
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

578 | P a g e

Toward Quantum Refactoring:
Self-Organizing Parallel Resource Mapping with Computation Matrix Transform

Liwen Shih, Ph.D. and Hon Lum
Computer Engineering

University of Houston – Clear Lake
Houston, Texas, USA

shih@uhcl.edu

Abstract—As Quantum Annealing Computers (QACs) like D-
Wave 2000Q Adiabatic Quantum Systems emerge, we aim to
investigate the potential synergy between QAC and HPC as we
push toward exascale supercomputing, where manual parallel
programming for millions of processor cores will become
inhibitive. Quantum Refactoring is proposed here only as a
possible future concept (not yet implemented on QACs) to
automatically tweak the code sequence more efficiently than
through repeated manual pair-wise operation swaps to optimize
computation speed, memory storage, hit ratio, cost, reliability,
power and/or energy saving. To facilitate auto code refactoring
suitable for such annealing optimization, a self-organizing matrix
transform is proposed in this paper, so that QAC can be applied
to auto code sequence permutation via computation matrix
transform model toward optimized matching between
computation and parallel processor cores. The mathematical
model to achieve these goals is through the causal set properties
of Matrix Model of Computation (MMC). A sequence of
transformations act as the code refactoring to compact code
regions as computation decomposition for parallel multi-
core/multi-tread execution. Besides the improved
software/hardware matching, the self-organizing matrix
approach also serve as a novel paradigm for auto parallel
programming, as well as a systematic tool for formal design
modeling.

Keywords—Automatic Software-Hardware Resource Mapping;
Self-Organized Code Refactoring; Permutation; Causal Matrix
Model of Computation; Data-Flow Discovery; Quantum Annealing
Optimization

I. PARALLEL MAPPING OPTIMIZATION

The rapid emergence of complex computation, multi-core
processing elements (PEs), many-core accelerators and cluster
computer architecture, demands better matching between
software computation and parallel system architecture.
Despite being introduced since late 1950s, current parallel
processing technology still falls short to efficiently utilize all
the processing power of the available multi-core PEs. Task
scheduling is an NP-complete problem, especially in the
matching between computation and machine architectures. At
program execution, resource allocation is the major issue in
task scheduling. Parallel mapping is to partition the
computation, and then allocate the PE resource for the divided
workload partitions. Parallel software development is another
major hurdle, since human mind is accustomed to sequential
thinking on logical or analytical matters, but not readily
parallel. The quest for better software-hardware matching is
constrained on the data-flow dependency within one partition,

and among all partitions of computation. The more
deterministic the execution order of computation operations is,
the easier the computation can be partitioned and matched to
available parallel resource [1] [2].

As Quantum Annealing Computers (QACs) like D--Wave
Adiabatic Quantum Systems emerge, we aim to investigate the
missing link between QAC and HPC as we push toward
exascale supercomputing, where manual parallel programming
for millions of processor cores will become inhibitive.
Quantum Refactoring is proposed here only as a possible
future concept (not yet implemented on QACs) to
automatically tweak the code sequence more efficiently than
through repeated manual pair-wise operation swaps, either by
human programmer or optimizing compilers, to improve
computation speed, memory storage, hit ratio, cost, reliability,
power and/or energy saving. QAC design promises to take
advantage of the quantum physics superposition property of
handling multiple states simultaneously, as well as avoiding
being trapped at a local minimum via quantum tunneling to
cut though to global minimum. To facilitate auto code
refactoring suitable for such annealing optimization, a self-
organizing matrix transform model (MMC) [6] toward
optimized matching between computation and parallel
processor cores is proposed in this paper, so that QAC can be
applied to self-organize code matrix transform. Matrix
Modeling of Computation is adopted here to achieve
systematic software-hardware match through computation
matric transformation steps.

