
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

20 | P a g e

www.ijarai.thesai.org

LSVF: a New Search Heuristic to Reduce the

Backtracking Calls for Solving Constraint

Satisfaction Problem

Cleyton Rodrigues

Center of Informatics,

Federal University of

Pernambuco (CIn-UFPE)

Recife, PE, Brazil, FaculdadeEscritor

Osman da Costa Lins,

Vitória de Santo Antão – PE, Brazil

Ryan Ribeiro de Azevedo

Center of Informatics,

Federal University of

Pernambuco (CIn-UFPE)

Recife, PE, Brazil, Federal

University of Piauí (DSI-UFPI)

Caixa Postal 15.064 – 91.501-970 –

Picos – PI – Brazil

Fred Freitas, Eric Dantas

Center of Informatics,

Federal University of Pernambuco

(CIn-UFPE)

Recife, PE, Brazil

Abstract—Many researchers in Artificial Intelligence seek for

new algorithms to reduce the amount of memory/ time consumed

for general searches in Constraint Satisfaction Problems. These

improvements are accomplished by the use of heuristics which

either prune useless tree search branches or even indicate the

path to reach the (optimal) solution faster than the blind version

of the search. Many heuristics were proposed in the literature,

like the Least Constraining Value (LCV). In this paper we

propose a new pre-processing search heuristic to reduce the

amount of backtracking calls, namely the Least Suggested Value

First: a solution whenever the LCV solely cannot measure how

much a value is constrained. In this paper, we present a

pedagogical example, as well as the preliminary results.

Keywords-Backtracking Call; Constraint Satisfaction Problems;

Heuristic Search.

I. INTRODUCTION

Constraint Satisfaction Problems (CSP) still remains as a
relevant Artificial Intelligence (AI) research field. Having a
wide range of applicability, such as planning, resource
allocation, traffic air routing, scheduling [Brailsford et al,
1998], CSP has been largely used for real large complex
applications.

A tough problem that hampers its usage in a larger scale
resides in the fact that, in general, CSP are NP-complete and
combinatorial by nature. Amongst the various methods
developed to handle this sort of problems, in this paper, our
focus concerns the search tree approach coupled with the
backtracking operation.

In particular, we address some of the several heuristics used
so far to reduce (without guarantees) the amount of time
needed to find a solution, namely: Static/ Dynamic Highest
Degree heuristic (SHD/DHD), Most Constraint Variable
(MCV) and Least Constraining Value (LCV) [Russell and
Norvig, 2003]. Some problems, however, like the ones
common referred as instances of the Four Colour Map

Theorem [Robertson et al., 1997], present the same domain for
each entity, making the LCV heuristic impossible to decide the
best value to be asserted first. For these cases, we propose a
new pre-processing heuristic, namely Least Suggested Value
First (LSVF), which can bring significant gains by a simple
domain value sorting, respecting an order made by the
following question “Which is the least used value to be
suggested now?”. Additionally, we enumerate some
assumptions to improve the ordering. Along the paper, we
show some preliminary results with remarkable reduce of
backtracking calls.

This paper is organized as follows. Section 2 explains
briefly the formal definition of CSP and the most common
heuristics used in this class of problems; following, Section 3
details the language CHR

V
 and why we have chosen it; Section

4 introduces the LSVF heuristic with a pedagogical example; a
brief comparison between LCV and LSVF is performed in
Section 5, showing that the heuristics are feasible in different
scenarios, but exemplifying as LSVF can serve as a tie breaker
for the LCV; Section 6 highlights some results, and finally,
Section 7 presents the final remakes and the future works.

II. CSP AND HEURISTICS

In this section, we introduce the basic concepts of CSP and
further, we detail the most common heuristics used for this
kind of problem.

A. Constraint Satisfaction Problem

Roughly speaking, CSP are problems defined by a set of
variables X = {X1, X2,...,Xn}, where each one (Xi) ranges in a
known domain (D), and a set of Constraints C = {C1, C2,..., Cn}
which restricts specifically one or a group of variables with the
values they can assume. A consistent complete solution
corresponds to a full variable valuation, which is further in
accordance with the constraints imposed. Along the paper, we
refer to the variables as entities. Figure 1 depicts a pedagogical
problem.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

21 | P a g e

www.ijarai.thesai.org

Figure 1. A Pedagogical Constraint Satisfaction Problem

In the figure above, the entities are the set {X1, X2, X3, X4,
X5, X6, X7} and each one can assume one of the following
value of the domain: D = {r,g,b}, referring to the colours, red,
green, and blue, respectively. The only constraint imposed
restricts the neighbouring places (that is, each pair of nodes
linked by an arc) to have different colours. As usual, this
problem can be reformulated into a search tree problem, where
the branches represent all the possible paths to a consistent
solution.

