that is a logical combination of the individual

predicates of constituent joins. We attempt to obtain query
result tuples from Join Core tables whose names satisfy the
query predicates. Here, we focus on how to formula the query
predicates as (table name) selection criteria for Join Core
tables that contain the query result tuples. For example,
satisfying predicate p is rewritten as p ∈ {k, …, l}, where {k,
…, l} is the set of indices of a Join Core table name.

Afterward, specific handlings, such as removal of
unwanted attributes, equality checking for alias components
(for cycle-completing relations), and padding null values for
“missing” attributes (for outer-joins), are performed. For
simplicity, we shall only briefly describe these afterward
handlings.

A. Single-Join Queries

We start by deriving the selection criteria, denoted by S, for
queries with only one join operator. Let p be the equi-join
predicate between Ri and Rj. Consider Ri op Rj, where op is
either an equi-join, semi-join, outer-join, or anti-join.

1) Equi-Join. As discussed, to compute Ri ⋈ Rj with a join
predicate p, we look for Join Core tables Jk,…,l whose indices
contain p, i.e., S= p ∈ {k, …, l}. As mentioned, trivial
predicates i and j need not, but can, be included in S because
they are satisfied automatically and must have appeared as part
of the names of the tables satisfying p.

2) Semi-Join. The left semi-join Ri ⋉ Rj and right semi-
join Ri ⋊ Rj extract only the Ri and Rj components from Ri ⋈ Rj,
respectively. Here, we shall not be concerned about the
projection operations. Consequently, the selection criterion S
for a semi-join is the same as that for an equi-join, that is, S = p
∈ {k, …, l}.

3) Outer-Join. While computing Ri ⟗ Rj during the
construction of the Join Core, each pair of tuples satisfying
predicate p forms an output tuple. In addition, each non-
matching tuple from either Ri (satisfying the trivial predicate i)
or Rj (satisfying the trivial predicate j) also forms an output
tuple. Consequently, to answer the query Ri ⟗ Rj, we look for
Join Core tables Jk, …, l such that ሺi ∈ {k, …, l} ˄ (¬ (p ∈ {k, …,
l}))) ˅ (j ∈ {k, …, l} ˄ (¬(p ∈ {k, …, l}))) ˅ p ∈ {k, …, l},
where ¬ is the logical “not” operator and ˅ is the logical “or”
operator. Since p ∈ {k, …, l} implies i ∈ {k, …, l} ˄ j ∈ {k,
…, l}, the selection criteria S can be simplified to S= i ∈ {k, …,
l} ˅ j ∈ {k, …, l}. Trivial predicates i and j cannot be omitted
from S because no non-trivial predicates that reference i and j
are satisfied.

A left outer-join Ri ⟕ Rj asks for matching tuple pairs and
non-matching tuples from Ri. Therefore, S= i ∈ {k, …, l}.
Similarly, for a right outer-join Ri ⟖ Rj, S=j ∈ {k, …, l}.

After identifying the Join Core tables, tuples that do not
find a match in the other operand relation need to be padded
with null values for those attributes of the other relation.

Example 7. (Outer-Join). Let us consider Fig. 1 and 2.

R1 ⟗ R2: S= 1 ∈ {k, …, l} ˅ 2 ∈ {k, …, l}. Only J1, J1,2,6,
J2,4,8, and J1,2,3,4,5,6,7,8,9 satisfy S. The answer is {(C, -), (B, b), (-,
c) (A, a)}. Note that tuples in J1 and J8 need to be padded with

7

8

6
9

R3

R4 R2

R1

 a
b

B
 A

 β
α

I III
II

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

488 | P a g e

null values for the set of attributes of the other operand
relations, while unwanted components 3, 4, and 5 need to be
removed from J1,2,3,4,5,6,7,8,9.

R1 ⟕ R2: S= 1 ∈ {k, …, l}. Only J1, J1,2,6, J1,2,3,4,5,6,7,8,9
satisfy S, and the result is {(C, -), (B, b), (A, a)}.

R1 ⟖ R2: S= 2 ∈ {k, …, l}. Only J1,2,6, J2,4,8, J1,2,3,4,5,6,7,8,9
satisfy S, and the result is {(B, b), (-, c) (A, a)}.

