
Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

549 | P a g e

Topological Structure for Parallelizing Multicomputer
Cluster

Deepak Sharma
Computer Science & Engineering

Desh Bhagat Foundation Group of Institutions, Ferozepur Road
Moga, India

deepdeep2003@gmail.com

Abstract—Parallel computation, an extension to multi-
programming architectures usually structured as tightly coupled
organization of multiple CPU cores. Systems under such
configurations require lot of effort to manage multiple tasks
simultaneously. Operating systems for such hardware follows
several real time constraints in order to enhance system
performance. Normally, Operating system designates one
processor from others as controller which acts as a load
scheduler for the others and performs balancing when system
performance degrades due to overloading of some of the CPU
cores. Regardless of tightly coupled system, another cost effective
organization to achieve parallelism is to interconnect multi-
computers as a network of cluster. The advantage of this loosely
coupled system is that system is under programmatic control.
Low level sockets connections are created to make machine to
machine communication possible. This work focuses on Multi-
Ethernet Wired LAN Cluster (MEWC) and Broadcasting
Wireless Access LAN cluster (BWAC) for executing multiple
tasks like a grid. Further, the work analyzes both wired and
wireless clusters along with some factors considered in
communication network. Wireless network of multi-computers
have the advantage of transmission speed. In wireless cluster,
enhanced data transmission speed is achieved because of the
effect of broadcasting links, where wired network survive on
single communication link; although Multi-Ethernet distribution
may be followed for the improvement. But still wireless LAN
gives many advantages.

Keywords—Parallel cluster; wireless communication network;
broadcasting data; access point; multi-computers; Multiple
Ethernet Interface Card

I. INTRODUCTION

Managing multi-computers requires stream connections
among client and servers. Systems are programmed either
through sockets or RMI (remote method invocation). Listeners
are created under master controller waiting for requests
generated from clients. Once the systems are authenticated,
the master controller distributes tasks to their respective slaves
via wireless communication. After task completion the slaves
return to their controller for next task assignment. Loosely
coupled interconnection is totally programmed by programmer
to emulate parallel effect whereas tightly coupled system is
under the control of operating system. Interference from the
user side is totally abstracted. User can’t manipulate the
processor schedule by low level programming. Multi-
computers provide similar level of parallel computation by
communication network. Machines perform their work

according to the logic assigned. So such systems are logically
programmed for a given set of functionalities. Cluster
computing provides industrial advantage to utilize low
powered processors rather than discarding. This is because
such systems are not fulfilling the requirements of HPC (high
performance computing). In reality several high performance
applications consists of huge data and computation intensive
work which must be processed quickly and efficiently [1].

II. RELATED WORK

Work done so far implements wired framework for cluster
computing. Each cluster machine is connected as star topology
in the communication network. Data transmission and
connection handshaking is implemented via sockets API.
Listener and port numbers are assigned to the programs
running at each cluster machine. Computation covers image
compressions by decomposition of image into chunks and then
performs distribution to various clients. Clients performs their
assigned algorithmic work and return compressed result back
to the controller, where controller waits for each client’s task
completion and finally consolidate the compression results.
Similar work implemented for matrix multiplication Strassen
and Winograd approaches. Matrix is divided into parts
according to the algorithmic structure and then assigned to
clients as the basic divide and conquer approach suggests.
Protocols implemented for cluster programming is TCP/IP
because of connection oriented smooth connections are
required. But despite of this due to network errors their might
be possible that data may be lost or received with delay.
Further we will discuss the problems occurred in wired
networks when implemented as clusters [2].

III. CLUSTER INTERCONNECTION

Clusters are configured to emulate a particular set of
functionalities. Not all features are implemented in a single
cluster, this is because as the functionalities are added more
work has to be done on the controller side as well as layer of
algorithms will be implemented under each cluster node from
among an algorithm selection is made whenever node gets
task ready for it. Complexity will be increased at software
level whereas communication is dependent upon network
speed, so data transmission may be delayed. So this will be
improved via multi-cluster interconnection. Each cluster set is
a group of controller and clients to a do a particular set of
tasks. Each controller machine may further interconnect with
other controllers either via start or mesh. This is required if

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

550 | P a g e

load balancing or stress estimation is the part of
interconnection. Overloaded machines may be discarded from
their intended cluster for getting next task assignment. Load
may be scheduled to other cluster’s machines if free or having
capability to compute efficiently. Interconnecting wired
clusters requires switch to switch level cable connection but in
wireless interconnection wireless routers/access points are
configured to communicate.