By definition, each branch not in accordance with C, must
be pruned. The backtracking algorithm, a special case of depth-
first, is neither complete nor optimal, in case of infinite
branches [Vilain et al., 1990]. As we have not established an
optimal solution to the problem, our worries rely only upon the
completeness of the algorithm. However, we only take into
account problems in which search does not lead to infinite
branches, and thus, the completeness of the problem is ensured.

B. Search Heuristics

Basically, the backtracking search is used for this sort of
problems. Roughly, in a depth-first manner, a value from the
domain is assigned, and whenever an inconsistency is detected,
the algorithm backtracks to choose another colour (another
resource), if any is available. Although simple in conception,
the search is far from being efficient. Moreover, this algorithm
lacks intelligence, in the sense to re-compute partial valuations
already proven to be consistent.

A blind search, like the backtracking, is improved in
efficiency employing some heuristics. Regarding CSP, general
heuristics (that is, problem-independent, opposite to domain-
specific heuristics, as the ones in A* search [NationMaster,
2010]) methods speed up the search while removing some
sources of random choice, as: “Which next unassigned variable
should be taken?”, “Which next value should be assigned?”.
The answer for the questions arises by a variable and value
ordering. The most famous heuristics for variable and value
ordering are highlighted below. Note that the two former
methods concern the variable choice, and the latter refers to the
value ordering:

 Most Constrained Variable (MCV) avoids useless
computations when an assignment will eventually lead
the search to an inconsistent valuation. The idea is to
try first the variables more prone to causing errors;

 When the later heuristics is useless, the Degree
Heuristic (SHD/DHD) serves as a tiebreaker for MCV,
once it calculates the degree (number of conflicts) of
each entity;

 The Least Constraining Value (LCV), in turn, sorts
decreasingly the values in a domain respecting how
much the value conflicts with the related entities (that
is, the values less shared are tried first).

We have restricted our scope of research to the class of
problems similar to the family of the four colours theorem,
where the domain is the same for each entity. In this sense, the
LCV heuristic is pointless since the level of constraining for
each value is the same. This drawback forces us to search
alternatives to sort the values of CSP in similar situations, but
without sacrificing efficiency.

In the next section we describe CHR
v
, a Constraint Logic

Programming Language which we have used to carry out the
tests. The language is built on Prolog, and its syntax/semantics
allows structure CSP problems in a simple and clear manner.

III. CHR
V

Constraint Handling Rules with Disjunction (CHRv)
[Abdennadher and Schutz, 1998] is a general concurrent logic
programming language, rule-based, which have been adapted
to a wide set of applications such as: constraint satisfaction
[Wolf, 2005], abduction [Gavanelli et al, 2008], component
development engineering [Fages et al, 2008], and so on. It is
designed for creation of constraint solvers. CHR

v
 is a fully

accepted logic programming language, since it subsumes the
main types of reasoning systems [Frühwirth, 2008]: the
production system, the term rewriting system, besides Prolog
rules. Additionally, the language is syntactically and
semantically well defined [Abdennadher and Schutz, 1998].
Concerning the syntax, a CHRV program is a set of rules
defined as:

 _ @ \ | .rule name Hk Hr G B (1.1)

Rule_name is the non-compulsory name of the rule. The
head is defined by the user defined constraints represented by
Hk and Hr, with which an engine tries to match with the
constraints in the store. Further, G stands for the set of guard
built in (native) constraints (available by the engine), that is, a
condition imposed to be verified to fire any rule. Finally, B is
the disjunctive body, corresponding to a set of constraints
added within the store, whenever the rule fires. The logical
conjunction and disjunction of constraints are syntactically
expressed by the symbols “,” and “;” respectively. Logically,
the interpretation of the rule is as follows:

    

   

GH k r B\GH

where V vars G vars H k GH k

vars H , V vars B \ VB\GH GHr

 V (G ((H H) (V B

H))), 



    

 U

U

 (1.2)

As the guard (G) of the rule consistent and true from the
facts present, the user-defined constraints representend by Hk
and Hr, are logically equivalent to the body (B) and Hk
conjoined, so they can be replaced. This represents a
Sympagation rule and the idea is to simplify the basis of facts
to which the deductions can be made. We ask the reader to
check the bibliography for further reference to the declarative
semantics [Abdennadher and Schutz, 1998].

