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Abstract—As Quantum Annealing Computers (QACs) like D-
Wave 2000Q Adiabatic Quantum Systems emerge, we aim to 
investigate the potential synergy between QAC and HPC as we 
push toward exascale supercomputing, where manual parallel 
programming for millions of processor cores will become 
inhibitive.  Quantum Refactoring is proposed here only as a 
possible future concept (not yet implemented on QACs) to 
automatically tweak the code sequence more efficiently than 
through repeated manual pair-wise operation swaps to optimize 
computation speed, memory storage, hit ratio, cost, reliability, 
power and/or energy saving. To facilitate auto code refactoring 
suitable for such annealing optimization, a self-organizing matrix 
transform is proposed in this paper, so that QAC can be applied 
to auto code sequence permutation via computation matrix 
transform model toward optimized matching between 
computation and parallel processor cores.  The mathematical 
model to achieve these goals is through the causal set properties 
of Matrix Model of Computation (MMC).  A sequence of 
transformations act as the code refactoring to compact code 
regions as computation decomposition for parallel multi-
core/multi-tread execution. Besides the improved 
software/hardware matching, the self-organizing matrix 
approach also serve as a novel paradigm for auto parallel 
programming, as well as a systematic tool for formal design 
modeling. 

Keywords—Automatic Software-Hardware Resource Mapping; 
Self-Organized Code Refactoring; Permutation; Causal Matrix 
Model of Computation; Data-Flow Discovery; Quantum Annealing 
Optimization 

I. PARALLEL MAPPING OPTIMIZATION 

The rapid emergence of complex computation, multi-core 
processing elements (PEs), many-core accelerators and cluster 
computer architecture, demands better matching between 
software computation and parallel system architecture.  
Despite being introduced since late 1950s, current parallel 
processing technology still falls short to efficiently utilize all 
the processing power of the available multi-core PEs. Task 
scheduling is an NP-complete problem, especially in the 
matching between computation and machine architectures. At 
program execution, resource allocation is the major issue in 
task scheduling.  Parallel mapping is to partition the 
computation, and then allocate the PE resource for the divided 
workload partitions. Parallel software development is another 
major hurdle, since human mind is accustomed to sequential 
thinking on logical or analytical matters, but not readily 
parallel.  The quest for better software-hardware matching is 
constrained on the data-flow dependency within one partition, 

and among all partitions of computation. The more 
deterministic the execution order of computation operations is, 
the easier the computation can be partitioned and matched to 
available parallel resource [1] [2]. 

As Quantum Annealing Computers (QACs) like D--Wave 
Adiabatic Quantum Systems emerge, we aim to investigate the 
missing link between QAC and HPC as we push toward 
exascale supercomputing, where manual parallel programming 
for millions of processor cores will become inhibitive.  
Quantum Refactoring is proposed here only as a possible 
future concept (not yet implemented on QACs) to 
automatically tweak the code sequence more efficiently than 
through repeated manual pair-wise operation swaps, either by 
human programmer or optimizing compilers, to improve 
computation speed, memory storage, hit ratio, cost, reliability, 
power and/or energy saving. QAC design promises to take 
advantage of the quantum physics superposition property of 
handling multiple states simultaneously, as well as avoiding 
being trapped at a local minimum via quantum tunneling to 
cut though to global minimum. To facilitate auto code 
refactoring suitable for such annealing optimization, a self-
organizing matrix transform model (MMC) [6] toward 
optimized matching between computation and parallel 
processor cores is proposed in this paper, so that QAC can be 
applied to self-organize code matrix transform.  Matrix 
Modeling of Computation is adopted here to achieve 
systematic software-hardware match through computation 
matric transformation steps. 

