
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Towards Secure Interoperability between
Heterogeneous Blockchains using Smart Contracts

Gaby G. Dagher
CS, Boise State University

Boise, Idaho, USA
gabydagher@boisestate.edu

Chandra L. Adhikari
CS, Boise State University

Boise, Idaho, USA
chandraadhikari@u.boisestate.edu

Tyler Enderson
CS, Boise State University

Boise, Idaho, USA
tylerenderson@u.boisestate.edu

Abstract—Achieving data confidentiality and privacy while
maintaining secure access is essential in various fields, including
in the medical sector. Implementing a blockchain-based technol-
ogy to secure sensitive data ensures that the users own their
data and have control over who can access it. While blockchain
technology is still in its infancy, it is the cutting-edge of research
in many industries and institutions. The decentralized nature of
blockchain technology and the presence of smart contracts in
Ethereum are two major features that can be utilized to create
a novel data sharing and access system that is secure, flexible,
and more reliable. In this paper, we investigate the use of smart
contracts between heterogeneous blockchains for the purpose of
achieving secure interoperability for data sharing and access
control. As a proof of concept, we propose and implement a
record management system for healthcare data, where access to
healthcare providers’ databases is managed through a private
blockchain, only available to healthcare providers, and patients
access their medical records through a public blockchain. Addi-
tionally, we develop a set of smart contracts for each blockchain
to control access, manage storage, and enable interoperability
between the two blockchains.

Keywords—Blockchain; Ethereum; smart contract

I. INTRODUCTION

The modern world is moving rapidly with technology, dig-
italizing record management as well as utilizing newer, data-
driven equipment. Data assists in further advancing technology
in many ways, particularly aiding development of scientific
research, business practices and government policies. Collect-
ing, storing and accessing data is a common practice nowadays
across industries, institutions, and governmental organizations.
However, to provide the most benefit, data needs to be shared
across organizational boundaries, enabling authorized users to
access the data while protecting sensitive information. The
storage of data containing private and sensitive information
while enabling availability is a challenging and difficult task
that requires continuously maintaining an interoperable sharing
system that allows access in a secure manner. In fact, one of
the major issues with existing systems is insufficient security
controls for users accessing or sharing files [1], as there have
been major concerns about user privacy and the limitations
of controlling access to private data [2]. For example, in the
past couple of years, more medical records breaches than ever
before have been recorded. In 2015, there was 270 security
breaches hitting 113,267,174 records, while in 2016, 329
breaches occurred that involved 16,471,765 records [3].

In recent years, blockchain has emerged as a potential
technology for solving current security, privacy, and inter-

operability challenges in several domains, including financial
services [4], Internet of things (IoT) [5], [6], and healthcare [7].
Blockchain, further described in Section II, maintains a dis-
tributed, immutable ledger that contains a history of what has
occurred on the blockchain. Immutability allows records to
persist for the life of the blockchain and can aid data integrity
over long periods of time. Additionally, many proposals for
using blockchain incorporate access control measures that
benefit from decentralized authority without risking the privacy
of data [2]. Not only can blockchain technology manage access
control, but also the storage of files on off-chain databases.
Advantages of blockchain technology can be incorporated
through the use of Ethereum [8], a prominent implementation
platform for building blockchain-based systems. Ethereum
provides high utility through Turing-complete smart contracts
and shortened block intervals. While there have been advances
in using single-blockchain systems in different domains, there
has been limited work on analysing how multiple-blockchains
can be utilized to build systems that demonstrate interoperable
management of smart contracts and data.

In this paper, we investigate the use of smart contracts
between heterogeneous blockchains for the purpose of achiev-
ing secure interoperability for data sharing and access control.
According to [9], there is a need for records management
system that is flexible enough to access files universally,
protect privacy, provide a complete control over individual’s
information, and enables patients to determine which records
to be visible. Therefore, as a proof of concept, we propose and
implement a record management system for healthcare data,
where access to healthcare providers’ databases is managed
through a private blockchain (only available to healthcare
providers), and patients access their medical records through
a public blockchain. Data stored directly on the blockchain,
such as links to files, is encrypted so that only authorized users
are able to access it. Additionally, we develop smart contracts
for each blockchain, to control access and manage storage.
Each smart contract can autonomously execute other smart
contracts on interoperable public and private blockchains to
complete tasks. Incorporating this type of records management
contributes to the strength of system security so that only the
approved parties have permission to view the data.

The rest of the paper is organized as follows: Section II in-
troduces different aspects of blockchain technology. Section III
reviews the related literature. Section IV describes the concept
of secure file access between heterogeneous blockchains using
smart contracts and Ethereum’s blockchain technology. Sec-

73 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

tion V is the discussion and finally, we conclude the paper in
Section VI.