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

22 | P a g e

www.ijarai.thesai.org

In the literature, many operational semantics was proposed,
as [Abdennadher et al, 1999]. However, the ones most used in
CHR

v
 implementations are based on the refined semantics

[Duck et al, 2004] (as the SWI-Prologversion 5.6.52
[Wielemaker, 2008] used in the examples carried out along this
paper). According the refined operational semantics, when
more than one rule is possible to fire, it takes into account the
order in which the rules were written in a program. Hence, as
SHD heuristic orders the entities to be valued in accordance
with the level of constraining, this pre-analysis help us to write
the rules based on this sort. Thus, we could concentrate our
effort on the order of the values in the domain.

The problem depicted in Figure 1 is represented by the
logical conjunction of the following rules:

The first rule f@ introduces the constraints into the store,
which is a set of predicates with functor d and two arguments:
the entity and a variable to store the valuation of the entity. The
seven following rules relate the entity with the respective
domain. Additionally, rule m adds all the conceptual
constraints, in the following sense: n(Ri,Rj) means there is an
arc linking Ri to Rj, thus, both entities could not share the same
colour. Finally, the last rule is a sort of integrity constraint. It
fires whenever the constraints imposed is violated. Logically, it
says that if two linked entities n(Ri,Rj) share the same colour
(condition ensured by the guard), then the engine needs to
backtrack to a new (consistent) valuation.

IV. LEAST SUGGESTED VALUE FIRST (LSVF)

Some points need be discussed to clarify the technique
developed to improve the search, decreasing the amount of
backtracking calls. The first point, which rule will trigger, was
discussed before. The second important subject of discussion is
the order of which the values are taken from the domain in the
search.

We have already said that the logical disjunction is denoted
in the body of a CHR

v
 rule, syntactically expressed as “;”. In

order to maintain consistency with the declarative semantics,
CHR

v
engine tries all the alternatives of a disjunctive body. A

disjunctive body is always evaluated from left-to-right.

Taking the rule d1 from the previous example, the engine
tries the following order for X1: (1) red, (2) green and, (3) blue.
All the rules were created respecting the same values’ order. At
first glance, we realized a relevant problem: if all entities try
first the same colour, and we know that these entities are
related, a second evaluated entity always needs to backtrack.
Furthermore, since the entities shares the same domain, LCV is
pointless: each value has the same level of constraining. In
order to make our idea clear, we introduce a second example
(Figure 2).

Figure 2. An example regarding the order of the colours.

The Figure 2a shows the motivation problem for the new
heuristics discussed. There are 3 entities X1, X3, X7, each one
sharing the same domain. Let us respect the order of valuation
from left to right, and the order of variable chosen based on the
numerical order. Thus, the engine works as follows:

1) X1 is chosen, and the colour red is taken;

2) X3 is chosen, and the colour red is taken;

3) Inconsistency found: backtracking;

4) X3 is chosen, and the colour blue is taken;

5) X7 is chosen, and the colour red is taken;

6) Inconsistency found: backtracking;

7) X7 is chosen, and the colour blue is taken;

8) Inconsistency found: backtracking;

9) X7 is chosen, and the green is taken.
Following, in the Figure 2b, the values order is changed to

avoid, as much as possible, the conflicts. The engine now
works as stated below:

1) X1 is chosen, and the colour red is taken;

2) X3 is chosen, and the colour blue is taken;

3) X7 is chosen, and the colour green is taken.
The above modification prevented the backtracking calls,

and the solution was reached just with three steps, unlike the
last example, which realized the same, in 9 steps. Evidently, in
practice, we cannot avoid all backtracking calls, but each
reduction is well-suited for the overall search time-
consumption.

A. How The Heuristics Works?

Our propose is to enjoy the operational semantics addressed
by the CHR

V
 implementation to sort the order in which the

values from the domain is asserted, removing the amount of
backtracking calls. We believe this reduction can fit well to
large and complex problems, where time is a relevant factor.