4) Anti-Join. An anti-join Ri ⊳ Rj, defined as Ri – (Ri ⋉ Rj),
returns tuples in Ri that do not find a match in Rj. When the
outer-join for the edge p was performed during the construction
of the Join Core, such tuples (from Ri) must have found no
match in Rj and were stored in tables whose names contain i,
but not p. Therefore, to answer the query Ri ⊳ Rj, we look for
Jk, …, l, i ∈ {k, …, l} ˄ ¬ (p ∈{k, …, l}), namely, S= i ∈ {k, …,
l} ˄ ¬ (p ∈{k, …, l}). Trivial predicate i cannot be omitted.

Example 8. (Anti-Join).

R1 ⊳ R2: S= 1 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …, l}). Only J1
satisfies and the answer is {C}.

R2 ⊳ R4: S= 2 ∈ {k, …, l} ˄ ¬ (8 ∈ {k, …, l}). Only J1,2,6
satisfies and the answer is {b}.

B. Multi-Join Queries

A Join Core consists of regular and extended Join Core
tables. For simplicity, we shall not mention explicitly what
types of Join Core tables the query predicates are applied to.
Readers are advised that if the query is of Type (i), then the
selection criteria should be applied to both types of Join Core
tables; otherwise, they should only be applied to regular Join
Core tables.

Let E = E1 op E2, where E, E1, and E2 are expressions that
contain arbitrary legitimate sequences of equi-, semi, outer-
and anti-join operators, and op is one of these join operators
with a join predicate p. We assume the query graphs for E, E1,
and E2 are all connected subgraphs of G. Let S1 and S2 be the
selection criteria on the Join Core tables for E1 and E2,
respectively, and S the criteria for E. We discuss how to derive
S from S1 and S2.

1) Equi-Join. Consider E = E1 ⋈ E2. Each tuple in E is a
concatenation of a pair of extended matches in E1 and E2 that
satisfy p, and such “longer” extended matches must have been
captured by successive outer-joins (and complementary joins
for cycle-completing relations) performed during the Join Core
construction and stored in Join Core tables whose names
satisfy S1 ˄ S2 ˄ p∈ {k, …, l}. On the other hand, the
components of each tuple in such Join Core tables that satisfy
S1 and S2 must be result tuples of E1 and E2, respectively. In
addition, the two components satisfy the join predicate p and
thus can generate a result tuple in E. Thus, S = S1 ˄ S2 ˄ p ∈ {k,
…, l}.

2) Semi-Join. E = E1 ⋉ E2 and E = E1 ⋊ E2. As explained,
a semi-join is basically an equi-join, except that only the
attribute values of one of the operands is retained. Thus, S =
S1˄S2˄p∈{k,…,l}.

3) Outer-Join. E = E1 ⟗ E2. Tuples in E represent
extended matches that come from non-matching tuples of E1
and E2, and matching pairs of E1 and E2. All these extended
match tuples in E were captured by successive outer-joins (and
complementary joins for cycle-completing relations) performed
during construction of the Join Core and stored in tables whose
names satisfy (S1 ˄ (¬p∈ {k, …, l})) ˅ (S2 ˄ (¬p∈ {k, …, l})) ˅
(S1 ˄ S2 ˄ p∈ {k, …, l}), which can be simplified to S1 ˅ S2
because p∈ {k, …, l} implies S1 ˄ S2. On the other hand, each
tuple in a Join Core table whose name satisfies S1 ˅ S2 must
provide a result tuple to E1, E2, or E. Thus, S = S1 ˅ S2.
Similarly, for E1 ⟕ E2, S = S1; for E1 ⟖ E2, S = S2.

4) Anti-Join. E = E1 ⊳ E2. Tuples in E are extended
matches in E1 that do not find matches in E2. Thus, tuples in E
must have been captured by successive outer-joins (and
complementary joins) performed and stored in Join Core tables
whose names satisfy S1 but not (S2 ˄ p∈ {k, …, l}). One the
other hand, Join Core tables whose names satisfy S1 but not (S2
˄ p∈ {k, …, l}) contain tuples of E1 that do not join with tuples
in E2, which are exactly the result tuples of E. That is, S = S1 ˄
¬(S2 ˄ p ∈ {k, …, l}).

