
(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 2, No.11, 2013 

38 | P a g e  

www.ijarai.thesai.org 

Sub-goal based Robot Visual Navigation through 

Sensorial Space Tesselation

George Palamas 

Faculty of Computing, Engineering and Science 

University of South Wales 

Wales, United Kingdom 

J. Andrew Ware 

Faculty of Computing, Engineering and Science 

University of South Wales 

Wales, United Kingdom 

 

Abstract—In this paper, we propose an evolutionary cognitive 

architecture to enable a mobile robot to cope with the task of 

visual navigation. Initially a graph based world representation is 

used to build a map, prior to navigation, through an appearance 

based scheme using only features associated with color 

information. During the next step, a genetic algorithm evolves a 

navigation controller that the robot uses for visual servoing, 

driving through a set of nodes on the topological map.  

Experiments in simulation show that an evolved robot, adapted 

to both exteroceptive and proprioceptive data, is able to 

successfully drive through a list of sub-goals minimizing the 

problem of local minima in which evolutionary process can 

sometimes get trapped. We also show that this approach is more 

expressive for defining a simplistic fitness formula yet descriptive 

enough for targeting specific goals.  
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I. INTRODUCTION  

With respect of vision based robot navigation, most 
research work is focused on four major areas: map building and 
interpretation; self-localization; path planning; and obstacle-
avoidance. Of these four major research areas, self-localization 
is of key importance. The recognition of the initial position, the 
target position, and the current position occupied by the robot 
while wandering around are all bound to a self-localization 
process.  The main two approaches used for robot localization 
are landmark based and appearance based techniques. In this 
paper, we describe a combination of a developmental method 
for autonomous map building and an evolutionary strategy to 
verify the results of the map interpretation in terms of 
navigation usability. 

Our strategy involves two discrete phases: map building 
and navigation phase. In the first phase an agent freely explores 
a pre-determined simulated terrain, collecting visual signatures 
corresponding to positions in the environment. After the 
exploration, a self-organizing algorithm builds a graph 
representation of the environment with nodes corresponding to 
known places and edges to known pathways.    

During the second phase, a population of robot controllers 
is evolved to evaluate map usability. Robots evolve to 
autonomously navigate from an initial position to a goal 
position.  In order to facilitate successful translation, a shortest 
path algorithm is employed to extract the best path for the robot 
to follow. This algorithm also reveals all those intermediate 

positions that the robot needs to traverse in order to reach the 
goal position. These intermediate positions act also as sub-
goals for the evolution process.  

II. SENSING THE ENVIRONMENT  

To be fully autonomous, a robot must rely on its own 
perceptions to localize. Perception of the world generates 
representation concepts, topological or geometrical, within a 
mental framework relating new concepts to pre-existing ones 
[3]. The space of possible perceptions available to the robot for 
carrying out this task may be divided into two categories: 
Internal perception (proprioception) or perceptions of its own 
interactions with the world, associate changes of primitive 
actuator behavior like motor states; external or sensory 
perception (exteroception) is sensing things of the outside 
world. A robot’s exteroceptors include all kinds of sensors such 
as proximity detectors and video cameras. Our system uses 
only visual information for map building and navigation.  

III. ROBOT NAVIGATION 

Landmark-based localization methods rely on the 
assumption that landmarks can be detected and accurately 
interpreted from raw sensor readings [2], [5]. However 
interpretation from sensor readings to accurate geometric 
representation is complex and error prone. On the contrary, an 
appearance-based representation of an environment is not 
encoded as a set of geometrical visual features, but as an 
appearance map that includes a collection of sensor readings 
obtained at known positions [1]. The advantage of this 
representation is that the raw sensor readings generate a 
qualitative estimate of position. The currently perceived image 
can be directly matched with past experiences stored in the 
appearance-based topological representation [6]. This method 
of using sensor readings does not rely on precise metric 
measurements as with traditional geometrical based maps.  