The focus addressed by this paper is for problems with
three or four elements in the domain. In this context, the entity
set members are categorized as: (i) Soft Entities, that is, the less
constrained ones, (ii) Middle Entities, which are half
constrained, (iii) Hard Entities, which are, more constrained.
The creation of these three groups is explained in the next
subsection. Hence, instead of proposing a solution of random
sorting, we have taken the following assumptions:

 Usually, the less constrained entities are likely to be
linked to others more constrained, and, further, the
entities less restricted are not connected to each other
(if this were the case, the entities owned other

f@ facts ==> m, d(x1,C1), d(x7,C7), d(x4,C4),

d(x3,C3), d(x2,C2),d(x5,C5), d(x6,C6).

d1@ d(x1,C) ==> C=red; C=green; C=blue.

d7@ d(x7,C) ==> C=red; C=green; C=blue.

m@ m <=> n(x1,x2), n(x1,x3), n(x1,x4),

n(x1,x7), n(x2,x6),n(x3,x7), n(x4,x7),

n(x4,x5), n(x5,x7), n(x5,x6).

n1@ n(Ri,Rj), d(Ri,Ci), d(Rj,Cj)<=> Ci=Cj |

fail.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

23 | P a g e

www.ijarai.thesai.org

restrictions than those that connect them, and they
would be deemed more constrained). Thus, the domain
of these entities is sorted in the same manner;

 Normally, hard entities are linked to middle ones, and
thus the order of valuation must be in conformance to
this fact, example, if a hard entity domain is ordered
like (1) red, (2) green, (3) blue, the middle should be
sorted like (1) blue, (2) green (3) red, that is, the less
suggested values first;

 The first value assumed by the hard entities should be
the last for the soft and middle entities, since
potentially both are linked to the former (this is why
they were classified as hard).

B. Formalizing LSVF

After the explanation of how the heuristic works, it is
important to define the levels of constraints (soft, middle,
hard). This requires calculating the level restriction for each
entity, provided by the heuristic SHD. Through this, it suffices
for each element domain of each entity to calculate how many
inconsistencies exist with respect to that element for its related
entities. Formally, we define R as the function that takes an
element of the domain (Xi) and returns the level of restriction
(IN). The restriction level of an entity (e) as a whole, in turn, is
defined as the sum of the return R for each domain element of
this entity.

i

i

1

: X

level of restriction() (X)
n

i

R IN

e R





 (1.3)

In order to divide the entities into the three groups, we just
take the value of the most restricted entity and divide by three.
With the quotient of dividing (Q), one should take the
following classification:

 Soft Entities: Those whose level of restriction is near
the value of Q;

 Middle Entities: Those whose level of restriction is
near the value of 2Q;

 Hard Entities: Those whose level of restriction is near
the value of 3Q;

As an example, suppose that for an arbitrary problem, the
highest amount of restriction for an entity was 50. The quotient
of the division by 3 is about 17. Thus, those entities whose
restriction value is around 17 (Q) will be classified as soft;
those whose value is around 34 (2Q) are classified as middle,
and those with a value close to 51 (3Q) will be hard entities.

V. EXPERIMENTS AND RESULTS

In order to exemplify this approach, we are going to show
the reformulation of the example used along this paper,
illustrating gradually the gains obtained. With respect the
problem, we divided the set of entities as follows: (i) soft
entities: {X2, X3, X6}, (ii) middle entities: {X4, X5}, and (iii)
hard entities {X1, X7}, with 6, 9 and 12 conflicts, respectively.

Note that 12:3 = 4, then we have Q = 4, 2Q = 8, 3Q = 12. Table
1 summarizes the amount of inferences made and the number
of backtracking calls. Inference represents the amount of
deductions made by Prolog engine along a query, its amount is
directly related to the time that a query was held, so the lower
the number of inferences, the less time spent.

TABLE I. FIRST RESULTS WITH THE LSVF HEURISTIC.