II. PRELIMINARY

In this section, we provide background information on
blockchain technology that contributes to our solution.

A. Blockchain Technology

1) Introduction: Blockchain, first introduced in Bit-
coin [10], is a decentralized ledger of verified transactions
across a peer-to-peer network. The Genesis block, an initial
block without any transactions, is the predefined start of the
blockchain; subsequent blocks following the genesis block
consist of blocks constructed with transactions that through a
consensus protocol, have been verified by special nodes in the
network called miners. Nodes on the network keep an updated
version of blocks that continues to grow. Blocks of transactions
confirmed by miners are appended to the end of the chain as
new transactions appear on the network. These transactions
are created when a user sends/calls another user with optional
input data, or through execution of a smart contract, and reside
in the transaction pool of the network where all of pending
transactions are stored. Pending transactions are pulled from
the pool by miner nodes who verify them in order to create
blocks. Once the block is mined and added to the chain, it
becomes part of the append only chronological ledger. By
initial design, the blockchain technology is used in the fashion
of a financial ledger, but we have extended it to support secure
file access.

2) Consensus Mechanisms: The consensus protocol
adopted by a blockchain determines which block to append
and how to do so, confirming validity of contents and block
construction in the process. Parameters within the consensus
protocol can be changed to modify block characteristics
like structure and intervals between blocks. Bitcoin [10] and
Ethereum [8] uses a Proof of Work (PoW) algorithm that
requires miner nodes to invest computational power to add
security and immutability to the blockchain. PoW has been
criticized for inefficient use of electricity, computational power
and hardware, and resulting in the introduction of alternatives
such as Proof of Stake (PoS) or Proof of Retrievability
(PoR). In PoS, instead of all miner nodes competing to
create the next block like PoW, a miner node is chosen to
invest computational power through pseudorandom methods
weighted in relation to degree of ownership, or credibility,
or reputation, etc. This type of miner selection results in far
less resource expenditure. PoR similarly conserves resources
through use of invested storage by miner nodes and can
support blockchain implementations by functioning as a
database.

3) Blockchain Types: Blockchains can be categorized as
public, consortium, and private.

Public blockchain. A public blockchain is a chain that
anyone in the world can read, send a transaction to a valid
user, and can involve the consensus process. The consensus
process is a process to determine what block gets appended
to the end of the chain. Homogeneous or heterogeneous
blockchains can have various types of consensus algorithms
such as Proof of Work (PoW), Proof of Stake (PoS), Proof of

Retrievability (PoR), and so on. The blockchain in general is
considered s decentralized network where there is no central
authority controlling the system. Blockchain is the underlying
fabric for cryptocurrency system scan involve the consensus
process and has a design pattern consisting of three main
components: a distributed network, a shared ledger and digital
transactions [1]. A distributed network simply means that all
the participating nodes on the network store the unaltered
copy of the blockchain and assist in certifying the digital
transaction. A shared ledger is a ledger where all confirmed
transactions will be stored after the majority of the participants
agree on each transaction. Once stored, it will exist in all
participating nodes and cannot be altered. Lastly, a digital
transaction contains digital proof of validation such as a
transaction hash, associated block, and other necessary input
data. Additionally, a transaction can also carry extra data in the
hexadecimal representation serving as an argument to another
transaction [11]. The transaction information is encrypted and
has been signed digitally to guarantee data integrity. Confirmed
transactions are then committed to a block, which contains
a cryptographic hash of the previous block. Each block is
linked with its previous block in a linear order, forming a long
blockchain.

Consortium (Permissioned) Blockchain. A consortium
blockchain is a controlled blockchain where pre-define nodes
are allowed to perform certain tasks. It is also considered
a semi or partial decentralized network due to the fact that
defined nodes can control the network by altering the trans-
actions. The consensus process in such blockchains can be
customized, where certain nodes in the network can also be a
part of the consensus team. The consensus algorithm could be
modified to use different ideas such as voting based concept.
The consensus policy can be set where a certain number
of nodes in the network can vote or sign the block before
committing the block to the chain [12]. Another feature of the
consortium blockchain is that a transaction can be set to read-
only mode for the public, but transaction creation can be kept
private so that no other parties can send a transaction to the
network.