IV. WORKLOAD CHARACTERIZATION

Parallel workload consists of task data set to be computed
by parallel hardware. Simulation systems are created for
handling synthetic workload relatively a type of
benchmarking. Workload under this scheme is totally a type of
replica of original system under execution. Such workloads
are created for testing simulation behavior acting as a
foundation for future hardware development. Synthetic
workload generated in random fashion covering task id along
with other attributes like total execution time, arrival time,
schedule time, completion time, waiting time, etc. In spite of
synthetic workload real system constructed for parallel
execution gets a complete task workload along with its
algorithmic control logic as well as data sets. Here huge
computation oriented work is given by user to the controller
which further distributes tasks either by control parallel or
data parallel approaches. Control parallel basically follows the
rule of multi-tasking system whereas data parallel approaches
follows the rule of divide and conquer methodologies. Divide
and Conquer programs are controlled by a common clock
usually at same time interval common algorithmic logic and
different data sets are distributed. In control parallel systems
different control units are needed to manage each algorithm
and operational data simultaneously. This work focus on
frame work for both wireless control parallel and data parallel
systems. Control parallel approaches are usually known as
TPS (task parallel system) Tasks are arrived and get schedule
when machines free. Data parallel approaches are usually
known as PDS (problem Decomposition and Distribution
System) where data domain is divided in sub units of and then
distributed among several clients for faster response [3], [4].

V. LAYERED FRAMWORK FOR PARALLEL CLUSTER

Layered framework provides an underlying model to
develop programmatic environment for clusters as described
in Fig. 1. Each layer provides well-defined structural elements
required to utilize cluster hardware. Cluster controller
specifies a master node having parallel API routines called
whenever parallelization is needed. Each cluster client node
having algorithmic logic created to manage workload
computation. Monitoring system maintains each cluster status
to handle performance degradations if exists. The layered
framework is similar to every cluster model whether a
wireless or wired interconnection. Further, the research
describes both single ethernet and multi-ethernet wired cluster
architectures. Each interconnection consists of ethernet card
along with cath5e twisted pair cables.

Fig. 1. Layered framework.

Basically, tasks are submitted and assigned to appropriate
cluster node. Different types of distributions are performed, if
the task has parallel behavior then task modules are distributed
among cluster nodes, otherwise multiple tasks which have
non-parallelized structure behavior are scheduled to different
cluster nodes [5].

VI. RUNTIME DEPENDENCY CHECK

Cluster frameworks are well suited if there is no task
interdependency. Usually, task manager firstly inspects the
task for data source requirements, if the module
interdependency exists there then system delays these tasks for
current execution and performs schedule for other independent
tasks sets. Some systems firstly schedule independent tasks
and then tasks which are dependent upon previously scheduled
independent tasks and so on. This method is more suitable to
handle interdependency. Some compilers have inbuilt
dependency checker which guides programmers during
parallel logic construction. Normally when tasks are
decomposed then their threads may have communication
coupling. Stream linking is created to transfer bulk of data
over which further data processing takes place. So better to
check interdependency before decomposition, also modules
which are dependent may be scheduled to same cluster or the
task should be scheduled completely [6].

Cluster Controller and Parallel API Routines

Parallel Workload Generator

Task Manager

Load Distributor

Cluster Monitoring System

Media Interface Control

Workload or Task Handler

Runtime Execution Unit

System State Maintenance and Record Keeping

Cluster Client Controller and Logical Routines

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

551 | P a g e

VII. CLUSTER ARCHITECTURES

There are usually three types of cluster architectures.
Single ethernet wired cluster where master controller having a
single interface ethernet card as described in Fig. 2. Whole
communication with multiple clients takes place using this
common media interface. The problem with this type of
cluster interconnection is that whenever multiple clients
respond or gets data from the servers
simultaneously/concurrently there will be a communication
delay; although work is parallelized but not be efficiently
performed. Other problem due to congestion is the data loss.
At the end of computation each node returns result which
might be a heavily loaded the server or delayed other cluster
nodes from responding their results.

Fig. 2. SEWC architecture.

Multi-ethernet wired cluster is the improvement over
single ethernet wired architecture as expressed in Fig. 3. As
the master link is congested when concurrent communication
exists. So multi-ethernet architecture consists of multiple
network interface cards where each communication line
mapped with different cluster nodes. One to one pair mapping
may be created or to make cost effective one to many cluster
nodes depending upon the link bandwidth may be established.

One to one mapping of communication link is very
expensive so depending upon the speed and bandwidth of
communication link multiple cluster nodes may be mapped
with a single communication line as described in Fig. 4.