Sorting Inferences Backtracking

soft (r,g,b),

middle (r,g,b),

hard (r,g,b)

4,897 8

soft (r,g,b),

middle (b,r,g),

hard (r,g,b)

4,694 7

soft (g,r,b),

middle (b,r,g),

hard (r,g,b)

4,415 6

soft (g,b,r),

middle (b,g,r),

hard (r,g,b)

4,208 5

Not accidentally, the table was populated according to the
assumptions raised earlier. Each line in the table corresponds
to a different CHR

v
 program. In the first line, the heuristic was

not used. It is worth to keep their results in the table to
compare with the other levels, where the assumptions (which
define the LSVF) were gradually applied. The second line has
changed the first suggested colour of the Middle entities with
respect the hard. Following, the third one has changed the first
colour of domain of soft entities with respect the others
(middle and hard).

There has been a reduction of 25% of backtrack calls in
accordance with the first program. Finally, the last line has
used all assumptions talked, and both measures were visibly
reduced. In this latter case, the engine backtracks 5 times,
three calls less than the original program. Note that the last
program follows all the assumptions discussed, and the results
obtained were remarkable. Before concluding the section, the
paper further explores the new heuristic with larger problems.

To this end, we chose the map of Brazil to investigate the
assumptions by checking, in parallel, the reduction in the
amount of inferences and backtracking calls. Brazil is divided
into 26 states and one federal unit, totalling 27 entities. As
discussed previously, the idea is to colour these entities using
three colours (red, green, blue), so that neighbouring regions
do not have the same colours. Figure 3 shows the map as well
as neighbouring states. According to the theorem of the four
colours, two regions are called adjacent only if they share a
border segment, not just a point. In the figure, the states that
share a single point are connected by a shaded line. The
programs can be found at
http://cin.ufpe.br/~cmor/IBERAMIA/.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

24 | P a g e

www.ijarai.thesai.org

As before, the entities were divided into three types. The
problem was analysed from three perspectives. At first, the
domain of entities remained the same for everyone. With
74.553 inferences and 50 backtracking calls, a solution was
reached. Then in the second perspective, the domain of middle
entities was changed, while in the third and final perspective,
beyond the middle, the domain of soft entities has been re-
arranged. While in the second case, we obtained 71.558
inferences and 46 backtracking calls, the last, were 61.772 and
38, respectively.

Figure 3. Map Colour of Brazil

Finally, to analyse the decline of these variables discussed
so far, through a graph (Figure 4), we analysed 10 instances of
colouring problems. Each instance has a multiple of six
entities, starting with 6 and ending at 60. It can be observed by
the first graphic (problem x amount of inferences) by using
LSVF (W/LSVF) the curve is always kept lower than the
curve without the heuristics (Wout/LSVF).

By analysing the problem by the amount of backtracking
calls (graphic 2) the difference becomes deeper; since the
W/LSVF curve follows a growth rate well below that the
curve without the heuristic. As an example, the last problem
(m10) with 60 entities, there is a decrease from 45 (no
heuristics) to 5 (with heuristics) backtracking calls.

VI. LSVF AS A TIE-BREAKER FOR LCV

It is worth to say, most importantly, LCV and LSVF
cannot be compared because they are used in different
scenarios: while the former is used when the domain of the
elements are different, the second, by contrast, is used when
the domains are equal, leading to a situation impossible to sort
the values using the LCV. However, it was observed that
LSVF can be used in conjunction with LCV as a strategy to
tie-break, even when the domains are not completely different.

Take the same example addressed in figure 1, but now,
taking into consideration the following domains of variables:
X1 = {red, blue, green}, X2 = {red, blue}, X3 = {red, blue}, X4
= {red, blue, green}, X5 = {red, blue, green}, X6 = {red, blue},
X7 = {red, blue, green}.

Figure 4. Results: Problem x Inference, Problem x Backtracking Calls.

Again, using the heuristic SHD, we calculate the conflicts
of each variable (X1=10, X2=4, X3=4, X4=9, X5=8, X6=4,
X7=11) and, as before, we split into three groups: Hard {X1,
X7} (entities with more conflicts), Middle {X4, X5} (entities
with an average amount of conflict), Soft {X2, X3, X6} (less
conflicts). Moreover, the order of the values within each
domain was defined based on the LCV heuristic. The table 2
summarizes the results (it was used only the initials of the
colours).

Only with LCV (column 2), there were 4.210 inferences
and 5 backtracking calls to reach a complete and consistent
valuation. However, it was observed that for all entities, the
constraining degree value between the colours blue and red
was the same. By observation, and the assumption that soft
entities are potentially linked to middle or hard ones, and
except for the colour green (not possessed by soft entities), the
order of values is the same, in column 3 (LCV + LSVF’), the
values of soft entities domain were in inverted position. With
this change, the number of inferences and backtracking calls
was reduced to 4.024 and 4, respectively.

