
Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

698 | P a g e

Pair Programming: Collocated Vs. Distributed

Mark Rajpal, M.Sc.
Agile Global Results

Calgary, Alberta, Canada
mark.rajpal@agileglobalresults.com

Abstract—Collocation is almost always a preferred alternative
compared to Distributed. It makes sense that collocated team
members are more likely to perform better than distributed team
members. However, in today’s real world the distributed nature
is either the norm or quickly becoming the norm. That is not to
say that collocation no longer exists, but rather it is becoming less
and less pronounced. Pair programming is a technique that can
be performed in a collocated or distributed fashion. Not all
software development projects use this practice. The projects
that do undertake this programming method typically perform
collocated or distributed pair programming, but very rarely use
both. This paper examines a project where both types of pair
programming were used. At the completion of the project, all
developers were asked to complete a survey. The results of the
survey allowed us to compare various attributes of collocated and
distributed pair programming. What may be surprising is that in
some cases the differences between the two are minimal.

Keywords—Agile; scrum; pair programming; extreme
programming

I. INTRODUCTION

Pair programming is a concept that has become
synonymous with Agile methodologies especially when it
comes to extreme programming [1]. As two team members
work together to develop software, one team member focuses
on coding the task at hand while the other team member
focuses on reviewing the code and thinking ahead to the next
task. Team members may choose to swap these roles multiple
times throughout the day.

The early days of pair programming suggested that
collocated pairs should only apply the technique. However, as
software projects become more dispersed, distributed pair
programming has emerged as an alternative for distributed
teams. This raises many questions. What are the constraints on
distributed pair programming? Can two team members faced
with temporal, cultural, and geographic barriers reasonably
apply pair programming? Is it possible for distributed pair
programming to achieve the same results (or better) than
collocated pair programming?

A software development project (Project ABC) was
undertaken for a power transmission company in the United
States. The Scrum team was distributed throughout Canada
where some team members were collocated. Upon completion
of the project, the developers that participated in pair
programming were asked to complete a survey based on their
experience within this project.

The next section provides an overview of the project.
Section III provides an overview of the various tools that were

used. The progress of the project is covered in Section IV.
Sections V and VI discuss the survey in detail. Additional
Research and Conclusions are discussed in Sections VII and
VIII.

II. PROJECT ABC

This project took place for the greater part of 2016. Some
team members had little knowledge of Agile while others had
no Agile experience whatsoever. However, the team was
willing to try Agile as they were unhappy with previous phases
that incorporated a modified Waterfall approach. The client
also had no experience with Agile but was willing to try
anything after multiple failed projects with a previous software
vendor.

The single Scrum team consisted of four developers, one
tester, and one requirements engineer. The Scrum methodology
was used which included all Scrum ceremonies and each sprint
was two weeks in duration. The author of this paper facilitated
many roles which included Scrum Master, coach, facilitator,
teacher, mentor, and team member.

Developers were encouraged to perform pair programming
but were not mandated to do so. Reports have shown that pair
programming is widely used technique across Agile teams
(Table 1).

TABLE I. TEAMS USING PAIR PROGRAMMING

Report Percentage

2016 State of Scrum Report [12] 35%

11th Annual State of Agile Survey [13] 32%

III. TOOLSET

The team utilized a multitude of tools to complete the user
stories. Even though the team did not research specific pair
programming tools, some of the chosen tools were a good fit
for collocated and distributed pair programming.

A. Productivity

Since the team inherited a Java application, all developers
agreed to use IntelliJ IDEA as their integrated development
environment (IDE). There are many IDE options for Java and
Eclipse was also considered but the team ultimately chose the
commercial tool over the open source option. In hindsight, this
decision may have restricted the team. IntelliJ does not provide
many plugins that support distributed pair programming. While
Eclipse has a few to choose from including, Sangam [2] and
RIPPLE [3], other distributed pair programming tools that
utilize their own editor including COLLECE and COPPER [4].

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

699 | P a g e

Various web based tools were incorporated that also
enabled team members to conduct pair programming. These
tools include; Jira, Confluence, Fisheye, Crucible, Bamboo,
Nexus, and Bitbucket. All of these tools (except for Nexus)
derive from the same software vendor Atlassian. This was a
deliberate choice because tools from the same vendor generally
integrate well together.

B. Communication

Everyone agreed that a good screen sharing tool was an
absolute necessity. As a result, the team adopted TeamViewer.
This allowed pairs to share their desktops and take over control
when needed.