Private Blockchain. A private blockchain is generally
similar in features with consortium blockchain. It is also con-
sidered as a centralized blockchain where a central authority
has permission to control the transactions in the entire chain
from adding, deleting, or modifying the data in any transac-
tion [12]. Similar to consortium blockchains, read access can
be defined to specific participants along with limitations on
creating transactions. The private blockchain is mainly used to
manipulate databases or other private applications to be used
for sensitive data. In order for a transaction to be valid, the
pre-defined list of nodes must verify the transactions. While
the verification is only happening inside the private network,
it is assumed that those nodes have a high level of trust.
Due to the nature of private blockchains, not all nodes are
required to verify transactions. This will not only increase
the transaction speed in the private blockchain, making it the
fastest blockchain-based solution, but it will also reduce the
amount of work [13].

74 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

B. Smart Contracts

In Ethereum [8], a smart contract is a piece of code
consisting of a set of functions that gets executed using
Ethereum’s execution environment. Each contract has its own
storage that can only be modify by its contract. The modified
storage of a contract is considered the state of the system. For
example, if a setter function is implemented in the code, then
it can be used multiple times by sending a transaction with the
new value to modify the old value of a static variable. This
modification is considered a change in the contract’s storage.

Solidity [14] is a statically typed high-level language that
is being used to develop smart contracts. The source code
is compiled down to Ethereum Virtual Machine (EVM) byte
code. Contracts are mainly used to automate certain tasks
and operate like autonomous agents. Similar to autonomous
vehicles, contracts can be coded to follow a set of rules or
policies and enforce actions such as logging messages or data
collection automatically based on the defined policy. Once
a contract is created and deployed, its source code cannot
be removed from the blockchain even if it kills itself. The
compiled version of the source code is permanently stored
within the transaction that creates the contract. Successfully
deployed contract have their own address just like any other
users in the network. The process of killing contracts is
also called contract suicide, which takes place by sending a
kill command to itself. Upon killing itself, contract’s address
will no longer be accessible and cannot receive any further
transactions. Sending a transaction to a contract’s address is
the process of triggering a contract causing the execution of
the code inside the function that is being called with the
specified parameter. Additionally, a contract is capable of
creating another new contract by sending a transaction [15].
Fig. 5 demonstrates an example of a smart contract written in
Solidity.

III. RELATED WORK

The blockchain is an emerging technology and many
concepts are being researched that expand how blockchain
is used. In this section, we review research that relates to
access control, storage, and interoperability between separate
blockchains.

A. Sidechain, Software Connector and Interoperability

Enabling interoperability between multiple blockchains
through sidechains is one area of research expanding on
possible implementations. Pegged sidechains, which allow for
the transferring of assets in both directions directly between
chains, i.e. tokens or cryptocurrency, without the need for an
exchange are covered in detail by [17]. The sidechain receives
assets from the parent chain through transactions sent to a
special address, locking the assets on the parent chain to enable
use on the sidechain. Pegged sidechains are then able to utilize
the assets with a modified version of the parent blockchain
protocol and can freely transfer the assets back to the parent.
This type of blockchain interoperability is limited; only assets
are transferred in a 1-to-1 relationship with no increase in the
amount of total assets.

The authors in [15] examine the suitability of blockchain
technology to perform as a software connector, an interac-

tion mechanism between different components such as pipes
or sockets. Further, design decisions for blockchain specific
components on-chain and off-chain are identified, impacting
the usability for requirements such as access control or data
storage.

B. Blockchain as Access Control

Blockchain has seen numerous proposals that incorporate
various access control methods through transactions or smart
contracts [7], [2], [15] that are modeled on or interact with
traditional access control systems. As a mechanism to employ
access control, blockchain is also interestingly portrayed as
a solution to authentication for IOT use [5], [6]. Typically
in proposals where blockchain is used for access control,
transactions or smart contracts are used to pass an obfuscated
symmetric key between a sender and recipient.

C. Privacy and Data Storage

As increasing amounts of personal and private data are
available through the connected world there is a need to create
storage systems which maintain privacy [2]. While there are
methods for returning queries on data that maintain privacy,
anonymization techniques to publish data while protecting
private information through for examplek-anonymity or t-
diversity, the use of blockchain to store data can further
protect privacy by eliminating a third-party, centralized trusted
authority that could fail.

MedRec [7] is a project, distributed by MIT Media Lab,
involving public blockchain and multiple smart contracts to
protect and manage electronic health records (EHR). The
blockchain solution is proposed to replace how EHR are cur-
rently managed by improving the ability for transfer and main-
tenance of records between providers and patients. Multiple
smart contracts present in the system have a specific purpose or
task in determining data access permissions and the interaction
between the contracts establishes secure communication for
management of records which protects privacy.