Finally, we noticed that the three colours for X4 had the
same level of restriction. Based on the assumption of the
reverse order of values between Middle and Hard entities, in
column 4 (LCV + LSVF”) the domain of X4 was re-arranged

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 1, No. 9, 2012

25 | P a g e

www.ijarai.thesai.org

as shown. In this case, there were 3.576 inferences and only 2
backtracking calls.

TABLE II. FIRST RESULTS WITH THE LSVF HEURISTIC.

Variable LCV LCV +

LSVF’

LCV +

LSVF’’

X1 g, r,

b

g, r, b g, r, b

X7 g, r,

b

g, r, b g, r, b

X4 g, r,

b

g, r, b b, r, g

X5 g, r,

b

g, r, b g, r, b

X2 r, b b, r b, r

X3 r, b b, r b, r

X6 r, b b, r b, r

VII. FINAL REMARKS AND FUTURE WORK

The preliminary results obtained were very satisfactory.
We might see that, as we organize the values of the domain of
the entities, gradually the search has been getting more
efficient with respect to the number of inferences necessary to
reach a solution. It was important to mention that we are
neither worried with optimal solutions nor with all the
solutions for the problem. We only focus on our overall effort
to reach a solution.

In order to validate completely the LSVF heuristics, our
next step is to analyse the approach with more complex
problems.

Additionally, our aim is to check the time resource
allocated for this kind of problem. In previous analysis, it was
noted that the reduction in the amount of backtracking tends to
reduce, directly, the time needed to find a solution. In fact,
during the analysis that resulted in the graphic above, the time
has decreased in the last instances. Another path to be further
explored, is to define specifically, the partnership between
LCV and LSVF, i.e., when the second heuristic can be used
together with the first.

REFERENCES

[1] Abdennadher, S. and Schutz, H. (1998) Chrv: A flexible query language.
In: In FQAS 98: Proceedings of the Third International Conference on
Flexible Query Answering Systems, Springer-Verlag, 1–14.

[2] Abdennadher, S., Fruhwirth, T. and Meuss, H. (1999) Confluence and
semantics of constraint simplification rules. Constraints 4(2),133–165.

[3] Brailsford, S., Potts, C. and Smith, B. (1998) “Constraint satisfaction
problems: Algorithms and applications”. Technical report, University of
Southampton - Department of Accounting and Management Science.

[4] Duck, G.J., Stuckey, P., de la Banda, M.G. and Holzbaur, C. (2004) The
refined operational semantics of constraint handling rules. In: ICLP’04:
Proceedings of the 20th International Conference on Logic
Programming, Springer Berlin / Heidelberg, 90–104.

[5] Fages, F., Rodrigues, C. and Martinez, T. (2008) Modular CHR with ask
and tell. In: CHR ’08: Proc. 5th Workshop on Constraint Handling
Rules, (Linz, Austria) 95–110.

[6] Frühwirth, T. (2008) Welcome to constraint handling rules. 1–15.

[7] Gavanelli, M., Alberti, M. and Lamma, E.(2008) Integrating abduction
and constraint optimization in constraint handling rules. In: Proceeding
of the 2008 conference on ECAI 2008, Amsterdam, The Netherlands,
The Netherlands, IOS Press, 903–904.

[8] NationMaster (2010): Encyclopedia-decidability.

[9] Robertson, N., Sanders, D., Seymour, P. and Thomas, R. (1997) “The
four-colour theorem”. J. Comb. Theory Ser. B 70(1) 2–44.

[10] Russell, S. and Norvig, P. (2003) “Constraints Satisfaction Problems”
 . In: Artificial Intelligence: A Modern Approach. 2nd edition edn.
Prentice-Hall, Englewood Cliffs, NJ 143–144.

[11] Vilain, M., Kautz, H. and Van Beek, P. (1990) Constraint propagation
algorithms for temporal reasoning: a revised report. (1990) 373–381.

[12] Wielemaker, J. (2008) SWI-Prolog 5.6 Reference Manual.

[13] Wolf, A. (2005) Intelligent search strategies based on adaptive constraint
handling rules. Theory Pract. Log. Program. 5(4-5), 567–594.