MMC is a Turing-equivalent virtual machine, and a
universal container for source code which can represent any
finitely realizable physical system. The early MMC model
developed is called imperative MMC (iMMC). iMMC consists
of two matrices – {C,Q}; C is the matrix of services which
holds the computation operations, and Q is the matrix of
sequences which holds the sequence order of the computation
operations; therefore the computation operations in matrix of
services C may be out of order. A later model of MMC
developed is called canonical MMC (cMMC); cMMC only
consists of a matrix of services. Due to the self-organizing
property of cMMC, the matrix of sequence, Q, is no longer
needed in cMMC [6]. The matching algorithm introduced in
this paper is leveraging the self-organizing property of cMMC
to refactor the sequence order of computation operations
according to their data-flow dependency. This auto code
refactoring can be time-consuming, thus emerging
technologies like quantum annealing can be employed in the

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

579 | P a g e

future for better self-optimizing code performance tweaking
efficiency.

Both total order and partial order sets can be derived from
cMMC easily; cMMC can be refactored according to different
optimization goals such as to optimize power consumption,
memory usage, execution time, or cost. Since cMMC
possesses the intrinsic parallelism property, structurally easy
to be interpreted, and can be defined mathematically, cMMC
can also be used as a tool for parallel programming and design
model representation.

This article first presents the examples of MMC in Section
I; Section II to Section VI discuss the properties of cMMC;
Section II explains canonicalization, which is the core of
cMMC; Section III explains refactoring, which is a key for
optimizing the matrix; Section IV and Section V present the
partition of sequence (PoS) and block system respectively,
which are the features for partitioning the computation;
Sections VII and VIII detail optimized matching regarding
how to apply all the properties and features of cMMC in
software-hardware matching with the possible future help of
Quantum Annealing. It is then followed by conclusion and
references.

II. MATRIX MODEL OF COMPUTATION

iMMC

Before proceeding with the demonstration of iMMC, a
sequence of operations are first given as an example
computation used to demonstrate the representation and
implementation of MMC, shown as the nine-operation routine
below:

1. a = v1 + v2
2. b = a * v3
3. c = b – v4
4. d = a / c
5. e = b * d
6. f = v1 / v4
7. g = v3 + v4
8. h = f + g
9. i = g – h

Fig. 1. Data-flow graph discovery.

Fig. 1 depicts the data-flow dependence graph hidden in
the example code sequence routine. There are two disjoint
data-flow sub-graphs of the routine to be discovered, which
can be executed independently. In this case, both do share
some same input variables v1, v3, v4 (v2 is only used by data-
flow graph on the left). But dependency only matters upon
temporary variables (a to i). Let’s refer to data-flow sub-

graph on the left to be DFG_L, and the right to be DFG_R.
The corresponding matrix of service, C, of iMMC is shown in
Fig. 2.

The first column of iMMC, OP, shows the operators of the
computation steps (+, - , *, /), where Operations in the second
column are the computation operations. The labels above each
column of the matrix elements indicate the temporary variable
names. The notation of capital C (indexed by the row number)
represents the computed output, or co-domain, while A (also
indexed by the row number) represents argument or input.
Input variables are always shown on the right pane of the
matrix for referencing purpose only, since input variables are
regardless in MMC operations. This also means that the MMC
theorems consider/apply only upon the middle square matrix
(excluding the right input variables portion of the matrix).

Fig. 2. iMMC, Matrix of Service – C, where the sequence order of

computation operations is not a concern.

Fig. 3. Example 1 of cMMC.

We only define the matrix of sequence, Q, of iMMC, but
without real example here, since the creator of MMC, Dr.
Sergio Pissanetzky, found that cMMC is a superior matrix
model over iMMC, and the development work has since
proceeded only on cMMC. However, based on the definitions,
matrix of sequence defines the order of services execution,
this matrix of sequence has two or more columns where
column P defines the previous sequence, and column F
defines the next sequence, additional columns can be defined
and used for control variables. The sequence decisions are
based only on the state of the system, following the typical
Turing machine model [6].

cMMC

Fig. 3 is an example of cMMC using the same sequence of
computation operations.