Quorum [16] is an open-source project organized by JP
Morgan Chase bank. Quorum enables creation of private and
or permissioned blockchains based on the Go implementation
of the Ethereum Protocol which implement further privacy
controls. Through implementation of a tag to serve as an
identifier for private transactions, sensitive information is seg-
mented so that it is only available to parties involved in the
transaction [16]. Private smart contracts are encrypted on the
public blockchain, and are stored only with parties involved
in the corresponding transaction. The blocks of transactions
in the QuorumChain are certified based on voting consensus
algorithm and in Quorum, a private transaction creates a private
contract and the state is represented in its own patricia-merkle
trie. Interoperability can be limited however as creation of a
private contract using a public transaction is prohibited due to
the state of private and public transactions being recorded is
in two different patricia-merkle trie.

The proposed solution in this paper advances on these re-
search areas and is maintained by deployed contracts on public
and private blockchains to perform autonomous tasks such as
adding a link to a file, registering a patient, or changing the file
read permission. We summarize the comparative information
of the closely related work, alongside our proposal, in Table I.

75 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

TABLE I. COMPARATIVE EVALUATION OF MAIN FEATURES IN EACH CLOSELY RELATED WORK (PROPERTIES IN COLUMNS ARE POSITIONED AS
AVAILABLE FEATURE DENOTED BY)

Related Work Types of Blockchain Security Interoperability

Public Private Consortium Access Control Privacy Storage
MIT Media Lab - MedRec (PSD) [7]
JP Morgan Bank - Quorum (SED) [16]
Pegged sidechain [17]
IoT [5][6]
Our Proposal: Section IV

User

Public Blockchain Private Blockchain

BLOCK # 001

BLOCK # 002

5

6

7

User Node Provider s Node

BLOCK # 003

BLOCK # 001

BLOCK # 002

3

1

File Linker Contract

Provider

Other Transactions

......

Adding a Link to a File
Request Validator Contract

Verify Request Contract

...

Notifier Contract

7

Request a File Access

Notifier Contract Creates a Tx About Permission

Other Transactions

......

BLOCK # 003

8

User API

4

Enroller Contract

Other Transactions

......

Provider s
API

2

..

Fig. 1. Overview of the proposed system in chronological Order. All rectangles in green color with pattern indicate smart contracts. The orange rectangles
indicate transactions and each blue box represents a block that is linked to its previous block inside the chain. The light yellow box represents public blockchain
and the pink box represents the private blockchain. The light grey box represents the user’s (patient) node and light green box indicates the provider’s (doctor)
node.

Private Blockchain

Provider s Node

Block # 001

7

1

C
re

at
es

 a
n

d
 s

to
re

s
a

fi
le

 f

File Linker Contract
(userEthereumAddress, [[FileLink]],

HashOfFileName) { .. }

Provider

Tx created by File Linker Contract
(Tx Hash: 0x1d56kalfi69)

..
...

6

Block # 002

Block # 003

Tx Input
Data

Encrypter
(uses patient s
Eth. Public Key)

User s Ethereum Address

3

4

Provider s API

2

5

userEthAddress,[[FileLink]],HashOfFileName

Enroller Contract

Tx Hash: 0x1d56kalfi69
Block #: 001
To: 0x223d5a43cf6b
From: 0x5a7bb23f4c
Input Data: (Tx Input Data)

Fig. 2. The process for registering a file on the private blockchain by a provider. It starts with creating a new file and storing it in the local database. Steps 2,
3, 4, 5, 6, and 7 prepare the input data to the File Linker smart contract. Once the File Linker is called with the input data, it will create a record in the form of
transaction on the private blockchain indicating that the specified file link is mapped to the specified patient’s Ethereum address. This record will be searchable
when verifying requests from patients.

76 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

IV. PROPOSED SYSTEM

In this paper, we explore how Ethereum’s blockchain
technology can be utilized to implement protocols for secure
file access using smart contracts. Our solution consists of
smart contracts that pass sensitive input data from public to
private blockchains and vice versa. We incorporate a private
blockchain to prevent unauthorized users from having access
to the private network. In order to achieve security, we create
smart contracts, e.g. Verify Contract (Fig. 5), that runs a
multi-verification process before allowing access to a specified
file. Transactions hold the same structure as the standard
Ethereum’s transaction, with the input data field being required
instead of being optional. This input data field is used to
pass various encrypted messages and sensitive information.
The mining process for all of our transactions is adopted from
Ethereum’s standard process.