MMC is a Turing-equivalent virtual machine, and a 
universal container for source code which can represent any 
finitely realizable physical system.  The early MMC model 
developed is called imperative MMC (iMMC). iMMC consists 
of two matrices – {C,Q}; C is the matrix of services which 
holds the computation operations, and Q is the matrix of 
sequences which holds the sequence order of the computation 
operations; therefore the computation operations in matrix of 
services C may be out of order.  A later model of MMC 
developed is called canonical MMC (cMMC); cMMC only 
consists of a matrix of services.   Due to the self-organizing 
property of cMMC, the matrix of sequence, Q, is no longer 
needed in cMMC [6]. The matching algorithm introduced in 
this paper is leveraging the self-organizing property of cMMC 
to refactor the sequence order of computation operations 
according to their data-flow dependency. This auto code 
refactoring can be time-consuming, thus emerging 
technologies like quantum annealing can be employed in the 
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future for better self-optimizing code performance tweaking 
efficiency. 

Both total order and partial order sets can be derived from 
cMMC easily; cMMC can be refactored according to different 
optimization goals such as to optimize power consumption, 
memory usage, execution time, or cost. Since cMMC 
possesses the intrinsic parallelism property, structurally easy 
to be interpreted, and can be defined mathematically, cMMC 
can also be used as a tool for parallel programming and design 
model representation. 

This article first presents the examples of MMC in Section 
I; Section II to Section VI discuss the properties of cMMC; 
Section II explains canonicalization, which is the core of 
cMMC; Section III explains refactoring, which is a key for 
optimizing  the matrix; Section IV and Section V present the 
partition of sequence (PoS) and block system respectively, 
which are the features for partitioning the computation; 
Sections VII and VIII detail optimized matching regarding 
how to apply all the properties and features of cMMC in 
software-hardware matching with the possible future help of 
Quantum Annealing. It is then followed by conclusion and 
references. 

II. MATRIX MODEL OF COMPUTATION 

iMMC 

Before proceeding with the demonstration of iMMC, a 
sequence of operations are first given as an example 
computation used to demonstrate the representation and 
implementation of MMC, shown as the nine-operation routine 
below: 

1. a = v1 + v2 
2. b = a * v3 
3. c = b – v4 
4. d = a / c 
5. e = b * d 
6. f = v1 / v4 
7. g = v3 + v4 
8. h = f + g 
9. i = g – h 

           
Fig. 1. Data-flow graph discovery. 

Fig. 1 depicts the data-flow dependence graph hidden in 
the example code sequence routine.  There are two disjoint 
data-flow sub-graphs of the routine to be discovered, which 
can be executed independently.  In this case, both do share 
some same input variables v1, v3, v4 (v2 is only used by data-
flow graph on the left).  But dependency only matters upon 
temporary variables (a to i).  Let’s refer to data-flow sub-

graph on the left to be DFG_L, and the right to be DFG_R.  
The corresponding matrix of service, C, of iMMC is shown in 
Fig. 2. 

The first column of iMMC, OP, shows the operators of the 
computation steps (+, - , *, /), where Operations in the second 
column are the computation operations. The labels above each 
column of the matrix elements indicate the temporary variable 
names. The notation of capital C (indexed by the row number) 
represents the computed output, or co-domain, while A (also 
indexed by the row number) represents argument or input. 
Input variables are always shown on the right pane of the 
matrix for referencing purpose only, since input variables are 
regardless in MMC operations. This also means that the MMC 
theorems consider/apply only upon the middle square matrix 
(excluding the right input variables portion of the matrix). 

 
Fig. 2. iMMC, Matrix of Service – C, where the sequence order of 

computation operations is not a concern. 

 
Fig. 3. Example 1 of cMMC. 

We only define the matrix of sequence, Q, of iMMC, but 
without real example here, since the creator of MMC, Dr. 
Sergio Pissanetzky, found that cMMC is a superior matrix 
model over iMMC, and the development work has since 
proceeded only on cMMC. However, based on the definitions, 
matrix of sequence defines the order of services execution, 
this matrix of sequence has two or more columns where 
column P defines the previous sequence, and column F 
defines the next sequence, additional columns can be defined 
and used for control variables.  The sequence decisions are 
based only on the state of the system, following the typical 
Turing machine model [6]. 

cMMC 

Fig. 3 is an example of cMMC using the same sequence of 
computation operations. 