III. MMC CANONICALIZATION

The self-organizing behavior of cMMC allows cMMC to
be constructed with just a single matrix which has the built-in

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

580 | P a g e

information of sequence order. This feature gets rid of the
need of a separate matrix of sequence, Q, as opposed to
iMMC. Therefore, cMMC is a superset of iMMC feature-
wise. For an MMC to be qualified as cMMC, the matrix has to
be in canonical form. As shown earlier, there are two notations
in MMC, uppercase character C represents the computed
output and A represents the argument or the input of a
computation operation. A cMMC may consist of one or more
computation operations where each operation fills up a row
with A and C at the appropriate columns. MMC is in
canonical form if and only if all C’s are lined up at the
diagonal, and all A’s are located below C diagonal. The
sequence order of such computation operations will then be
revealed automatically from top row descending downward
bottom row of the cMMC.

The canonicalization is the process of forming a cMMC.
cMMC possesses intrinsic parallelism, it will guarantee that
no violation of data-flow dependency between the
computation operations as soon as a cMMC is formed. Total
order set, partial order set, partitioning, and mapping can then
be determined and perform directly. Furthermore, this is just
the least a cMMC is capable of performing; cMMC can be
further refactored (rearranged) to improve the efficiency of
the computation partitioning and resource matching. The
refactoring of the row sequence is straight forward and the
data-flow dependency can be verified spontaneously due to
the self-organizing property of cMMC causal set.

IV. REFACTORING OF CMMC

The permutation of the row sequence of a cMMC is known
as refactoring. Refactoring is done in a way of diagonally
swapping the adjacent rows (and their corresponding columns)
one pair at a time, in other words, only two adjacent rows can
be swapped if and only if the data-flow dependency is not
violated, referred to as legal swaps. Legal swaps must satisfy
the canonical form of cMMC, where C’s are only on the
diagonal, and all A’s located below the C diagonal. Data-flow
is defined by the imaginary vertical column-association and
horizontal row-association lines between each C and A, called
the flux line. Fig. 4 shows the flux lines and their data-flow
dependencies. Data-flow propagates from top to bottom and
from left to right of the matrix. It first starts with the vertical
flux line from C at row 1 column 1 to A below it (C as input
into next A), if any, then it proceeds to the horizontal flux line
from A to C on the right side of A (input A into C). Let’s take
Fig. 4 as an example, where the output C of operation x is
going to be the input A of operation z. This means operation x
precedes operation z and so forth.

Quantum annealing can be applied here to simultaneously
evaluate all legal permutations to automatically tweak the
code sequence more efficiently than through repeated manual
operation swaps to optimize computation speed, memory
storage, cost, reliability, and/or power saving. Quantum
Refactoring produces the minimum cost value of optimal
permutation from arriving at the lowest energy state of the
quantum annealing computer.

Here a new term describing the energy state of the code-
refactoring is introduced, functional cost; functional cost is a
quantity derived via a cost function corresponding to each

permutation state of a particular cMMC. [4] Functional cost
can be determined by the sum of displacement between each C
and A, for example, functional cost is 4 for the cMMC in Fig.
4. Recall that cMMC itself only guarantees the non-violation
of data-flow dependency; somehow it doesn’t guarantee the
effectiveness of the sequence order. By having the notion of
functional cost, now a cMMC can be further refactored to
minimize the functional cost. In Fig. 4, notice that y is an
independent operation, where it has no data-flow relationship
(no inter-row flux line) with either x or z operations.
Swapping rows x and y is therefore a legal permutation. Fig. 5
shows the cMMC after the swapping of operations x and y.
The new functional cost is now minimized from 4 to 2.

x y z

x C

y

C

z A C

Fig. 4. Example of Flux Lines before Functional Cost Minimization, cost
=4.

y x z

y C

x
C

z A C

Fig. 5. Example of Flux Lines and after Functional Cost Minimization, cost
= 2.