A. Solution Overview

Our design and its structure uses Ethereum’s public and
private blockchains, smart contracts, and a local database to
provide patients with secure access to their electronic health
records. The proposed approach allows a patient to send
requests to its provider’s system through the blockchain. Smart
contracts on the Ethereum blockchain are utilized to automate
tasks and achieve access control. Consider a simple case where
a patient is trying to access a file from his medical records.
The process flow of this scenario is shown in Fig. 1. We
assume that both the provider and the patient are registered
in this system. The initial step begins with the provider
creating a new report and then inserting it into a local file
repository (local database). For the file to be linked, the
File Linker smart contract will be called with a structured
parameter input. Each link is generated uniquely for a single
file. After successful File Linker execution, a transaction with
the input data will be created. When a patient later requests
that document, the Request Validator smart contract is called,
which then calls a Verify Request smart contract that resides
in the private blockchain. The request is verified by Verify
Request contract using an algorithm which performs three-
step verification process. Once validated, a Notifier contract
on the public blockchain is called that passes an encrypted
message to the requester. This encrypted message contains the
actual link to the file. A transaction with input data will be
created upon successful execution of this contract. Once the
transaction arrives on the public blockchain, the user will be
notified through its Ethereum wallet, which will then decrypt
the encrypted link to obtain the actual link to the file.

B. File Registration in Private Blockchain

Before requesting to view a document, the document must
be registered on the private blockchain via a transaction.
When creating this transaction, the provider is required to
specify the default permission along with the actual file. An
Ethereum address is used to identify the initial permission.
For example, if a new medical file is generated for patient P ,
then the provider will utilize P ’s Ethereum address to set valid
permission for P to view that file. All sensitive information
such as file name and download link are encrypted before
passing them as input data to the File Linker smart contract
as shown in Fig. 2.

The local database shown in Fig. 2 belongs to the provider’s
node where file name f , file link l, and the Ethereum address of
the patient are saved. The provider’s interface is responsible for
using a public-key cryptosystem (e.g. Elgamal [18]) to generate
encrypted file link JlK that maps to file f .

The provider’s interface captures the patient’s public
key and uses it to generate ciphertext JlK. Additionally,
the file name f is hashed using a one-way hash function
(i.e. SHA-256) to generate 256-bit (32-byte) hash. Reports
that belong to a patient are determined by using his/her
Ethereum public address, which is a part of the transaction
input data. These pieces of text are formatted into a
single piece of data. The format follows this outline:
〈userEthAddress〉〈JFileLinkK〉〈hashOfFileName〉, where
userEthAddress is the Ethereum address of the patient,
JFileLinkK is the secure link to file f , and 〈hashOfFileName〉
is the hash the file name f . The input data is passed into the
File Linker smart contract resulting in a transaction with the
provided input data. This process of injecting a transaction
with encrypted input is considered as creating a record that is
searchable by patient requests.

C. Patient’s Access Request to a File

Patient’s request to view his/her file securely is a key
feature in our proposed system. By default, we assume that
the patient knows the name of the file being requested. In
order to verify that the request is from a an authorized and
registered patient, the patient generates a hash of the file name
and then uses its private key to sign the hash. The signature
and the hash of the file name are merged together to create the
input data for the Request Validator smart contract. Through
its Ethereum wallet, the patient calls the Request Validator to
generates a transaction that which will be placed in the public
blockchain as a record of request. As shown in Fig. 3, the
Request Validator contract calls the Verify Request contract in
the private blockchain and passes to it the input data. This call
will result in a transaction in each of the private and public
blockchains. Verifying the signature and the hash of the file
name happens inside a smart contract.

Once all of these steps are verified, the Verify Request
contract will send an encrypted message to the Notifier smart
contract creating a transaction in the public and private
blockchains. Notifier contract will then execute and create
a transaction involving patient’s Ethereum address and the
message that was passed by Verify Request contract. This
passed message contains the secure link to access the file
encrypted using Elgamal cryptosystem and the public key
of the patient. The patient’s user interface will receive a
notification from the Notifier and inform the user about the
permission status of the request.

D. Smart Contract Structure

Fig. 5 illustrates how all contracts collaborate. In order
to achieve interoperability, this project uses a total of five
smart contracts: three resides in the private blockchain and
the remaining two reside in the public blockchain. The private
blockchain has the Enroller, Request Validator, and File Linker
contracts, whereas the public blockchain has the Verify Request
and Notifier contracts.

77 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

User

Public Blockchain
Private Blockchain

Block # 001

Block # 002

6

7

User Node Provider s Node

Block # 003

Block # 001

Block # 002

File Linker Contract

Other Transactions

...
..

Request Validator Contract
(Signature, HashOfFileName) { . }

Verify Request Contract (signature,
HashOfFileName) {
 1. Verifies the signature
 2. checks if user is registered
 3. Perform searches – Tx involving
userEthAddress & hashOfFileName }

Notifier Contract (MSG, ethereumAddress) { . }

7Notifier Contract Creates a Tx About Permission

Other Transactions

...
...

Block # 003

8

User Interface

...