III. MMC CANONICALIZATION 

The self-organizing behavior of cMMC allows cMMC to 
be constructed with just a single matrix which has the built-in 
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information of sequence order. This feature gets rid of the 
need of a separate matrix of sequence, Q, as opposed to 
iMMC. Therefore, cMMC is a superset of iMMC feature-
wise. For an MMC to be qualified as cMMC, the matrix has to 
be in canonical form. As shown earlier, there are two notations 
in MMC, uppercase character C represents the computed 
output and A represents the argument or the input of a 
computation operation.  A cMMC may consist of one or more 
computation operations where each operation fills up a row 
with A and C at the appropriate columns.  MMC is in 
canonical form if and only if all C’s are lined up at the 
diagonal, and all A’s are located below C diagonal. The 
sequence order of such computation operations will then be 
revealed automatically from top row descending downward 
bottom row of the cMMC. 

The canonicalization is the process of forming a cMMC.  
cMMC possesses intrinsic parallelism, it will guarantee that 
no violation of data-flow dependency between the 
computation operations as soon as a cMMC is formed.  Total 
order set, partial order set, partitioning, and mapping can then 
be determined and perform directly.  Furthermore, this is just 
the least a cMMC is capable of performing; cMMC can be 
further refactored (rearranged) to improve the efficiency of 
the computation partitioning and resource matching. The 
refactoring of the row sequence is straight forward and the 
data-flow dependency can be verified spontaneously due to 
the self-organizing property of cMMC causal set. 

IV. REFACTORING OF CMMC 

The permutation of the row sequence of a cMMC is known 
as refactoring.  Refactoring is done in a way of diagonally 
swapping the adjacent rows (and their corresponding columns) 
one pair at a time, in other words, only two adjacent rows can 
be swapped if and only if the data-flow dependency is not 
violated, referred to as legal swaps. Legal swaps must satisfy 
the canonical form of cMMC, where C’s are only on the 
diagonal, and all A’s located below the C diagonal.  Data-flow 
is defined by the imaginary vertical column-association and 
horizontal row-association lines between each C and A, called 
the flux line.  Fig. 4 shows the flux lines and their data-flow 
dependencies. Data-flow propagates from top to bottom and 
from left to right of the matrix.  It first starts with the vertical 
flux line from C at row 1 column 1 to A below it (C as input 
into next A), if any, then it proceeds to the horizontal flux line 
from A to C on the right side of A (input A into C).  Let’s take 
Fig. 4 as an example, where the output C of operation x is 
going to be the input A of operation z. This means operation x 
precedes operation z and so forth. 

Quantum annealing can be applied here to simultaneously 
evaluate all legal permutations to automatically tweak the 
code sequence more efficiently than through repeated manual 
operation swaps to optimize computation speed, memory 
storage, cost, reliability, and/or power saving. Quantum 
Refactoring produces the minimum cost value of optimal 
permutation from arriving at the lowest energy state of the 
quantum annealing computer. 

Here a new term describing the energy state of the code-
refactoring is introduced, functional cost; functional cost is a 
quantity derived via a cost function corresponding to each 

permutation state of a particular cMMC. [4] Functional cost 
can be determined by the sum of displacement between each C 
and A, for example, functional cost is 4 for the cMMC in Fig. 
4.  Recall that cMMC itself only guarantees the non-violation 
of data-flow dependency; somehow it doesn’t guarantee the 
effectiveness of the sequence order.  By having the notion of 
functional cost, now a cMMC can be further refactored to 
minimize the functional cost. In Fig. 4, notice that y is an 
independent operation, where it has no data-flow relationship 
(no inter-row flux line) with either x or z operations.  
Swapping rows x and y is therefore a legal permutation.  Fig. 5 
shows the cMMC after the swapping of operations x and y.  
The new functional cost is now minimized from 4 to 2. 

x  y  z 

x  C    

y 
  

C    

z  A     C 

Fig. 4. Example of Flux Lines before Functional Cost Minimization, cost 
=4. 

y  x  z 

y  C       

x    
C 

  

z     A  C 

Fig. 5. Example of Flux Lines and after Functional Cost Minimization, cost 
= 2. 