Fig. 3. MEWC architecture Type-I.

Fig. 4. MEWC architecture Type-II.

Basically parallel cluster communication implies
concurrency during read or writes operation. This will create
congestion over the server media interface as described above.
So cluster implementation must follows multiple network
interfacing in order to make dedicated transmission flow.
Although implementation will be little bit costly. But now a
day’s NIC cards are easily available from garbage hardware
machines which can be easily plugged into PCI slots, even the
PCI extension cards are available. Other system employs USB
network interface cards making NIC hub. Note that even with
multiple ethernet interface cards server to client
communication handling is sequential but clients to server
communication is parallel. When multiple clients
communicate with the servers memory, they have parallel
lines as well but when server transmits computation requests it
identifies the free client node and then selects appropriate
mapped link to that client and so on. This process makes
server transmission as sequential but as the cluster nodes
comes into progression concurrency will be improved. Other
type of architecture which will improve the network
communication to avoid barriers is the broadcasting networks
illustrated in Fig. 5, BWAC architecture, where a
communication access point will manage the transmission.
Each machine now has a Wireless NIC cards along with a
broadcasting antennas. Access point devices with multiple
antennas covering Omni-directional links configured to
manage Wireless LAN systems. Use of broadcasting will help
to manage intermediate congestion which will be the result if
wired clusters are implemented. Wireless systems provide just
a directional flow. In order to make multiple cluster
interconnections, more than one access points may be
configured at local level. Level of topology depends upon the
functionality given and requirement of parallelizing problems.

Controller
Node

Client Node

Client Node

Client Node

Switching

Congested Link
when concurrent
communication
exists

Responsible for Task
Decomposition and Scheduling

Controller
Node

 Switching

Multiple ethernet
links for concurrent
communication

Controller
Node

Switching

Multiple
LAN NIC
Card

Clients Mapped to balance Concurrent Communication

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

552 | P a g e

Wireless LAN systems are less error prone than wired
LAN system, communication will be fast, establishment of a
cluster like a grid may be easy as no crowd of wires exists as
compare to wired networks transmission links are monitored
multiple times because of RJ45 jack connections.

Fig. 5. BWAC architecture.

VIII. PARALLEL WORKLOAD

In order to achieve parallel aspects, implemented
algorithms must have concurrent modules. So that job logic
must be distributed in a parallel fashion. Parallelism follows
the concept of space sharing and time sharing policy
structures. In space sharing policy structures multiple
processors are allocated to single active job. In time sharing
policy structure multiple jobs are allocated to a single active
processor. Usually MIMD systems are implemented in TSS
(Time Sharing System) and SIMD systems are implemented in
space sharing system. Space sharing system requires a lot of
efforts to distribute problem domain and consolidation domain
units at the end of computations. Space sharing systems
requires processing demands for each job and must have bulk
of processor space available. So to implement parallel
schedulers managing processor space is more important than
managing workload. Following types of parallel logics are
build [7], [8]:

a) Fixed Demand Rigid Jobs – Here a job requests some
number of processor and must be executed whenever that
demand is fulfilled. Otherwise job must have to wait and
scheduler gets next job set allocation. This policy structure is
inflexible because once the processing units are allocated; they
must be allocated throughout the jobs execution life span.

b) Scheduler oriented moldable Jobs – Another type of
job structures where scheduler set the job demand initially
depending upon its parallel behavior or its concurrent
modules. Note that this allocation is again fixed once
allocation made no change will happen in demand settlement
during execution. For implementing this type of scheduler,
there is a need of code inspection. Management of processor
availability is must because as much of the free processor

space available, the scheduler can schedule many jobs or there
will be increased throughput.

c) Malleable Jobs – Malleable jobs are more beneficial
than moldable because here scheduler modify the job demand
at any time because parallelism may change throughout the
job execution. This will also manage the processor space,
runtime change in demand will provides efficient mode of
allocation.

d) Growing Jobs – Evolvable also known as growing
tasks are similar to the structure of malleable processes, such
applications demands are not controlled by schedulers but
application itself provides information for change in
processing needs. In other words application itself manages
when to adjust processor requirements. In malleable
scheduling scheduler decides when to change processing
demands but in evolvable decision is taken by the task during
runtime parallelism [9].

Task level parallel schedulers are one step ahead to the
pipeline schedulers where n-number of tasks are filled in the
pipeline unit and then tasks are passed away from each unit
one by one in overlapped fashion. Task level parallel
schedulers requires great amount of programming efforts.
Load balancing is a high priority work required to manage
performance when degradation happens. Effective scheduling
specifies that better task allocation rather than performing task
replacement/adjustment in order to balance load in between.
Adjusting tasks later on to and from processors queues is more
costly than initial effective allocation; wait time of tasks may
increase due to revolving around queues [10].