Regular phone calls were used when ad-hoc real-time voice
communication was needed. However, most team members
working out of their home location preferred Skype. There
were many cases where Skype did not perform well. This could
be attributed to low bandwidth associated with home Internet
connections.

When voice communication was not required, pairs relied
on HipChat to send instant messages (IM) back and forth.
While HipChat does support video chat and screen sharing the
team found it to be very problematic. Another IM tool called
Slack was also considered but HipChat was preferred as the
team had already incorporated other tools by that particular
vendor (Atlassian).

GoToMeeting was utilized which also allowed for screen
sharing. This tool was used in more of a pre-planned group
setting. For example, sprint planning, sprint reviews, sprint
retrospectives, and daily scrums were coordinated through
GoToMeeting.

IV. PROJECT PERFORMANCE

The team estimated they could complete 50 story points
worth of work in a 2 week sprint. Over the course of 15+
sprints the team exceeded that target every sprint. In some
cases they overwhelming exceeded the target. The best sprint
resulted in 476 story points.

Due to the high velocity, the original release plan was
completed 3 months ahead of schedule. Instead of ending the
project at that point the client requested additional work much
to the satisfaction of all parties involved.

During the final 3 months of the project, the team was
allowed to incur overtime. The Table 2 below shows the total
hours for the entire project.

TABLE II. PAIR PROGRAMMING HOURS

Pairing
Total
Hours

Percentage

Collocated Pairs 2,794.5 47%

Distributed Pairs 3,149.25 53%

Table 2 shows an almost even split in terms of time
invested. However, that does not indicate that both pairs were
equally effective.

V. SURVEY

A. Overview

As mentioned, at the completion of the project, each
developer was asked to complete a voluntary survey based on
their pair programming experience. Since most of the
developers had limited pair programming experience, their
responses were directly related to Project ABC. The survey
required participants to rate a series of questions from 1 to 10,
where 1 represents “extremely disagree” and 10 represents
“extremely agree”. There were some additional free form
questions as well (Table 3).

TABLE III. PAIR PROGRAMMING SURVEY [SCALE: 1 (EXTREMELY
DISAGREE) – 10 (EXTREMELY AGREE)]

Question Combined Collocated Distributed

Q1
Pair Programming
Enjoyment

M = 8.25 M = 8.5 M = 8

SD = 0.5 SD = 0.71 SD = 0

Q2
Pair Programming
Effectiveness

M = 8.5 M = 9 M = 8

SD = 0.58 SD = 0 SD = 0

Q3

Pair Pressure (don’t
want to let your pair
down, sense of
responsibility)

M = 5.25 M = 6 M = 4.5

SD = 2.63 SD = 4.24 SD = 0.71

Q4
Pair Courage (did
something you would
not do if working alone)

M = 8 M = 9 M = 7

SD = 2.83 SD = 1.41 SD = 4.24

Q5
Pair Programming
increased productivity

M = 7.25 M = 8.5 M = 6

SD = 1.71 SD = 0.71 SD = 1.41

Q6
Pair Programming
increased quality

M = 8.25 M = 8 M = 8.5
SD = 0.5 SD = 0 SD = 0.71

Q7
Pair Programming
increased confidence

M = 7.5 M = 7.5 M = 7.5

SD = 2.38 SD = 2.12 SD = 3.54

Q8
Pair Programming
increased interest in
Agile

M = 7 M = 5 M = 9

SD = 4.08 SD = 5.66 SD = 1.41

Q9
Pair Programming
reduced time spent

M = 7 M = 8 M = 6

SD = 2.16 SD = 1.41 SD = 2.83

Q10
Were able to 'gel' with
you primary pair partner

M = 7.75 M = 9 M = 6.5

SD = 2.06 SD = 1.41 SD = 2.12

Q11
Prefer peer review to
pair programming

M = 6 M = 6 M = 6

SD = 2.94 SD = 4.24 SD = 2.83

Q12
Trustworthiness is
important

M = 9.75 M = 10 M = 9.5

SD = 0.5 SD = 0 SD = 0.71

Q13
Social etiquette is
important

M = 9.25 M = 8.5 M = 10
SD = 1.5 SD = 2.12 SD = 0

Q14 Energy is important
M = 7.75 M = 9 M = 6.5

SD = 1.71 SD = 1.41 SD = 0.71

Q15
Expressing thoughts is
important

M = 9.25 M = 9.5 M = 9

SD = 0.96 SD = 0.71 SD = 1.41

Q16
Letting go of obsessions
is important

M = 10 M = 10 M = 10
SD = 0 SD = 0 SD = 0

Q17
Getting enough sleep is
important

M = 8.25 M = 8 M = 8.5

SD = 2.06 SD = 2.83 SD = 2.12

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

700 | P a g e

Each developer was asked to complete the survey
individually. Furthermore, each developer (whether collocated
or distributed) were given the exact same survey.