Fig. 6 shows the flux line of example 1. As seen in Fig. 6,
the arrows in second block show the data-flow dependency.
C6 (f) will be the input A8 below vertically, and then A8 will
become the input of C8 (h) on the right hand side horizontally.
Same flow applied to C7 (g) and the rest of the cMMC.
Therefore, a partial order set can be defined based on the data-
flow flux line in cMMC. The total order data-flow graph can
also be derived back from cMMC partial order set using the
same principle.

Fig. 6. Flux Lines of Example 1 of cMMC.

Based on the above intrinsic features, cMMC is chosen to
serve as an analytical tool as well as a scheduling tool for
mapping from computation to parallel processors. Our current
scope is mainly focused on the parallel processor
allocation/assignment of computation, rather than the
scheduling priority.

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

581 | P a g e

V. PARTITION OF SEQUENCE (POS)

Based on the notion of flux line, now another new term
can be introduced, called partition of sequence (PoS). PoS is
a subset of cMMC which represents a subset of computation
operations that is self-contained in term of data-flow
dependency. Each PoS has no data-flow relationship with any
other PoS in a particular cMMC; there is no flux line across
different PoSs (no inter-PoS flux line). Therefore, each PoS
can be matched to a parallel processor/core and can be
executed simultaneously with other PoSs. Fig. 7 shows two
independent PoSs of example 1.

Fig. 7. PoS of Example 1 of cMMC.

Recall that the two PoSs reveal exactly the two data-flow
sub-graphs DFG_L and DFG_R previously defined in the
data-flow graph automatically.

VI. BLOCK SYSTEM

Block system is based upon group theory in mathematics.
Block system is the subsets of PoS. Take the cMMC in Fig. 8
as an example, in order to simplify the problem, there is only
one PoS in this example cMMC, in other words, the whole
cMMC is one PoS, i.e., both are mathematically equivalent in
this case. Recall that each PoS is self-contained and can be
matched to a separate processing element (PE) core. Block
system is a set of blocks within a PoS that can be further
divided and a higher degree of parallelism in fewer operation
steps can thus be revealed.

Fig. 8. cMMC with only one PoS [7].

Fig. 9 shows the PoS with the regions of block system,
where a block is a square area bounded by the dotted lines
which consists of at least one C element. Thus there are three
blocks in Fig. 9. Instead of having all the operations in the
whole PoS allocated to a single PE as in Fig. 8, block system
reveals potential two levels of execution. The first level of
execution consists of operation a and b, each operation can be
allocated to a different PE, thus two parallel PE can be utilized
simultaneously in this step of execution. The second step of
execution consists of operations d, e, and c, each operation can
be allocated to a different PE, and therefore three parallel PEs

can be utilized simultaneously in this level of execution. In
this way, 5 operations performed in 2 level steps reveal a
possible speed up of 5/2 = 2.5 ignoring inter-PE latency.

a d e b c

a C

d A C

e A C

b C

c A A C

Fig. 9. Regions of Block System in PoS [7].

Determining Regions of Block System

Let’s assume Example 2 with just a set of 7 elements {a b
c d e f g} with 6 precedence relations. Assume there are 4
minimum functional cost legal permutations:

(a b c d e f g)
(a b c d e g f)
(a e f g b c d)
(a e g f b c d)

Let’s not worry about the partial order of precedence
relations. This example is used to demonstrate the method of
determining the regions of block system by hand.

First pick any one permutation as a starting reference.
Let’s use the first permutation (a b c d e f g) as starting
reference for all calculations. The first element is a. Candidate
permutations with 2 or more elements starting with a must be
formed; the goal is to form the candidates with the most
number of elements being one less than the entire number of
elements in the set. In this case, candidates with 6 elements
will be the best for this 7-element set example. There are 6
candidates with 2 or more elements starting with a: ab, abc,
abcd, abcde, abcdef, and abcdefg. Unfortunately none of them
stays together (stay together as of combination instead of
permutation) in all 6 minimum functional cost permutations
except abcdefg, which is one trivial block region and of no
interest. Therefore, a alone is a candidate to be a region of
block system.