In the field of computer vision the use of appearance based 
techniques has become widespread. A comparison between the 
two families of vision based localization methods can be found 
in [4], showing that appearance-based methods are more robust 
to noise, occlusions and changes in illumination, when 
compared to landmark based-methods. The source of 
inspiration for such techniques comes from the animal 
kingdom. Small animals, such as insects, navigate through 
natural environments seemingly with little effort. For example, 
despite their relatively simple nervous system (and hence 
limited memory capacity), bees and desert ants are able to 
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retrace their movements.  Such a level of efficiency indicates 
flexible representations of the surroundings based on visual 
cues taken from target locations such as home and food sources 
[7]. These representations seem to have an appearance based 
flavor rather than a Cartesian arrangement of landmarks. To 
visit target locations after prior exploration, insects traverse in a 
way that reduce discrepancies between the stored snapshot and 
their current retinal image [8].   

As stated already the main drawback of appearance-based 
methods is that localization is only possible in previously 
mapped areas. Several successful applications have shown 
promising results [9],[10]. Like landmark based mechanisms, 
appearance based navigation systems suffer from the problem 
of perceptual aliasing [11], the situation that different locations 
produce identical sensory perceptions. A possible solution 
could be the incorporation of temporal or odometry   
information to resolve any conflicts. Another possible solution 
is to divide the goal into a set of sub goals of smaller tasks 
easier to fulfill. Such an approach, even if perceptual aliasing is 
present, is more efficient since subtasks are easier to manage 
and achieve. 

IV. ENVIRONMENT REPRESENTATION  

The most natural representation of a robot's environment is 
a map. In addition to representing places in an environment, a 
map may include other information, such as properties of 
objects, regions that are unsafe or difficult to traverse, together 
with information of prior experience. An internal representation 
of space can be used by a robot to pre-plan and pre-execute 
tasks that may be performed later.  

A. Geometric Representation  

Geometric maps are quantitative representations made up of 
discrete geometric primitives such as lines, polynomial 
functions, points and so forth. They are characterized by large 
scale detail. The primary shortcoming of geometrical model 
based representation relates to the fact that they can be difficult 
to infer reliably from sensor data [12]. 

B. Topological Representation 

A topological map is one which captures the connectivity of 
the environment and has been simplified so that only vital 
information remains and unnecessary detail has been removed. 
These maps lack geometric information such as scale, distance 
and orientation but the relationship between points is 
maintained. The simplicity of topological maps support much 
more efficient planning than metric maps [13],[29]. 

The key to a topological relationship is based on an 
abstraction of the environment in terms of connectivity 
between discrete regions or objects, with edges connecting 
them. In the simplest form, this may involve a complete 
absence of metric data. A robot employing this representation 
has no real understanding of the geometric relationship 
between locations in the environment but the enclosed 
information is sufficient for the robot to conduct point to point 
motion. The use of graphs has been exploited in many robotic 
systems to represent spaces. The following example [10] is 
representative.  

A graph is a kind of abstract data structure that consists of 
points or nodes connected by links, called lines or edges. Each 
node corresponds to one of the unique landmarks and each 
edge corresponds to known paths between them. If the 
environment consists of networks of corridors and rooms (as 
found in many indoor environments, such as office buildings or 
hospitals), it is less complex to specify the topology of 
important locations and their connection suffice.  

Humans represent physical spaces topologically rather than 
geometrically. For example, when providing the clues needed 
to lead someone in a building, directions are usually of the 
form “go  down the hall, turn right at the elevator, open the 
second door on your left,” rather than in geometric form. 
Topological maps are sparse representations of the 
environment as a collection of visual feature vectors at certain 
positions.  Such representations present some advantages 
difficult to ignore. First and foremost the computational and 
memory cost is relatively low. The path planning in metric 
maps can be computationally very expensive; unlike the 
lightweight planning nature of graph based structures. Second, 
they do not require accurate determination of robot's position 
and therefore are less sensitive to error accumulation, 
commonly occurring in metric mapping approaches.  
Topological visual navigation is usually based on key-frame 
matching to self-localize and navigate to a previously visited 
location [14, 15].  

V. MAP-BUILDING PHASE 

A. Terrain Exploration 

Our approach considers robots to be like insects, equipped 
with simple control mechanisms tuned to their environments. 
Therefore, a model of terrain exploration using a simple two 
dimensional Brownian random walk was implemented. Such 
an approach could mimic the navigation behavior of simple 
animals and microorganisms such as insects. Random walk 
(also known as Brownian motion) is a process that consists of a 
sequence of steps, in which the direction and size of each move 
is determined randomly. The advantage of this approach is 
minimization of simulation artifacts such as cyclic behavior. 
During this step the robot collects panoramic snapshots at 
regular time intervals.  