IX. CLUSTER ANALYSIS

Clusters architectures are analyzed according to the
different parameters involved in the model. Table 1 describes
the communication behavior of the cluster. Analysis also
covers traditional matrix multiplication algorithm on SEWC
type I and BWAC architectures by taking different matrix
sizes as described in Tables 2 & 3. Fig. 6 and 7 expresses the
simulation results.

TABLE I. WIRED AND WIRELESS CLUSTER ANALYSIS

Factor/Type SEWC MEWC-I MEWC-II BWAC
Data Access Speed √ √√√ √√ √√√√
Concurrency Level √ √√√ √√ √√√
Safe State √ √√√ √√ √√√
Delay/Latency √√√ √ √√ √
Data Loss √√√ √ √√ √
Congestion/Traffic √√√ × √√ ×
Collision Rate √√ × √ ×
Mobility × × × √
Cost Effectiveness √√ √√√√ √√√ √
Degree of Parallelism √√ √√√√ √√√ √√√
Scalability √√√ √√ √ √√√√

TABLE II. SEWC MATRIX ANALYSIS

Matrix Size (n)
/Cluster Nodes
SEWC-(Sec)

2000

4000

8000

12000

4 6.82 12.45 18.55 29.45
8 4.65 7.85 10.53 19.23
10 3.58 9.67 8.34 13.42

Controller Node
with Wireless NIC

Multiple Antenna
Access Points

Client Node
with Wireless

NIC

Client Node
with Wireless

NIC

Client Node
with Wireless

NIC

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

553 | P a g e

Fig. 6. SEWC Matrix Analysis.

TABLE III. BWAC MATRIX ANALYSIS

Matrix Size (n)
/Cluster Nodes
BWAC-(Sec)

2000

4000

8000

12000

4 4.34 9.25 15.21 21.63
8 3.44 6.85 7.33 16.19
10 4.22 7.29 5.32 9.24

Fig. 7. BWAC Matrix Analysis.

Below is the analysis of multi ethernet wired LAN cluster.
Four ethernet cards are used to make minimum one to one
data communication possible for each node, maximum four
cluster nodes are handled by each ethernet communication
(Table 4). Simulation results are illustrated in Fig. 8.

TABLE IV. MEWC MATRIX ANALYSIS

Matrix Size (n)
/Cluster Nodes
MEWC-(Sec)
Ethernet cards 4

2000

4000

8000

12000

4 5.24 10.15 17.81 23.31

8 3.89 6.77 9.23 17.67

16 1.45 3.78 4.44 7.42

Fig. 8. MEWC Matrix Analysis.

X. CONTRIBUTION REVIEW

Technical contribution covered in the research is about
analysis of computation and data intensive matrix
multiplication. Traditional algorithm is used as previous
literature cover analysis of Strassen’s and Winograd approach
to wired clusters. Matrix multiplication problem is considered
because of high degree of parallel decomposition exists and
data intensive work will be generated. Our work focuses an
improvement over existing systems using wireless clusters.
Wireless systems proofs high concurrency than wired clusters.
Disadvantages behind wired clusters are that their
implementations have maximum data transfer delays/data loss,
also initial and ending transmissions creates polling. Other
limitations of wired clusters are that they are not true parallel
systems. Workload during parallel simulation implementation
is taken using random no. generator, as matrix source is
generated at run time before actual distribution is performed.
Multiple scenarios of workload are taken and average analysis
is considered from each run-time execution. Wireless cluster
may have interference problems but not severe, if happens,
this will be recovered using re-transmission whenever system
detects delayed response from a particular cluster node.
Current implementation provides algorithmic structure over
TCP/IP network; programmatic layered frame work is
described for parallel task decomposition and distribution. As
described large level grid oriented computation is not
implemented, our work is to utilize the low speed computation
processors as parallelizing complex problems. Frequency
standard follows in ethernet cluster is 802.3 with 10/100Mbps
over shared ethernet communication. In wireless cluster the
wireless access point transmission rate is 54Mbps for each
network broadcasting with frequency used is 2.4 Ghz with
802.11g standard. Factors mainly considered are described in
Table 1, maximizing degree of parallelism level without
possible delay and loss of data. Other factors considered
scalability and decreasing level of polling during broadcasting
to various cluster nodes. Traffic controlled using wireless
broadcast access because of concurrent arrival rate. Further if
multiple clusters are interconnected they may have particular
set of tasks associated. This system may help in future parallel
hardware implementation. High degree of programming using
socket connection exists in this work. Existing literature
follows divide and conquer approach to matrix multiplication.
These will be compared with traditional matrix multiplication
improvement over wireless topology. Algorithm follows only
data partitioning and distribution according to a particular
cluster set. Strassen and Winograd methods use both data
partitioning as well as divide and conquer algorithm structure.
In comparison to existing work results are improved.
Conclusion stated that as the nodes in a particular cluster set
are increased their must be the increase in problem domain
also, otherwise the system consumes more time in partitioning
and final results consolidation than actual computation [11],
[12].