B. Results

The mean (M) and standard deviation (SD) was calculated
for each question. Additionally, these results were represented
amongst all developers, collocated developers, and distributed
developers.

VI. ANALYSIS

Overall, the results seem to indicate that pair programming
was an effective tool for this project. Distributed and collocated
pairs seemed to feel that Project ABC benefited from pair
programming. In comparison, based on Q2, Q5, Q6, Q7, and
Q9 collocated pairs seemed to recognize more benefits than
their counterparts.

In terms of comradery (Q1, Q3, Q4, and Q10), collocated
pairs reported higher findings than distributed pairs. This is not
surprising given the fact that collocated pairs have daily face-
to-face interaction. In fact, L. Williams [5] describes “pair fun”
as an eighth behavior from the book, “Seven Synergic
Behaviors of Pair Programming”. Furthermore, after the
completion of this project, many of the collocated pairs
reported some sadness because they had moved onto other
projects that did not require nor promote pair programming.
This is consistent with the final stage of the Tuckman model
‘adjourning’ which is sometimes referred to as ‘mourning’
[11].

The largest discrepancy is represented by Q8 where
collocated pairs possibly did not associate pair programming
with Agile, while distributed pairs may have. This could be
attributed to the fact that the project focused more on Scrum
and less on XP.

The smallest discrepancy is represented by Q16 where
there was no discrepancy. All participants scored that question
with a 10. It seems that all developers experienced situations
where they benefitted by putting aside their fixations and
actively listened to their pair partner. Q15 is somewhat related
and as expected scored high as well.

Q11 shows that while there is a preference to pair
programming over pair review, the preference is not
overwhelmingly strong. Both types of pairs may have felt that
peer review would be more applicable than pair programming
in some situations.

The social interaction questions (Q12, Q13, Q14, and Q16)
scored relatively high indicating that pair programming is a
highly social technique that requires attentiveness.

VII. ADDITIONAL RESEARCH

This paper presented the results of performing collocated
and distributed pair programming concurrently. While there are
many studies on pair programming, very few compare
collocated vs. distributed within the same project.

Future studies should focus on a larger subset. This paper
only focused on minimal collocated pairs and minimal
distributed pairs. Additionally, the use of mob programming

(perhaps alongside pair programming) should also be explored.
Furthermore, the equality (or inequality) of work amongst pairs
could also be an interesting research area.

Even though the project team reported significant results as
a result of pair programming, experiments by Nawrocki and
Wojciechowski [6], Vanhanen and Lassenius [7], Arisholm et
al. [8], Rostaher and Hericko [9], and Hulkko and Abrahamson
[10] show little or no difference between pair programming
and individual programming. Exploration as why there is such
divisiveness in pair programming effectiveness may also
warrant additional research.

This study did not attempt to swap whole pairs from
collocated to distributed or vice versa. Further investigation
into this area could highlight some transitional difficulties. This
information could be invaluable at the planning stage of a
project when determining which resources should be collocated
or distributed.

VIII. CONCLUSION

This project is an indication that distributed pair
programming can be effective. The results show that the
following is required:

 Not surprising, both team members need to enjoy
working together. Pairs that have a lot in common will
naturally gravitate towards one another. To establish
this working relationship it is extremely important to
bring everybody together at the beginning and
periodically. Throughout Project ABC, all team
members (not including the client) were face-to-face
once a month for a 2 day period which included sprint
review, sprint planning, and sprint retrospective.

 Pairs need to receive some feedback that they are
moving in the right direction. In Project ABC, emails
were sent at the end of each sprint to indicate the team’s
velocity (Fig. 1). In most cases, the team overachieved.

 When performing the role of the ‘navigator’, the
individual needs to ensure that the proper quality
measures are enforced. Sometimes that can be as simple
as reminding the ‘driver’ to write unit tests.

 Pairs are required to have complete trust in one another.
There will be disagreements and pairs need to actively
listen to options they may not have thought of.
Additionally, they need to be open minded to try
different techniques that may be uncomfortable.