However, before declaring a as a block, one must verify
that all other minimum displacement value (MDV)
permutations in the same column are also valid regions of
block system. They are, indeed, because they are all a. So now
declare a as a block region, and draw a vertical line from top
to bottom separating a:

(a|b c d e f g)
(a|b c d e g f)
(a|e f g b c d)
(a|e g f b c d)

At this point, use again the top permutation as reference,
the next first element is b. Form candidates bc, bcd, bcde,
bcdef, and bcdefg, one at a time. bc is found to stay together
in all permutations; but in the same column there are ef and
eg, and neither one of them is a block region because they do
not stay together across all permutations. Therefore, bc is not a
block region. The next candidate is bcd, bcd does stay
together; before declaring bcd a block region, check the other

a b c d e

a C

b C

c A A C

d A C

e A C

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

582 | P a g e

subsets in the same column-- efg and egf. They do stay
together, so bcd can be declared as a block region, and draw
another vertical line:

(a|b c d|e f g)
(a|b c d|e g f)
(a|e f g|b c d)
(a|e g f|b c d)

At this point, the next starting element is e, forming
candidates ef and efg, one at a time. ef is found not staying
together across all permutations, but efg does; therefore the
last three element is a valid region of block system. As a
result, the regions of block system for this example are {a},
{b c d}, and {e f g}.

VII. OPTIMIZED MATCHING

Based on all the example properties and features discussed
above, more rules and strategies can be formulated to refactor
and partition the cMMC to generate a matching between
computation and parallel Processor Elements (PEs), which
will achieve any particular desired optimization goal in term
of power consumption, memory usage, computing speed, and
cost. For example, one of such strategies in optimizing
execution time and throughput is to determine the size of PoS
in Fig. 7, and then map the PoS with the most computation
operations (largest size of PoS) to the fastest PE and so forth.
Memory usage can be minimized without even needing any
additional optimization strategies, since a cMMC with a
minimum functional cost will guarantee that the retention of a
particular memory location is kept at the minimum duration.
That is, memory will be allocated, accessed and released
efficiently within the shortest time interval, since the
computation operations execute at the strictest sequence order
within a compact sequence of operations. Same principle can
be applied to lower the power consumption, cost, and increase
the performance.

Next section of this paper will discuss the details of
parallel partition and mapping optimization. One of the goals
in future work is to perform the dynamic matching with
consideration of the underlying processing elements topology.

VIII. PARALLEL PARTITION AND MAPPING OPTIMIZATION

This section discusses how to map the computation to
parallel processors utilizing cMMC. Various suitable
examples will be introduced under different subsections here
to explain and to help readers to understand the process
details.

Stages of Mapping Computation to Processors via Matrix
Transform

Basically there are four stages of the process from taking
in a set of computation to the final optimized mapping of the
computation to parallel processors.

A. Stage 1: Matrix Modeling

Computation has to be first gone through a series of
process to model the computation (software code) into cMMC
format before the computation can be refactored in cMMC.
This series of process is done in Stage 1 and it consists of
three steps: (i) Transformation MC, (ii) Transformation SV,

and (iii) Transformation AS [7]. cMMC produced by these
three transformation steps will need to meet certain conditions
and requirements in order for a parallel program to work
logically correct. Stage 1 is not part of the scope of this paper.
For more information, please refer to paper [7].

B. Stage 2: Refactoring of the Matrix

Refactoring has already been explained in detailed in
Section IV of this paper. Refactor is done by rearranging the
row-column sequence of cMMC symmetrically around matrix
diagonal. cMMC will converge to have the minimum
functional cost by the end of this refactoring stage.