XI. CONCLUSION AND FUTURE WORK

Wireless clusters are more beneficial than wired clusters,
also provides mobility to the system interconnection. Benefits
from broadcasting facility provide transmission speed during
concurrent access which may be delayed during wired

0

5

10

15

20

25

4 8 10

Cluster Size (No. of Nodes)

T
im

e
(S

ec
.)

0

5

10

15

20

25

4 8 10

Cluster Size (No. of Nodes)

T
im

e
(S

ec
.)

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

554 | P a g e

communication as described. Analysis covers some
parameters and an execution of a matrix multiplication
algorithm. Conclusion from the research is that as the cluster
size and problem size increases, the performance becomes
visible. This will depend upon the size of the problem domain.
Smaller size modules when executed over larger sized cluster
will degrade the performance. So both the sizes, of the cluster
and the problem domain increases, respectively. Above results
are captured by executing system simulation build via java
programming using sockets connection and multi-threading.
In SEWC twisted pair cables cath5e and gigabit ethernet cards
along with Linux OS with dual core processors. BWAC
clusters are implemented via single antennas wireless access
points and ethernet cards capable of transmitting 150Mbps
speed. Future work of this research may include analysis of
other different problem domains. Further image compressions,
encoding, hashing algorithms may be analyzed over wireless
clusters.

REFERENCES

[1] A. Chhabra, "A Cluster Based Parallel Computing framework (CBPCF)
for Performance Evaluation of Parallel Applications," International
journal of computer theory and engineering, vol.2, pp.1793-8201, 2010.

[2] A. Arora, "Cluster Based Performance Evaluation of Runlength Image
Compression," IJCA Foundation of Computer Science New York,
vol.33, 2011.

[3] J. Moscicki, “Processing Moldable Tasks on the Grid: Late job binding

with light weight user-level overlays,” in Elsevier Science, Publisher B.
V. Amsterdam, The Netherlands, pp. 725-736, 2011.

[4] V. Nguyen, R. Kirner, “Demand Based Scheduling Priorities for
Performance Optimization of Stream Programs on Parallel Platforms,”
13 International Conference, ICA3PP, Springer Berlin Proceeding Part-1
pp.18-20, 2013.

[5] K. Huang, “Moldable Job Scheduling for HPC as a Service with
Application Speedup Model and Execution Time Information,” Journal
of Convergence, vol. 4, pp. 14-22, December 2011.

[6] S. Kolliosopoulos, G. Steiner, “Partially Ordered Knapsack and
Application to Scheduling Elsevier,” vol. 155, issue 8 pp. 889-897,
2007.

[7] S. Bagga, D. Garg, “Moldable Load Scheduling Using Demand
Adjustable Policies,” ICACCI Galgotia Noida, IEEE Xplore, pp. 143-
150, 2014.

[8] A. Nasr, “Task Scheduling Optimization in Heterogeneous Distributed
System," IJCA, Foundation of Computer Science pp. 0975-8887, 2014.

[9] M. Etinski, “Parallel Job Scheduling for Power constrained HPC
systems,” Elsevier Science, B. V. Amsterdam, The Netherlands, pp.
615-630, 2012.

[10] G. Sabin, M. Lang, “Moldable Parallel Job Scheduling Using Job
Efficiency: An Iterative Approach,”12 international workshop JSSPP,
Springer Berlin, Saint Malo, France, pp. 94-114, 2006.

[11] A. Stephen, P. Daniel,“Dynamic Scheduling of Parallel Jobs with QOS
demand in Multi-Cluster and Grid,” University of Warwick, 5th
IEEE/ACM international Workshop on Grid Computing , pp. 402-409,
2014.

[12] G. Feitelson, “Job Scheduling Strategies for Parallel Processing,”
IPPS/SPDP 99 WS, JSSPP 99,978-3-540-66676-9.