Example 9. (Multi-Anti-Join Queries).

(R1 ⋈ R2) ⊳ R3: S= 6 ∈ {k, …, l} ˄ ¬ (7 ∈ {k, …, l}). Only
J1,2,6 satisfies S and the answer is {(B, b)}.

(R2 ⊳ R1) ⊳ (R4 ⋈ R5): S=(2 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …,
l})) ˄ ¬ (9 ∈ {k, …, l} ˄ 8∈ {k, …, l}). Only J2,4,8 satisfies S,
and the answer is {(c)}.

Theorem 3. Let E = E1 op E2, where E, E1, and E2 are
arbitrary legitimate expressions that contain equi-, semi-, outer-
and anti-joins, and op is one of these join operations with a join
predicate p. Let S1 and S2 be the selection criteria for
identifying Join Core tables from which the resulting tuples of
E1 and E2 can be derived, respectively. Then, the selection
criteria S for E is (i) if op = ⋈, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (ii) if
op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if op = ⟗, S = S1
˅ S2; if op = ⟕; S = S1; if op = ⟖, S = S2; (iv) if op = ⊳, S = S1
˄ ¬(S2 ˄ p∈ {k, …, l}).

C. Join Queries with Intersections, Unions, and Differences

Here, we consider join queries with commonly encountered
set operators, intersections, unions, and differences. Note that
an intersection can be treated as an equi-join in which the join
attribute is the primary key. Here, we assume that the join
graph includes edges specifying the equalities of primary keys
between two schema compatible relations.

Let p be a join predicate specifying the equality of primary
key attributes of two schema compatible relations. The
intersection operation requires matches in the key values.
Consequently, the resulting tuples of Ri ∩ Rj can only be found
in Join Core tables Jk, …, l whose names contain predicate p
i.e., S = p ∈ {k, …, l}. This is exactly the same selection
criterion as that for an equi-join or a (left or right) semi-join.
As for the union operation, the resulting tuples of Ri U Rj can
be found in Join Core tables whose names contain trivial

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

489 | P a g e

predicate i or j, i.e., S = i ∈ {k, …, l} ˅ j ∈{k, …, l}, the same
selection criteria as for a full outer-join. Similarly, for the
difference operation, the resulting tuples of Ri – Rj can be
found in Join Core tables whose indices contain the trivial
predicate i, but not j, i.e., S = i ∈ {k, …, l} ˄ ¬ (j ∈ {k, …, l}),
the same selection criteria as for an anti-join.

By the same reasoning as presented in the previous section
(B) and Theorem 3, we can extend the usage of Join Core
tables to queries with arbitrary legitimate sequences of unions,
differences, and intersections, in addition to equi-, semi-, outer-
and anti-joins. The theorem follows.

Theorem 4. Let E = E1 op E2, where E, E1, and E2 are
arbitrary legitimate expressions that contain equi-joins, semi-
joins, outer-joins, anti-joins, unions, differences, and
intersections, and op is one of these operations with a join
predicate p. Let S1 and S2 be the selection criteria for
identifying Join Core tables from which the result tuples of E1
and E2 can be derived, respectively. Then, the selection criteria
S for E is (i) if op = ⋈ or ∩, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (ii) if
op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if op = ⟗ or U, S
= S1 ˅ S2; if op = ⟕, S = S1; if op = ⟖, S = S2; (iv) if op = ⊳ or
–, S = S1 ˄ ¬(S2 ˄ p ∈ {k, …, l}).

VII. COST ANALYSIS

In this section, we analyze the time and space consumption
of using Join Core. In addition, we also discuss measures to
reduce the size of Join Core.

A. Time Consumptions

1) Disk Accesses Time
To answer a query, Join Core tables containing the result

tuples are read into memory. Thus, the total number of disk
accesses is dependent upon the size of the query result, not the
complexity of the query.

2) CPU Time
Once desired Join Core tables are read into memory, all that

is remaining is to perform equality checking between alias
components (of cycle-completing relations), pad “missing”
attributes with null values (for outer-join operations), and
eliminate unwanted attributes and duplicates. All these tasks
should take only a very small amount of CPU time.