C. Stage 3: Partitioning of Computation

This stage is to partition or group the computation so that
each partition can then be mapped to different PEs. Note that
it is the computation being partitioned, but not necessary the
matrix itself. Three different partition strategies will be
discussed in this paper.

1) Partition by PoS
PoS has been discussed in detailed in section V. Each PoS

is data-flow independent from one another, i.e. no data-flow
flux going across different PoS. In this mapping strategy, each
PoS will be mapped to a different PE, and there will be no
inter-PE communication needed. This type of partition method
is straight forward and is very easy to implement. PoS can be
easily identified by users from the cMMC. As depicted in Fig.
7, each PoS is shaped as a small lower triangular. There will
be at least one PoS in cMMC (the entire cMMC is a PoS, thus
the entire cMMC shapes as a lower triangular). PoS can be
easily determined as well programming wise. The algorithm
first picks the first column as the reference column. It checks
if there is any vertical C to A data-flow at one row to the row
below it (of the same reference column). If no vertical C to A
data-flow found, the program will proceed to the subsequence
row (of the same column) till it reaches the end of the row;
then it will pick the next column as reference column. If there
is a vertical C to A data-flow found, the program will use the
lower row number (where the A is found) as the new reference
column number and repeat the search process. The row where
the last vertical C to A data-flow encountered will be marked
as the end of that particular PoS (the first row is always the
starting of the first PoS). The next row after the end of a PoS,
if any, will be once again marked as the beginning row of the
next matrix block. The program repeats the same process until
the end of column is reached. Each PoS will then be
considered as a partition and will be mapped to a PE
according the desired parallel mapping optimization in the
next mapping stage.

2) Partition by Regions of Block System
The second partition strategy is to determine the regions of

block system. Regions of block system have been explained in
detailed in Section VI. Regions of block system can further
reveal the parallelism of the routine. Define a system ∑1 =
10{ad, be, cf, g, eh, fi, gj, hj, ij}. This example is used in
Sergio Pissanetzky’s paper “Emergence and self-organization
in partially ordered set” section 4.2 [7]. There are 10 elements
in this system, {a, b, c, d, e, f, g, h, i, j} and 9 precedence
relations in its partial order:

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

583 | P a g e

a < d
b < e
c < f
d < g
e < h
f < i
g < j
h < j
i < j (1)

System ∑1 has 1680 legal permutations. A permutation can
be interpreted as a state of a cMMC at a particular time. A
permutation is legal when the sequence order (row order) of
the system does not violate any precedence relations in its
partially order set. For system ∑1, it has 1680 legal
permutations with functional cost in the range 18 (6
permutations) to 24 (540 permutations). Fig. 10 depicts system
∑1 before refactoring with maximum functional cost of 24 and
Fig. 11 depicts system ∑1 after refactoring with minimum
functional cost of 18.

Fig. 10. System ∑1 before Refactoring with Maximum Functional Cost of 24.

A group of 6 permutations with minimum functional cost
is listed below:

(a d g b e h c f i j)
(a d g c f i b e h j)
(b e h a d g c f i j)
(b e h c f i a d g j)
(c f i a d g b e h j)
(c f i b e h a d g j) (2)

Fig. 11. System ∑1 after Refactoring with Minimum Functional Cost of 18.

The block regions for this group are {a d g}, {b e h}, {c f
i}, and {j}, its partial order induced by Eq. 1 is:

{a d} < {g}
{g} < {j}
{b e} < {h}
{h} < {j}

{c f} < {i}
{i} < {j} (3)

Thus the partitions by regions of block system will be {a d
g}, {b e h}, {c f i}, and {j}.

3) Partition by Interleaving PoS
For pipeline system, routine in most compact form with

minimum functional cost may not yield the faster execution
time since there may be pipeline stalls between operations. In
this case, partition by interleaving mutual exclusive PoS will
alleviate the pipeline stalling problem. Let’s consider Example
1 again as in Fig. 12.

Fig. 12. Example 1.