Fig. 6 shows the flux line of example 1.  As seen in Fig. 6, 
the arrows in second block show the data-flow dependency.  
C6 (f) will be the input A8 below vertically, and then A8 will 
become the input of C8 (h) on the right hand side horizontally.   
Same flow applied to C7 (g) and the rest of the cMMC.  
Therefore, a partial order set can be defined based on the data-
flow flux line in cMMC.  The total order data-flow graph can 
also be derived back from cMMC partial order set using the 
same principle. 

 
Fig. 6. Flux Lines of Example 1 of cMMC. 

Based on the above intrinsic features, cMMC is chosen to 
serve as an analytical tool as well as a scheduling tool for 
mapping from computation to parallel processors.  Our current 
scope is mainly focused on the parallel processor 
allocation/assignment of computation, rather than the 
scheduling priority. 
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V. PARTITION OF SEQUENCE (POS) 

Based on the notion of flux line, now another new term 
can be introduced, called partition of sequence (PoS).   PoS is 
a subset of cMMC which represents a subset of computation 
operations that is self-contained in term of data-flow 
dependency. Each PoS has no data-flow relationship with any 
other PoS in a particular cMMC; there is no flux line across 
different PoSs (no inter-PoS flux line).  Therefore, each PoS 
can be matched to a parallel processor/core and can be 
executed simultaneously with other PoSs.  Fig. 7 shows two 
independent PoSs of example 1. 

 
Fig. 7. PoS of Example 1 of cMMC. 

Recall that the two PoSs reveal exactly the two data-flow 
sub-graphs DFG_L and DFG_R previously defined in the 
data-flow graph automatically. 

VI. BLOCK SYSTEM 

Block system is based upon group theory in mathematics.  
Block system is the subsets of PoS. Take the cMMC in Fig. 8 
as an example, in order to simplify the problem, there is only 
one PoS in this example cMMC, in other words, the whole 
cMMC is one PoS, i.e., both are mathematically equivalent in 
this case.  Recall that each PoS is self-contained and can be 
matched to a separate processing element (PE) core.  Block 
system is a set of blocks within a PoS that can be further 
divided and a higher degree of parallelism in fewer operation 
steps can thus be revealed. 

 
 
 
 
 
 
 
 

Fig. 8. cMMC with only one PoS [7]. 

Fig. 9 shows the PoS with the regions of block system, 
where a block is a square area bounded by the dotted lines 
which consists of at least one C element.  Thus there are three 
blocks in Fig. 9. Instead of having all the operations in the 
whole PoS allocated to a single PE as in Fig. 8, block system 
reveals potential two levels of execution.  The first level of 
execution consists of operation a and b, each operation can be 
allocated to a different PE, thus two parallel PE can be utilized 
simultaneously in this step of execution. The second step of 
execution consists of operations d, e, and c, each operation can 
be allocated to a different PE, and therefore three parallel PEs 

can be utilized simultaneously in this level of execution. In 
this way, 5 operations performed in 2 level steps reveal a 
possible speed up of 5/2 = 2.5 ignoring inter-PE latency. 

a  d  e  b  c 

a  C             

d  A  C       

e  A     C       

b        C    

c  A        A  C 

Fig. 9. Regions of Block System in PoS [7]. 