B. Space Consumptions

To simplify discussions, we assume no dangling tuple
exists in any of the equi-joins in the graph, which represents a
worst case space consumption scenario since dangling tuples
can shorten the matches. We further assume that in each join,
all tuples of a relation find exactly the same number of matches
in the other relation, namely a uniformity assumption on the
matching of a join.

Consider a join between Ri (with Ti tuples), and Rj (with Tj
tuples). We shall call Tj/Ti, denoted as rij, the join ratio of Ti
with respect to Tj, that is, the average number of matches found
in Rj for each tuple in Ri. In a one-many relationship from Ri to
Rj, rij ≥1. On the other hand, in a many-one relationship from Ri
to Rj, Tj/Ti ≤ 1. Since each tuple in Ri still can find one match in
Rj, as we have assumed no dangling tuples exist in the joins, rij
is set to 1 (i.e., rij=1) when Tj/Ti ≤ 1.

To estimate the size of a Join Core, we first estimate the
total number of match tuples, denoted by M, in the Join Core,
and multiply it by the length of each match tuple.

To estimate the number of different matches, we can start
from any relation, say Ri, by setting M = Ti, and then marking
Ri as visited. For each edge ⟨Ri, Rj⟩, where Ri is a visited node
while Rj is not, M=M ×rij. Once all relations are visited, the
final M is the estimate.

Now, let us compute the length of each match tuple. Let e
be the number of join edges and n the number of relations in
the join graph. Each outer-join adds the set of attributes of one
relation to the schema of the output, recalling the construction
of a Join Core. Therefore, the final output of the outer-joins
consists of the values of the attributes of e+1 relations, e+1 ≥
n. For simplicity of analysis, we assume tuples in all relations
have the same or a similar length L. Therefore, the size the Join
Core is

 M×(e+1)×L (1)

As compared to the database size Tavg×n×L, where
Tavg=Avg{T1, …, Tn} is the average number of tuples in a
relation.

Note that when all relations are of similar sizes, i.e., Tavg≈T1
≈…≈ Tn, all rij’s ≈1 and M≈Tavg. In addition, if the graph has no
(or few) cycles, i.e., e+1=(≈) n, the Join Core size would be
close to the database size, that is, M× (e+1)× L≈ Tavg×n× L,
which is the best case scenario.

C. Join Core Size Estimation by Example

In the following, we shall use the TPC-H benchmark
dataset to illustrate the use of the estimation formula (1) and
check its accuracy. Although each database has its unique
features, the TPC-H dataset may give us a general idea how
large the Join Core can be because “the data populating the
database in TPC-H have been chosen to have broad industry-
wide relevance” [19].

Fig. 5 shows the join graph of the TPC-H dataset, which
will also be used in our experimental section. For simplicity,
relations are numbered from 1 to 8. The arrows indicate many-
one relationships. In the 1GB dataset, the largest relation
“lineitem” (i.e., R3) has 6,000,000 tuples, while the smallest
one “region” (R8) has only 5 tuples. The average length of a
tuple is 128 bytes.

Fig. 5. TPC-H join graph.

3-lineitem 5-partsupp

6-supplier 4-part 2-orders

1-customer 7-nation 8-region

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

490 | P a g e

Example 10. (Estimating the Join Core Size). We start
from the largest relation “lineitem”, following the arrows to
visit smaller relations, until all edges are traversed. Note that
all join ratios are 1 along the way as we always visit smaller
relations. Thus, the total number of match tuples in the Join
Core is 6,000,000 (=M). There are 11 edges and the average
length of tuple is 128. So, the Join Core size is estimated,
following (1), as 6,000,000×12×128= 9.1GB. As shown later
in the experimental section, the actual Join Core is 4GB. The
overestimation is due to there being many dangling tuples in
the joins, shortening the length of match tuples.

In general, the Join Core could be several time larger than
the database. However, as the disk space is becoming cheaper
and cheaper, the space requirements should not be a big issue.

D. Space Reduction Methods

Many data compression techniques [3], [4], [11] can be
used to compress the Join Core. Here, we shall only discuss
methods that are specifically related to the reduction of the Join
Core structure.

Storing all join relationships of a complex graph can
consume large amounts of space. Here, we discuss heuristics
that can significantly reduce the space consumption of the Join
Cores, however, at the price of incurring additional join
operations. Further research is still needed to analyze the cost
and benefits of these heuristics.