Let’s assume input variable v is obtained via memory
access. For every operation that requires variable v as its input
variable(s) requires load instruction for memory access, and
each load instruction imposes a pipeline stall if the output is
needed in its immediate consecutive operation. Thus if
operations in Example 1 is subject under pipeline processing,
there will be a total of 5 pipeline stalls required for operation
a, b, c, f, and g. If the operations are partitioned in a different
sequence such as (a, f, b, g, c, h, d, e, i) or (a, f, b, g, c, h, d, i,
e), all pipeline stalls will be eliminated. Since f is not
depending on a, apparently f is from a different matrix block
and each matrix block has no data-flow dependency to other
matrix blocks. Thus f can be loaded into the pipeline stage
right behind current pipeline stage of a. The next operation in
a matrix block, b, is then being scheduled to run after f. Note
here that operations from different matrix blocks take turn to
run alternatively, referred to as the partition by interleaving
matrix block.

D. Stage 4: Mapping of Partitions to Processing Elements

This is the last stage of the mapping of computation to
parallel processors. The mapping strategies are basically the
same as partitioning strategies, i.e. mapping by PoS, regions
of block system, and/or interleaving matrix blocks. Basically
each determined partition can be mapped directly to each PE.
Thus the mapping is direct and simple once the partitions have
been determined in stage 3.

IX. CONCLUSION

Auto code refactoring via computation matrix transform is
proposed and demonstrated, where manually tweaking or
tedious sequential operation pairwise swaps to achieve
optimized code sequence permutation can be make efficient
by the emerging quantum annealing computers to find optimal
legal permutations that minimize functional cost, similar to
Traveling Salesman Problem (TSP). Computation partitioning

 1 2 3 4 5 6 7 8 9 10
OP Operations a b c d e f g h i j

a C1 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
b ‐ C2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
c ‐ ‐ C3 ‐ ‐ ‐ ‐ ‐ ‐ ‐

= d = a A4 ‐ ‐ C4 ‐ ‐ ‐ ‐ ‐ ‐
= e = b ‐ A5 ‐ ‐ C5 ‐ ‐ ‐ ‐ ‐
= f = c ‐ ‐ A6 ‐ ‐ C6 ‐ ‐ ‐ ‐
= g = d ‐ ‐ ‐ A7 ‐ ‐ C7 ‐ ‐ ‐
= h = e ‐ ‐ ‐ ‐ A8 ‐ ‐ C8 ‐ ‐
= i = f ‐ ‐ ‐ ‐ ‐ A9 ‐ ‐ C9 ‐
+ j = g+h+i ‐ ‐ ‐ ‐ ‐ ‐ A10A10A10 C10

OP Operations c f i b e h a d g j
 c C3 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
= f = c A6 C6 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
= i = f ‐ A9 C9 ‐ ‐ ‐ ‐ ‐ ‐ ‐

b ‐ ‐ ‐ C2 ‐ ‐ ‐ ‐ ‐ ‐
= e = b ‐ ‐ ‐ A5 C5 ‐ ‐ ‐ ‐ ‐
= h = e ‐ ‐ ‐ ‐ A8 C8 ‐ ‐ ‐ ‐

a ‐ ‐ ‐ ‐ ‐ ‐ C1 ‐ ‐ ‐
= d = a ‐ ‐ ‐ ‐ ‐ ‐ A4 C4 ‐ ‐
= g = d ‐ ‐ ‐ ‐ ‐ ‐ ‐ A7 C7 ‐
+ j = g+h+i ‐ ‐ A10‐ ‐ A10‐ ‐ A10 C10

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

584 | P a g e

and resource allocation are the major problems in parallel
processing. Even with an efficient scheduling algorithm in
place, there are still major challenges for programmers to
develop the parallel applications. An algorithm that could
solve the partitioning and mapping problems efficiently and
also capable to serve as a tool to assist engineers to develop
their parallel applications is therefore significant. In a related
project, the manual instruction sequence tweaking was shown
to increase more than 24% computation speed due to
improved memory hit rate and access efficiency [8]. We are
working toward even more improvement via Quantum
Optimized auto code refactoring.