Determining Regions of Block System 

Let’s assume Example 2 with just a set of 7 elements {a b 
c d e f g} with 6 precedence relations. Assume there are 4 
minimum functional cost legal permutations: 

(a b c d e f g) 
(a b c d e g f) 
(a e f g b c d) 
(a e g f b c d) 

Let’s not worry about the partial order of precedence 
relations. This example is used to demonstrate the method of 
determining the regions of block system by hand. 

First pick any one permutation as a starting reference. 
Let’s use the first permutation (a b c d e f g) as starting 
reference for all calculations. The first element is a. Candidate 
permutations with 2 or more elements starting with a must be 
formed; the goal is to form the candidates with the most 
number of elements being one less than the entire number of 
elements in the set. In this case, candidates with 6 elements 
will be the best for this 7-element set example. There are 6 
candidates with 2 or more elements starting with a: ab, abc, 
abcd, abcde, abcdef, and abcdefg. Unfortunately none of them 
stays together (stay together as of combination instead of 
permutation) in all 6 minimum functional cost permutations 
except abcdefg, which is one trivial block region and of no 
interest. Therefore, a alone is a candidate to be a region of 
block system. 

However, before declaring a as a block, one must verify 
that all other minimum displacement value (MDV) 
permutations in the same column are also valid regions of 
block system. They are, indeed, because they are all a. So now 
declare a as a block region, and draw a vertical line from top 
to bottom separating a: 

(a|b c d e f g) 
(a|b c d e g f) 
(a|e f g b c d) 
(a|e g f b c d) 

At this point, use again the top permutation as reference, 
the next first element is b. Form candidates bc, bcd, bcde, 
bcdef, and bcdefg, one at a time. bc is found to stay together 
in all permutations; but in the same column there are ef and 
eg, and neither one of them is a block region because they do 
not stay together across all permutations. Therefore, bc is not a 
block region. The next candidate is bcd, bcd does stay 
together; before declaring bcd a block region, check the other 

a  b  c  d  e 

a  C             

b     C    

c  A  A  C    

d  A  C    

e  A           C 
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subsets in the same column-- efg and egf. They do stay 
together, so bcd can be declared as a block region, and draw 
another vertical line: 

(a|b c d|e f g) 
(a|b c d|e g f) 
(a|e f  g|b c d) 
(a|e g  f|b c d) 

At this point, the next starting element is e, forming 
candidates ef and efg, one at a time. ef is found not staying 
together across all permutations, but efg does; therefore the 
last three element is a valid region of block system. As a 
result, the regions of block system for this example are {a},  
{b c d}, and {e f g}. 

VII. OPTIMIZED MATCHING 

Based on all the example properties and features discussed 
above, more rules and strategies can be formulated to refactor 
and partition the cMMC to generate a matching between 
computation and parallel Processor Elements (PEs), which 
will achieve any particular desired optimization goal in term 
of power consumption, memory usage, computing speed, and 
cost. For example, one of such strategies in optimizing 
execution time and throughput is to determine the size of PoS 
in Fig. 7, and then map the PoS with the most computation 
operations (largest size of PoS) to the fastest PE and so forth. 
Memory usage can be minimized without even needing any 
additional optimization strategies, since a cMMC with a 
minimum functional cost will guarantee that the retention of a 
particular memory location is kept at the minimum duration.  
That is, memory will be allocated, accessed and released 
efficiently within the shortest time interval, since the 
computation operations execute at the strictest sequence order 
within a compact sequence of operations. Same principle can 
be applied to lower the power consumption, cost, and increase 
the performance. 

Next section of this paper will discuss the details of 
parallel partition and mapping optimization. One of the goals 
in future work is to perform the dynamic matching with 
consideration of the underlying processing elements topology. 

VIII. PARALLEL PARTITION AND MAPPING OPTIMIZATION 

This section discusses how to map the computation to 
parallel processors utilizing cMMC. Various suitable 
examples will be introduced under different subsections here 
to explain and to help readers to understand the process 
details. 