(H1). Store only useful relations, relationships, and
attribute values. Statistics and knowledge on the usages of
relations, relationships, and attributes may be available or can
be collected to assist in making such decisions.

(H2). Remove smaller relations from a join graph. Smaller
relations, in terms of the numbers of tuples in the relations,
need replicate their tuples more times to generate M match
tuples, which will make updates (on smaller relations) more
expensive. In addition, if a removed relation is referenced in a
join query, then a join operation must be performed. Removing
smaller relations incurs less penalty because joins with smaller
relations are faster to perform. Moreover, smaller relations
have better chances of fitting in memory to make the joins
faster.

(H3). Remove cycle-completing relations. Removal of a
cycle-completing relation from a graph implies removal of all
its aliases too, which can significantly reduce the storage
consumption. Since any graph traversal method can be used in
construction a Join Core, one is given the opportunity to select
“good” relations to be cycle-completing relations. Here, we
recommend relations that are small (following H2) and, if
possible, complete multiple cycles.

1) Constructing Join Core with Space Constraint
Without detailed cost-benefit measures, here is a simple

way to construct a Join Core that satisfies a given space limit.
First, one can, following (H1), remove unwanted relations,
relationships, and attributes if a priori knowledge or statistics
are available. If the Join Core is still too large, one can consider
removing a smallest relation, following (H2), or a cycle-
completing relation, following (H3), until the desirable size is
met.

VIII. EXPERIMENTAL RESULTS

We have implemented the proposed methodology and
performed experiments to compare its time and space
consumptions with a MySQL database system. Many factors,
such as the number of CPUs, disks (and types of disks,
magnetic or SSD), etc., can affect the performance of query
processing. In this preliminary study, we will use only the
simplest set up to see how the proposed method alone can
improve query processing, leaving other performance
improving factors to future work. All experiments are
performed on a laptop computer with a 1.60 GHz CPU, 8GB
RAM, and a 1 TB hard drive.

A. Datasets

We generate 1, 4, and 10GB TPC-H datasets for
experiments. Fig. 5 shows the join graph of the TPC-H datasets
with arrows indicating many-one relationships. The datasets
are stored as relations in a MySQL database and as Join Core
tables in the proposed method, which is implemented in the
Java programing language.

TABLE I. SPACE CONSUMPTIONS

Join Core Size
Datasets

1GB 4GB 10GB
Full 4 GB 13.8 GB 39.7 GB

Reduced 1 2.3 GB 7.1 GB 20.1 GB

Reduced 2 1.7 GB 5.4 GB 15.8 GB

B. Space Consumptions

As shown in Table 1, the full Join Core sizes, without
applying any space reduction methods [18], are 4, 13.8, and
39.7GB for the 1, 4, and 10GB TPC-H datasets, respectively.
“Reduced 1” is obtained by removing the smallest relations
Region, Nation, and Supplier, which have 5, 25, and 10,000
tuples from the graph, respectively. “Reduced 2”, is obtained
by further removing the Customer relation from “Reduced 1”.

While removing relations can certainly reduce the space
consumption, joins would have to be performed when removed
relations are referenced in the queries. Fortunately, removed
relations are generally small and joins with them are relatively
quick.

1) Query Processing Time
We measure the response and elapsed time of the test

queries that come with the TPC-H datasets. While keeping
(most of) the selections and projections, we remove any “group
by”, “order by”, “limit”, aggregate functions, etc., from the
queries so that we can focus mainly on the join query
processing. We add “distinct” to the queries as we have
implicitly assumed the set semantics in the paper.

Join Core tables are read from disks into memory for
processing, and the result tuples are written back to the disks.
Response time measures the time up until the first result tuple
is written to the disk, while elapsed time measures the time
from beginning to end, after writing all result tuples to the
disks.