Tx Created when user calls Request Validator

Enroller Contract (EthAddress) {
 Searches for initial Tx involving user s
address & hashOffileName in input data }

Signature
Generator

Tx Input
Data

(Signature, H
ash

O
fFileN

am
e)

2nd step verification Tx created (Enroller called)

API Checks Notification for user

Fig. 3. This figure shows the flow in chronological order of a user requesting access to a file in the system. At this stage, the file should already be deposited
(registered) in the private blockchain. Firstly, the patient will use his private key to generate a signature of the hash of file name. Upon finishing Steps 1 through
4, the input data to the Request Validator will be created. Once the Request Validator calls the Verify Request contract, Step 3 will start resulting in an encrypted
message being sent to the Notifier contract. Regardless of whether the request is valid or not, the message will be sent by the Notifier contract to the user’s
Ethereum address. Finally, the user’s API is responsible for consistently checking for a new message and notifies the user about the request result.

1) Enroller Contract: This registrar contract is the initial
contract that gets executed when a provider is registering a new
patient into their system. Each call to Enroller contract will
issue a transaction in the private blockchain making it visible
to the members of the private blockchain. This transaction
includes encrypted patient’s sensitive information in the input
data section, which enables efficient search if needed. Since
the transaction will reside in the private blockchain, it is more
secure than public blockchain - preventing public viewing of
private transaction detail information (see Fig. 4).

2) File Linker Contract: The purpose of this contract is
to make sure that a new secure link is mapped to specified
file. The input to this contract can be represented as P1, P2,
and P3, where P1 refers to the patient’s Ethereum address,
P2 represents an encrypted text of the link, and P3 is the
hash of the file name to which will be linked. Upon successful
execution of this contract, a transaction will be issued to the
private blockchain containing P1, P2, and P3. We use this
information to search through the list of transactions to verify
that a valid user is requesting the access. Each secure link will
be used per file when a provider is linking the file.

3) Request Validator Contract: This is a global contract
that gets executed in the public blockchain. All user executing
this contract needs to be a node in Ethereum’s public network.
Verify Request contract is responsible for securely passing the
input data to another contract that resides in the private network
of our system. The securely passed input data holds the format
as follow: 〈signature〉〈hashOfFile〉. The purpose of signature
verification is to authenticate the patient who is sending the
request. The hash of the file will be used to search through
the transactions in the private blockchain.

4) Verify Request Contract: This is another contract that
resides in the private blockchain for strengthening the security

of the system. This contract is responsible for verifying all
inputs and determines the validity of a request by checking
the permission on the requested file. It takes two parameters:
the signature and the hash of the file name that are passed by
the patient and then employs an algorithm that uses a three-
step verification procedure:

1) Signature Validation: The signature passed is verified
using the patient’s public key and the hash of the
file name to confirm that it was in fact sent by that
specific patient.

2) Verification of Registration: Upon successful verifica-
tion of the signature, the Verify Request contract calls
the Enroller contract, which will verify whether an
address is registered in the private network.

3) Transaction Search: This step involves searching for
a transaction in the private blockchain by scanning
the input data section for an Ethereum address and
file hash match. Initially, when a provider inserts
a file into the system, permission is given to view
the document for specific patient based on his/her
Ethereum address. If there is no transaction that
contains the hash of the file name that the patient
is looking for along with their address, then it simply
means that there is no document in the system. Hence,
this request will fail. However, if there is a transaction
that has the hash of the file name along with the
right address of the patient, then the Verify Request
contract will return the encrypted secure link. Once
the transaction is found, it is considered as a valid
request and the encrypted secure link of that file
will be sent to the Notifier contract residing in the
public blockchain as a parameter. Fig. 5 is the code
for the smart contract that verifies patient’s requests
implemented in Solidity language [14].

78 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

File Linker Contract
(userEthAddress, [[FileLink]],
hashOfFileName) { .. }

Request Validator Contract
(Signature, HashOfFileName) { . }

Verify Request Contract (signature,
HashOfFileName) {
 1. Verifies the signature
 2. checks if user is registered
 3. Perform searches – Tx involving
userEthAddress & hashOfFileName }

Notifier Contract (MSG, ethAddress) { . }

Enroller Contract (EthAddress) {
 Searches for initial Tx involving user s
address & hashOffileName in input data }

Private Blockchain

7

File Linker Contract

Tx created after a new patient registration

Verify Request Contract (signature,
HashOfFileName) {
 1. Verifies the signature
 2. Registration verification by calling Enroller
 3. Perform searches – Tx involving
userEthAddress & hashOfFileName }

Enroller Contract (EthAddress) {
 Searches for initial Tx involving user s address
& hashOffileName in input data }