 What may not be obvious is that the social aspect of
pair programming also applies to distributed pairs. Pairs
need to recognize that their counterparts may be on
another time zone or participating in a cultural
celebration.

 Expressing ideas is also very important. But pairs will
only do so if they feel they will not be judged.
Incorporating this into a team working agreement can
go a long way.

 It can be difficult to let go of obsessions. When pairs are
able to do this they often learn something new.

Future Technologies Conference (FTC) 2017
29-30 November 2017 | Vancouver, Canada

701 | P a g e

 Pair programming can be exhausting. Distributed pairs
need to ensure they have enough sleep prior to starting
their work day. This will allow them to actively
participate throughout the day.

 There are often different levels of experience and
expertise with Agile. The act of distributed pair
programming can increase interest in Agile and may
lead to the adoption of other XP practices.

 Tools are extremely important. Real-time or near real-
time tools are necessary for distributed pair
programming.

While this project proved that distributed pair programming
can be effective, it also proved that collocated pair

programming can also be effective. However, based on the
results of the survey there is no evidence to show that
distributed can be more or as effective as collocated pair
programming. Keep in mind that assumes all developers are of
the same level. It is also reasonable to assume that a pair or
senior distributed developers can outperform a pair of junior
developers.

Agile teams are likely to achieve a higher velocity by using
collocated pair programming. However, if collocated is not an
option, distributed pairs should be considered.

Of particular interest is the increase in velocity as pair
programming teams progress. In Fig. 2, the team completed
more story points in less time.

Fig. 1. Sprint 14 completion email.

Fig. 2. Team velocity.

ACKNOWLEDGEMENT

This paper would not have been possible without the
participation and hard work of the developers on Project ABC.
A special thanks also goes out to the client who supported the
use of Agile tools and techniques.

REFERENCES

[1] Extreme Programming. 1999 [Retrieved 11/30/2016], Available from:
http://www.extremeprogramming.org/rules/pair.html.

[2] C. Ho S. Raha E. Gehringer L. Williams "Sangam—A distributed pair
programming plug-in for eclipse" in Proc. OOPSLA Workshop on
Eclipse Technology Exchange, pp. 73-77 2004.

[3] K. E. Boyer A. A. Dwight R. T. Fondren M. A. Vouk J. C. Lester "A
development environment for distributed synchronous collaborative
programming" ACM SIGCSE Bull., vol. 40 no. 3 pp. 158 2008.

[4] W. Dou, K. Hong and X. Zhang, "A Framework of Distributed Pair
Programming System," 2009 International Conference on Computational
Intelligence and Software Engineering, Wuhan, 2009, pp. 1-4. doi:
10.1109/CISE.2009.5363425

[5] D. Wallace, I. Raggett, J. Aufgang, Extreme Programming for Web
Projects, Addison-Wesley Longman, Inc, 2003.

[6] Nawrocki, J. and Wojciechowski, A., 2001. Experimental Evaluation of
pair programming. In: Proceedings of the European Software Control

and Metrics Conference (ESCOM 2001). ESCOM Press, 2001, pp. 269-
276.

[7] Jari Vanhanen and Casper Lassenius, Effects of Pair Programming at the
Development Team Level: An Experiment, 2005 IEEE

[8] Erik Arisholm, Hans Gallis, Tore Dyba, and Dag I.K. Sjoberg,
Evaluating Pair Programming with Respect to System Complexity and
Programmer Expertise, IEEE Transactions on Software Engineering,
Vol. 33, No. 2, Feb 2007.

[9] Matevz Rostaher and Marjan Hericko, Tracking Test First Programming
– An Experiment, XP/Agile Universe 2002, LNCS 2418, pp. 174-184,
2002

[10] Hanna Hulkko and Pekka Abrahamsson, A Multiple Case Study on the
Impact of Pair Programming on Product Quality, ICSE’05, May 15-21,
2005, St. Louis, Missouri, USA.

[11] The Five Stages of Project Team Development. 2016 [Retrieved
06/15/2017], Available from: https://project-management.com/the-five-
stages-of-project-team-development.

[12] 2016 State of Scrum Report. 2017 [PDF File], Available from:
https://www.scrumalliance.org/why-scrum/state-of-scrum-report/2016-
state-of-scrum.

[13] 11th Annual State of Agile Survey [PDF File], Available from:
https://explore.versionone.com/state-of-agile/versionone-11th-annual-
state-of-agile-report-2.