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

491 | P a g e

TABLE II. TIME CONSUMPTIONS

Query
Join Core MySQL

Result Tuples
Response 1/4/10GB Elapsed 1/4/10GB Response 1/4/10GB Elapsed 1/4/10GB

12: ⋈ {R2, R3}

0.008 5.456 360 367 38,928

0.008 22.409 701 725 155,585

0.008 56.023 2,084 2,107 388,058

14: ⋈ {R3, R4}

0.008 0.502 411 411 1,717

0.008 1.865 1,307 1,310 6,718

0.008 3.865 2,014 2,018 16,943

19: ⋈ {R3, R4}

0.007 0.012 516 516 200

0.007 0.041 1,485 1,485 864

0.007 0.103 2,386 2,387 2,096

4: ⋈ {R2, R3}

0.009 0.397 284 285 3,040

0.009 1.518 656 660 11,889

0.009 3.625 1,963 1,969 29,447

16: ⋈ {R4, R5}

0.008 0.812 79 81 3,795

0.008 3.005 300 306 15,208

0.008 9.686 856 867 38,195

3: ⋈ {R1, R2, R3}

0.008 1.579 6,782 6,785 11,620

0.008 8.016 - - 45,395

0.008 17.455 - - 114,003

18: ⋈ {R1, R2, R3}

0.007 0.010 61 61 6

0.007 0.012 91 91 11

0.007 0.013 291 291 22

10: ⋈ {R1, R2, R3, R7}

0.009 1.706 5,060 5,063 3,773

0.009 5.667 7,562 7,573 14,800

0.009 14.560 - - 36,975

2: ⋈ {R4, R5, R6, R7, R8}

0.010 1.890 322 325 3,162

0.010 7.005 838 845 12,723

0.010 18.609 2,112 2,131 31,871

5: ⋈ {R1, R2, R3, R6, R7, R8}

0.010 1.760 - - 15,196

0.010 6.809 - - 60,798

0.010 16.355 - - 152,102

Table 2 shows the query processing time with a full-sized
Join Core. In the first column, the ID of the TPC-H query is
shown first, followed by the relations involved in the join
operations. For simplicity, relations are referenced by the
numbers assigned to them in Fig. 5. For each query, we
measured the time spent on all three datasets. Queries were
aborted if they took more than 4 hours (= 14,400 sec), as
indicated by –‘s in the table.

With Join Core, all queries saw their first responses
instantly. As explained, all it takes is the retrieval of a block of
a relevant Join Core table into memory and simple
manipulations before output it after simple manipulations. On
the other hand, MySQL took minutes to hours to output its first
result tuples.

As explained, the result size, not the complexity, of the
query determines the query processing time because the join
result is readily available in the Join Core. Queries 12 and 18
best illustrate this characteristic. Query 12 has only one join

but generates large numbers of result tuples. On the other hand,
Query 18 has two joins, including the join of Query 12, but
generates much smaller numbers of result tuples. Therefore, it
took much longer to process Query 12 than Query 18. As
shown in Table 2, it took 5.456, 22.409, and 56.023 seconds to
process Query 12 for 1, 4, and 10GB datasets, respectively, but
it took only 0.010, 0.012, and 0.013 seconds, respectively, to
process Query 18. Note that all these times were mainly spent
on the disk accesses, namely, reading Join Cores and writing
the result tuples. Since there were no joins to perform in the
proposed method, many queries completed instantly too. On
the other hand, many queries took hours to complete on
MySQL.

The response time remained similar for all cases. The
elapsed time was, however, longer for larger datasets than for
smaller datasets because the former generated larger Join Cores
and larger join results, which required more time to read and
write.

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

492 | P a g e

Join Core is used to answer queries with anti-joins and
outer-joins. Table 3 shows the processing time. The response
and elapsed times of Query 22 are less than 10 millisecond for
both 1, 4, and 10GB datasets while the same query consumes
more time to be processed with MySQL. As shown in Table 3,

Query 13 saw its first responses instantly and took 4.5, 18.4,
and 40.0 to be completed for 1, 4, and 10GB datasets,
respectively. On the other hand, the response and elapsed times
were longer on MySQL for the same query.

TABLE III. TIME CONSUMPTIONS FOR QUERIES WITH ANTI-JOINS AND OUTER-JOINS

Query
Join Core MySQL

Result Tuples
Response 1/4/10GB Elapsed 1/4/10GB Response 1/4/10GB Elapsed 1/4/10GB

22: ⊳ {R1, R2}

0.007 0.009 7.8 8 3

0.007 0.009 32.9 33 6

0.007 0.009 122.4 123 9

13: ⟕ {R1, R2}

0.008 4.5 360 367 15504

0.008 18.4 701 725 71013

0.008 40.0 2,084 2,107 155018

Another advantage of the proposed methodology is that it
does not consume much memory. All it needs is to build a hash
table for the final duplicate elimination.