Stages of Mapping Computation to Processors via Matrix 
Transform 

Basically there are four stages of the process from taking 
in a set of computation to the final optimized mapping of the 
computation to parallel processors. 

A. Stage 1: Matrix Modeling 

Computation has to be first gone through a series of 
process to model the computation (software code) into cMMC 
format before the computation can be refactored in cMMC. 
This series of process is done in Stage 1 and it consists of 
three steps: (i) Transformation MC, (ii) Transformation SV, 

and (iii) Transformation AS [7]. cMMC produced by these 
three transformation steps will need to meet certain conditions 
and requirements in order for a parallel program to work 
logically correct. Stage 1 is not part of the scope of this paper. 
For more information, please refer to paper [7]. 

B. Stage 2: Refactoring of the Matrix 

Refactoring has already been explained in detailed in 
Section IV of this paper. Refactor is done by rearranging the 
row-column sequence of cMMC symmetrically around matrix 
diagonal. cMMC will converge to have the minimum 
functional cost by the end of this refactoring stage. 

C. Stage 3: Partitioning of Computation 

This stage is to partition or group the computation so that 
each partition can then be mapped to different PEs. Note that 
it is the computation being partitioned, but not necessary the 
matrix itself. Three different partition strategies will be 
discussed in this paper. 

1) Partition by PoS 
PoS has been discussed in detailed in section V. Each PoS 

is data-flow independent from one another, i.e. no data-flow 
flux going across different PoS. In this mapping strategy, each 
PoS will be mapped to a different PE, and there will be no 
inter-PE communication needed. This type of partition method 
is straight forward and is very easy to implement. PoS can be 
easily identified by users from the cMMC. As depicted in Fig. 
7, each PoS is shaped as a small lower triangular. There will 
be at least one PoS in cMMC (the entire cMMC is a PoS, thus 
the entire cMMC shapes as a lower triangular). PoS can be 
easily determined as well programming wise. The algorithm 
first picks the first column as the reference column. It checks 
if there is any vertical C to A data-flow at one row to the row 
below it (of the same reference column). If no vertical C to A 
data-flow found, the program will proceed to the subsequence 
row (of the same column) till it reaches the end of the row; 
then it will pick the next column as reference column. If there 
is a vertical C to A data-flow found, the program will use the 
lower row number (where the A is found) as the new reference 
column number and repeat the search process. The row where 
the last vertical C to A data-flow encountered will be marked 
as the end of that particular PoS (the first row is always the 
starting of the first PoS). The next row after the end of a PoS, 
if any, will be once again marked as the beginning row of the 
next matrix block. The program repeats the same process until 
the end of column is reached. Each PoS will then be 
considered as a partition and will be mapped to a PE 
according the desired parallel mapping optimization in the 
next mapping stage. 

2) Partition by Regions of Block System 
The second partition strategy is to determine the regions of 

block system. Regions of block system have been explained in 
detailed in Section VI. Regions of block system can further 
reveal the parallelism of the routine. Define a system ∑1 = 
10{ad, be, cf, g, eh, fi, gj, hj, ij}. This example is used in 
Sergio Pissanetzky’s paper “Emergence and self-organization 
in partially ordered set” section 4.2 [7]. There are 10 elements 
in this system, {a, b, c, d, e, f, g, h, i, j} and 9 precedence 
relations in its partial order: 
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a < d 
b < e 
c < f 
d < g 
e < h 
f < i 
g < j 
h < j 
i < j     (1) 

System ∑1 has 1680 legal permutations. A permutation can 
be interpreted as a state of a cMMC at a particular time. A 
permutation is legal when the sequence order (row order) of 
the system does not violate any precedence relations in its 
partially order set. For system ∑1, it has 1680 legal 
permutations with functional cost in the range 18 (6 
permutations) to 24 (540 permutations). Fig. 10 depicts system 
∑1 before refactoring with maximum functional cost of 24 and 
Fig. 11 depicts system ∑1 after refactoring with minimum 
functional cost of 18. 