Tx created for 2nd step verification

Public Blockchain

Request Validator Contract
(Signature, HashOfFileName) { . }

Notifier Contract (MSG, ethereumAddress) { . }

Notifier Contract Creates a Tx About Permission

Other Transactions

Tx Created when user called Request Validator

Entry Point

Tx created when File Linker calls Enroller to
locate patient s registration

Tx Created when Request Validator calls
Verify Request

Tx Created when Request Validator calls Verify
Request

Tx Created when Verify Request calls Notiifer

Tx Created when Verify Request calls
Notiifer

Fig. 4. Interaction between all of the contracts in our system. All of the black arrows going into the contracts indicate that it is being called by another contract
located at the starting point of the arrow. All of the red connectors are representing a transaction happening due to the call between two contracts. Each red
arrow is either going into the public or the private blockchain, which indicates that the transaction will reside on the specified blockchain. There is a total of
two transactions going into public blockchain due to the call between shown contracts and five other transactions are going into private blockchain.

5) Notifier Contract: This contract is deployed in the public
blockchain with the purpose of passing a message between
two parties. It takes the receiver’s address and the message
as parameters. When any contract passes a message along
with the destination address, this contract will perform its
task by creating a transaction with input data on the public
blockchain. In such case, the requester must be using an
interface that checks the public blockchain consistently and
notifies the patient when a transaction arrives that involves the
patient. In our system, the actual message that gets posted on
the public blockchain is encrypted and is stored as transaction
input data. As shown in Fig. 3, the Notifier contract takes the
encrypted message from Request Validator contract and creates
a transaction passing the message as input data. This encrypted
message will be visible to anyone, but only the patient who
has the appropriate private key can decrypt it and obtain the
file link. After the patient opens the notification, he/she will
be able to use his interface to decrypt the link and to follow
the decrypted link to access the file.

V. DISCUSSION

In this paper, two heterogeneous blockchains are used:
private and public to provide interoperable and secure data
sharing and access control. These blockchains, however, are
both Ethereum blockchains. Our proposed solution does not
support a hybrid system, such as a Bitcoin [10] blockchain
and an Ethereum [8] blockchain, since these platforms employ
different protocols, and Bitcoin does not supported smart
contracts. The requirement for using blockchains of the same
type limits the application of our proposal between existing,
non-compatible blockchains. Furthermore, our system stores
data in the provider’s local database, which is a separate layer
outside the blockchain. We assume that this local database
stores the file name, a secure link, the patient’s Ethereum
address, and the public key of the patient. The database will

only be used by the provider when adding a new file and when
retrieving the secure link upon valid request from the patient.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate how Ethereum’s private and
public blockchains, along with smart contracts, can be used to
implement a secure data sharing and file access system. Data
privacy is achieved by encrypting, hashing, and performing
a three-step verification process so that no unauthorized user
can access sensitive data of patients. The proposed system
enables interoperability between different healthcare providers
by enabling their systems to communicate, exchange data, and
use the information that has been exchanged.

For future work, our goal is to improve the proposed system
to make it compatible with HIPAA [19] rules with respect to
data sharing. Moreover, to increase robustness and adaptability
of our proposed solution, we will investigate how to get rid of
the extra data layer, i.e. provider’s database, and have the data
records stored directly on the private blockchain.

REFERENCES

[1] L. A. Linn and M. B. Koo, “Blockchain for health data and its potential
use in health it and health care related research.”

[2] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in Security and Privacy Workshops (SPW),
2015 IEEE. IEEE, 2015, pp. 180–184.

[3] Largest healthcare data breaches of 2016.
[Online]. Available: http://www.hipaajournal.com/
largest-healthcare-data-breaches-of-2016-8631/

[4] M. Swan, Blockchain: Blueprint for a new economy. ”O’Reilly Media,
Inc.”, 2015.

[5] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts
for the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[6] S. H. Hashemi, F. Faghri, P. Rausch, and R. H. Campbell, “World of
empowered iot users,” in 2016 IEEE First International Conference on
Internet-of-Things Design and Implementation (IoTDI), April 2016, pp.
13–24.

79 | P a g e

http://www.hipaajournal.com/largest-healthcare-data-breaches-of-2016-8631/
http://www.hipaajournal.com/largest-healthcare-data-breaches-of-2016-8631/

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

[7] A. Ekblaw, A. Azaria, J. D. Halamka, and A. Lippman, “A case study for
blockchain in healthcare:medrec prototype for electronic health records
and medical research data,” 2016.

[8] G. Wood, “Ethereum: A secure decentralized transaction ledger,” 2014.
[Online]. Available: http://gavwood.com/paper.pdf

[9] K. D. Mandl, D. Markwell, R. MacDonald, P. Szolovits, and I. S.