There are four stages in the whole parallel mapping
process. Stage 1 is to model the computation source code into
cMMC. Stage 1 includes three steps: transformation MC,
transformation SV, and transformation AS. These steps are
crucial in forming a cMMC that the computation can then be
partitioned and mapped to parallel processors. Stage 2 is to
refactor the cMMC. This is the major stage of transforming
the cMMC to meet the desired parallel optimization goals.
Stage 3 is to partition the computation. There are three
different partitioning strategies: (1) partition by PoS, (2)
partition by regions of block system, and (3) partition by
interleaving PoS. Stage 4 is to map the partition to processing
elements. There are three mapping strategies similar to
partitioning strategies: (1) mapping by PoS, (2) mapping by
regions of block system, and (3) mapping by interleaving PoS.
A hybrid strategy in both partitioning and mapping may also
be used but is not discussed in this paper.

A software tool has been developed, called Matrix Parallel
Computation Matcher (MPCM). MPCM is written in C
programming language and is based on the causal set property
of cMMC. MPCM is capable of taking in a set of
computation operations, refactor the operation sequence, and
partition the operation sequence according to the particular
desired matching goal of the users. At current stage, MPCM
is able to parse an input text file with computation operation
sequence previously typed in by users, while future work is to
develop a program parser for MPCM to parse the
programming code directly as the input of computation
operations. Matrix Model also provides a formal
representation and can be described, defined, and manipulated

using formal mathematical notations and logic. This goal can
be achieved with the help of workable input interface
mechanism as just mentioned; current work has already shown
a good result by taking in some pre-optimized computation
from other scheduling algorithm, represented it in matrix
model, and incorporated more varieties of optimized
matching. Furthermore, MPCM can transform the output
result back into the original model, because that matrix model
is fairly robust in mathematical properties. Matrix
computation model is also readily programmable to take
advantage of all the underlying advantages of many readily
available mathematical matrix techniques.

ACKNOWLEDGMENT

The authors sincerely appreciate the collaboration with our
UHCL visiting research scholar Dr. Sergio Pissanetzky, who
devotes his research for intelligence emergence understanding
with Causal Matrix Modeling of Computation (MMC).

REFERENCES

[1] Shih, Liwen, “Adaptive latency-aware parallel resource mapping: task
graph scheduling onto heterogeneous network topology,” XSEDE 2013:
52 ACM 2013 Article

[2] Cui, Yifeng, Efecan Poyraz, Jun Zhou, Scott Callaghan, Phillip
Maechling, Thomas Jordan, Liwen Shih, Po Chen, “Accelerating
CyberShake Calculations on the. XE6/XK7 Platform of Blue Waters,”
XScale 2013 Extreme Scaling Workshop, 2013.

[3] Sergio Pissanetzky: A new type of Structured Artificial Neural
Networks based on the Matrix Model of Computation. May 2008.

[4] Sergio Pissanetzky: A New Universal Model of Computation and its
Contribution. World Academy of Science, Engineering and Technology
51, 2009.

[5] Sergio Pissanetzky: Applications of the Matrix Model of Computation.
World Multi-Conference on Systemics, Cybernetics and Informatics
(WMSCI’08), 2008.

[6] Sergio Pissanetzky: The Matrix Model of Computation. World Multi-
Conference on Systemics, Cybernetics and Informatics (WMSCI’08),
2008.

[7] Sergio Pissanetzky: Emergence and Self-organization in Partially
Ordered Sets, Complexity, Volume 17, Issue 2, pages 19-38, 2011.

[8] Hakduran Koc and Mehmet Ucar, M.S. Thesis, "Execution Phase
Partitioning for Data Intensive Applications”, 2017 IEEE 7th Annual
Computing and Communication Workshop and Conference (CCWC),
Las Vegas, January 2017