 
Fig. 10. System ∑1 before Refactoring with Maximum Functional Cost of 24. 

A group of 6 permutations with minimum functional cost 
is listed below: 

(a d g b e h c f i j)  
(a d g c f i b e h j) 
(b e h a d g c f i j) 
(b e h c f i a d g j) 
(c f i a d g b e h j)   
(c f i b e h a d g j)    (2) 

 
Fig. 11. System ∑1 after Refactoring with Minimum Functional Cost of 18. 

The block regions for this group are {a d g}, {b e h}, {c f 
i}, and {j}, its partial order induced by Eq. 1 is: 

{a d} < {g} 
{g}    < {j} 
{b e} < {h} 
{h}   < {j} 

{c f} < {i} 
{i}    < {j}    (3) 

Thus the partitions by regions of block system will be {a d 
g}, {b e h}, {c f i}, and {j}. 

3) Partition by Interleaving PoS 
For pipeline system, routine in most compact form with 

minimum functional cost may not yield the faster execution 
time since there may be pipeline stalls between operations. In 
this case, partition by interleaving mutual exclusive PoS will 
alleviate the pipeline stalling problem. Let’s consider Example 
1 again as in Fig. 12. 

 
Fig. 12. Example 1. 

Let’s assume input variable v is obtained via memory 
access. For every operation that requires variable v as its input 
variable(s) requires load instruction for memory access, and 
each load instruction imposes a pipeline stall if the output is 
needed in its immediate consecutive operation. Thus if 
operations in Example 1 is subject under pipeline processing, 
there will be a total of 5 pipeline stalls required for operation 
a, b, c, f, and g. If the operations are partitioned in a different 
sequence such as (a, f, b, g, c, h, d, e, i) or (a, f, b, g, c, h, d, i, 
e), all pipeline stalls will be eliminated. Since f is not 
depending on a, apparently f is from a different matrix block 
and each matrix block has no data-flow dependency to other 
matrix blocks. Thus f can be loaded into the pipeline stage 
right behind current pipeline stage of a. The next operation in 
a matrix block, b, is then being scheduled to run after f. Note 
here that operations from different matrix blocks take turn to 
run alternatively, referred to as the partition by interleaving 
matrix block. 

D. Stage 4: Mapping of Partitions to Processing Elements 

This is the last stage of the mapping of computation to 
parallel processors. The mapping strategies are basically the 
same as partitioning strategies, i.e. mapping by PoS, regions 
of block system, and/or interleaving matrix blocks. Basically 
each determined partition can be mapped directly to each PE. 
Thus the mapping is direct and simple once the partitions have 
been determined in stage 3. 

IX. CONCLUSION 

Auto code refactoring via computation matrix transform is 
proposed and demonstrated, where manually tweaking or 
tedious sequential operation pairwise swaps to achieve 
optimized code sequence permutation can be make efficient 
by the emerging quantum annealing computers to find optimal 
legal permutations that minimize functional cost, similar to 
Traveling Salesman Problem (TSP).  Computation partitioning 

         1  2  3  4  5  6  7  8  9  10 
OP   Operations a  b  c  d  e  f  g  h  i  j 

a          C1 ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 
b          ‐  C2 ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 
c          ‐  ‐  C3 ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

=    d = a      A4 ‐  ‐  C4 ‐  ‐  ‐  ‐  ‐  ‐ 
=    e = b      ‐  A5 ‐  ‐  C5 ‐  ‐  ‐  ‐  ‐ 
=    f = c      ‐  ‐  A6 ‐  ‐  C6 ‐  ‐  ‐  ‐ 
=    g = d    ‐  ‐  ‐  A7 ‐  ‐  C7 ‐  ‐  ‐ 
=    h = e    ‐  ‐  ‐  ‐  A8 ‐  ‐  C8 ‐  ‐ 
=    i = f    ‐  ‐  ‐  ‐  ‐  A9 ‐  ‐  C9 ‐ 
+    j = g+h+i  ‐  ‐  ‐  ‐  ‐  ‐ A10A10A10 C10 