VerifyContract.sol

1 pragma solidity ^0.4.0;
2 contract VerifyRequest {
3
4 address public patient_add;
5 address public notifier;
6 address private enroller;
7 string private patient_public_Key;
8 string private fileLink;
9

10 //Creates a new verify request
11 function VerifyRequest(string sig, string hashOfFileName, string public_key) {
12 patient_add = msg.sender;
13 patient_public_Key = public_key;
14 // The secure link to a file.
15 fileLink = "www.tinyurl.com/fileLink12u76d";
16 notifier = 0xd6Be85dAd78F36f12135a001aD09B5Ee5179d8D0;
17 enroller = 0xe5Be85dAd358F39f12135a00DD09B5Ee51794457;
18 //First step: sig verification
19 int retValue = Verifysig(sig, public_key);
20 if(retValue != 0){
21 notifier("Bad sig was provided.");
22 } else {
23 // Second step: Check for registration
24 int retV = VerifyEnrollment(patient_add);
25 if(retV != 1) {
26 notifier("Patient Not Registered.");
27 } else {
28 // Third step: Check for Tx involving address
29 bool retVal = VerifyTxExistance(patient_add, hashOfFileName);
30 if(!retVal){
31 notifier("Permission denied.");
32 } else {
33 notifier("Valid Request. File link is:" + fileLink);
34 }
35 }
36 }
37 }
38 // Verification of the signature
39 function Verifysig(string sig, string public_key) returns (int retVal) {
40 // returns 0 if verified successfully
41 retVal = algorithmToVerifysig(sig, public_key);
42 return retVal;
43 }
44
45 // Verify the registration and search for initial Tx
46 function VerifyEnrollment(address patient_add) returns (int retVal) {
47 // returns 1 if verified successfully
48 retVal = Tx_search_algorithm(patient_add);
49 return retVal;
50 }
51
52 // Verifies that a transaction exist on private blockchain with the hash
53 function VerifyTxExistance(address patient_add, string hashOfFileName) returns

(bool) {
54 string temp_hash;
55 string output = hashSearch(patient_add, hashOfFileName);
56 address outputA = addressSearch(patient_add, hashOfFileName);
57 if((output != hashOfFileName) && (patient_add != outputA)){
58 return false;
59 } else {
60 return true;
61 }
62 }
63 }

Fig. 5. Verify Request smart contract code implemented in Solidity [14].

80 | P a g e

http://gavwood.com/paper.pdf

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Kohane, “Public standards and patients’ control: how to keep elec-
tronic medical records accessible but privatemedical information: ac-
cess and privacydoctrines for developing electronic medical records-
desirable characteristics of electronic medical recordschallenges and
limitations for electronic medical recordsconclusionscommentary: Open
approaches to electronic patient recordscommentary: A patient’s view-
point,” Bmj, vol. 322, no. 7281, pp. 283–287, 2001.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electionic cash system,” Unpub-
lished, 2008.

[11] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, A. Rastogi, T. Sibut-Pinote, N. Swamy,
and S. Zanella-Béguelin, “Short paper: Formal verification of smart
contracts.”

[12] J. G. BitFury Group, “Public versus private blockchains: Part 1,
permissioned blockchains.”

[13] Private versus public blockchains: Is there room for both
to prevail? [Online]. Available: https://medium.com/@Magnr/
private-versus-public-blockchains-is-there-room-for-both-to-prevail-b97040dacfb

[14] Solidity. [Online]. Available: https://solidity.readthedocs.io/en/develop/
[15] X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev, A. B. Tran,

and S. Chen, “The blockchain as a software connector,” in Software
Architecture (WICSA), 2016 13th Working IEEE/IFIP Conference on.
IEEE, 2016, pp. 182–191.

[16] Quorum whitepaper. [Online]. Available: https:
//github.com/jpmorganchase/quorum-docs/blob/master/Quorum%
20Whitepaper%20v0.1.pdf

[17] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling
blockchain innovations with pegged sidechains,” URL: http://www.
opensciencereview. com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains, 2014.

[18] T. El Gamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in Advances in Cryptology, 1985, pp. 10–18.

[19] Health insurance portability and accountability act (hipaa). [Online].
Available: https://www.hhs.gov/hipaa/

81 | P a g e

https://medium.com/@Magnr/private-versus-public-blockchains-is-there-room-for-both-to-prevail-b97040dacfb
https://medium.com/@Magnr/private-versus-public-blockchains-is-there-room-for-both-to-prevail-b97040dacfb
https://solidity.readthedocs.io/en/develop/
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf
https://www.hhs.gov/hipaa/