We believe the instant responses, fast query processing, and
small memory consumption of the Join Core are well worth its
required additional storage space.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an innovative way to
process queries without having to perform expensive joins and
set operations. We proposed to store the equi-join relationships
in the form of maximally extended match tuples to facilitate
query processing. We have designed an innovative way to
group the join relationships into tables, called the Join Core, so
that queries can be answered quickly, if not instantly, by
merely merging subsets of these tables. The Join Core is
applicable to queries involving arbitrary sequences of equi-
joins, semi-joins, outer-joins, anti-joins, unions, differences,
and intersections. Preliminary experimental results have
confirmed that with Join Core, join queries can be responded to
instantly and the total elapsed time can also be dramatically
reduced. We will discuss concurrency control in the face of
updates, and perform extensive experiments in different
environments in the future.

REFERENCES

[1] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava, “Answering
queries using views”, In ACM PODS Conf., 1995, pp. 95-104.

[2] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, P. and Sander,
“Relational joins on graphics processors”, In ACM SIGMOD Conf.,
2008, pp. 511-524.

[3] C. Kim, E. Sedlar, and J. Chhugani, “Sort vs. Hash Revisited: Fast Join
Implementation on Modern Multi-Core CPUs”, In VLDB Conf., 2009,
pp. 1378-1389.

[4] D. Abadi, S. Madden, and M. Ferreira, “Integrating Compression and
Execution in Column-Oriented Database Systems”, In SIGMOD, 2006,
pp. 671–682.

[5] D. DeWitt, and R. Gerber, “Multiprocessor hash-based join algorithms”,
In VLDB, 1985, pp. 151–164.

[6] H. Karloff, and M. Mihail, “On the complexity of the view-selection
problem”, In ACM PODS Conf., 1999, pp. 167-173.

[7] J. Goldstein, and P.-A. Larson, “Optimizing queries using materialized
views: a practical, scalable solution”, In ACM SIGMOD, 2001, pp. 331-
342.

[8] J. Yang, K. Karlapalem, and Q. Li, “Algorithms for materialized view
design in data warehousing environment”, In VLDB, 1997, pp. 25-29.

[9] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “Application of hash to
data base machine and its architecture”, New Generation Computing
1(1), 1983, pp. 63-74.

[10] M. W. Blasgen, and K. P. Eswaran, “Storage and access in relational
data bases”, IBM Systems Journal 16.4, 1977, pp. 363-377.

[11] M. Zukowski, S. Héman, N. Nes, and P. Boncz, “Super-scalar RAM-
CPU cache compression”, In ICDE, 2006, -
 http://doi.org/10.1109/ICDE.2006.150.

[12] P. Valduriez, “Join indices”, ACM Transactions on Database Systems
(TODS), 1987, 12(2), pp. 218-246.

[13] R. Derakhshan, F. Dehne, O. Korn, and B. Stantic, “Simulated
Annealing for Materialized View Selection in Data Warehousing
Environment”, In Databases and applications, 2006, pp. 89-94.

[14] R. Pottinger, and A. Levy, “A scalable algorithm for answering queries
using views”, In VLDB Conf., 2000, pp. 484-495.

[15] S. Agarawal, S. Chaudhuri, and V. Narasayya, “Automated Selection of
Materialized Views and Indexes for SQL Databses”, In VLDB , 2000,
pp. 496-505.

[16] S. Chu, M. Balazinska, and D. Suciu, “From Theory to Practice:
Efficient Join Query Evaluation in a Parallel Database System”, In ACM
SIGMOD Conf., 2015, pp. 63-78.

[17] Z. Li, K. A. Ross, “Fast joins using join indices”, The VLDB Journal—
The International Journal on Very Large Data Bases”, 1999, 8(1), pp. 1-
24.

[18] H. Mohammed, Y. Feng, H. Wen-Chi, “Answering Queries Instantly”,
https://goo.gl/19ajmF.

[19] TPC-H, http://www.tpc.org/information/benchmarks.asp.