 

OP  Operations c  f  i  b  e  h  a  d  g  j     
     c          C3 ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐   
=    f = c      A6 C6 ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐   
=    i = f    ‐  A9 C9 ‐  ‐  ‐  ‐  ‐  ‐  ‐   

b          ‐  ‐  ‐  C2 ‐  ‐  ‐  ‐  ‐  ‐   
=    e = b      ‐  ‐  ‐  A5 C5 ‐  ‐  ‐  ‐  ‐   
=    h = e          ‐  ‐  ‐  ‐  A8 C8 ‐  ‐  ‐  ‐   

a          ‐  ‐  ‐  ‐  ‐  ‐  C1 ‐  ‐  ‐   
=    d = a      ‐  ‐  ‐  ‐  ‐  ‐  A4 C4 ‐  ‐   
=    g = d          ‐  ‐  ‐  ‐  ‐  ‐  ‐  A7 C7 ‐   
+    j = g+h+i  ‐  ‐  A10‐  ‐  A10‐  ‐ A10 C10 
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and resource allocation are the major problems in parallel 
processing.   Even with an efficient scheduling algorithm in 
place, there are still major challenges for programmers to 
develop the parallel applications. An algorithm that could 
solve the partitioning and mapping problems efficiently and 
also capable to serve as a tool to assist engineers to develop 
their parallel applications is therefore significant. In a related 
project, the manual instruction sequence tweaking was shown 
to increase more than 24% computation speed due to 
improved memory hit rate and access efficiency [8]. We are 
working toward even more improvement via Quantum 
Optimized auto code refactoring. 

There are four stages in the whole parallel mapping 
process. Stage 1 is to model the computation source code into 
cMMC. Stage 1 includes three steps: transformation MC, 
transformation SV, and transformation AS. These steps are 
crucial in forming a cMMC that the computation can then be 
partitioned and mapped to parallel processors. Stage 2 is to 
refactor the cMMC. This is the major stage of transforming 
the cMMC to meet the desired parallel optimization goals. 
Stage 3 is to partition the computation. There are three 
different partitioning strategies: (1) partition by PoS, (2) 
partition by regions of block system, and (3) partition by 
interleaving PoS. Stage 4 is to map the partition to processing 
elements. There are three mapping strategies similar to 
partitioning strategies: (1) mapping by PoS, (2) mapping by 
regions of block system, and (3) mapping by interleaving PoS. 
A hybrid strategy in both partitioning and mapping may also 
be used but is not discussed in this paper. 

A software tool has been developed, called Matrix Parallel 
Computation Matcher (MPCM). MPCM is written in C 
programming language and is based on the causal set property 
of cMMC.  MPCM is capable of taking in a set of 
computation operations, refactor the operation sequence, and 
partition the operation sequence according to the particular 
desired matching goal of the users.   At current stage, MPCM 
is able to parse an input text file with computation operation 
sequence previously typed in by users, while future work is to 
develop a program parser for MPCM to parse the 
programming code directly as the input of computation 
operations.   Matrix Model also provides a formal 
representation and can be described, defined, and manipulated 

using formal mathematical notations and logic.  This goal can 
be achieved with the help of workable input interface 
mechanism as just mentioned; current work has already shown 
a good result by taking in some pre-optimized computation 
from other scheduling algorithm, represented it in matrix 
model, and incorporated more varieties of optimized 
matching.   Furthermore, MPCM can transform the output 
result back into the original model, because that matrix model 
is fairly robust in mathematical properties. Matrix 
computation model is also readily programmable to take 
advantage of all the underlying advantages of many readily 
available mathematical matrix techniques. 
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