B. Visual Feature Extraction 

This collection of panoramic images represents a large 
amount of raw data and therefore it is necessary to extract some 
specific features that describe the content of each image.  Color 
histograms are a very appealing graphical representation. 
Image analysis based on color information is robust for robot 
map-building and image retrieval problems and, due to their 
statistical nature, provide a complete rotationally invariant 
representation when employed with panoramic cameras (figure 
1).  

Moreover, they are also computationally cheap to 
implement. Omni-directional vision systems are a special type 
of vision sensor. Images are obtained by placing a convex 
mirror a short distance from a camera.  These systems provide 
a 360

o
 view of the robot’s environment around the vertical axis. 
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Fig. 1. Omnidirectional snapshot and extracted RGB histograms.  

The set of color signatures, extracted during terrain 
exploration, can be manipulated as a large abstract image 
database. This is the foundational scheme of a content based 
image retrieval approach. Self localization can be based on a 
measure of resemblance between the currently acquired image 
of the robot and the base of images stored as perceptual 
signatures representing familiar terrain. Gonzalez and Lacroix 
[18] suggests a qualitative position refinement technique that 
localize a rover when it comes back to a previously perceived 
area, using an image indexing technique on panoramic views 
based on principal component analysis. The limitation of this 
procedure is that it cannot perform incrementally, because all 
learning images are required to compute the subspace. 

To measure color histogram similarity, we use the standard 
Euclidean formula. This distance metric is a comparison 
between the identical bins in the respective histograms and all 
bins contribute equally to the distance [19]. The Euclidean 
distance between two color histograms h and g is given by  

                         (   )  ∑ ( [ ]   [ ])    
                      (1) 

C. Self-Organization of Visual Signatures 

In unsupervised learning networks the only data available is 
the input set. These networks serve two main purposes: 
topology preservation and vector quantization. Topology 
preservation means that close input signals are mapped to 
neurons which are close in the network and conversely, close 
neurons in the network come from close input signals in the 
input space, preserving similarities between data as much as 
possible (figure 2).  

There are many reasons why we use a self organizing 
system for robot mapping, preferred over other mechanisms 
that have no plasticity properties [20].  The first reason is that 
less parameters, which describes the robot operation, need to be 
predetermined.  Information given by sensors incorporate 
noise, leading to erroneous conclusions regarding spatial 
perception. Information may be contradictory  when sensor 
readings come from different sensors but represents the same 
robot position. Furthermore, due to the nature of sensors used 
with respect to the task being performed, extracted information 
may not be useful. Self-organizing mechanisms make use of all 
available data without prior assumptions. Data clustering 
addresses the problem of noise and handles meaningless 
information.  

One of the most robust algorithms is the Growing Neural 
Gas (GNG) by Fritzke [21]. Growing Neural Gas is a network  
that can learn the topological relationships from an input set of 
vectors using a variation of the Hebbian rule. GNG 
dynamically add or remove nodes and can approximate the 
input space with higher accuracy compared to a network with 
predefined structure (figure 2) such as the Kohonen self 
organizing feature map [22]. The GNG is an adaptive 
algorithm inspired by the physical properties of uniform gases 
and the work on self organizing maps. Assuming that a given 
distribution of points is represented by a container shape, the 
algorithm will begin to create freely moving particles which 
will try to expand uniformly to fill the input space.  After 
convergence is reached, the network nodes then represent the 
shape of the container. 

Clustering of static sensor signals has been used before for 
robot localisation [13],[23]. Different unsupervised neural 
network architectures have been used to realize topological 
relationships between input and output space.  Baldassari et.al. 
[24], applied a GNG algorithm for a visual based self-
localisation task of a mobile robot in an indoor environment. 
Images acquired from a camera moving in a pathway, formed 
an implicit topological representation of the environment. 
These simulations dictated the effectiveness of the GNG model 
in recognition speed, classification tasks and in particular 
topology representation as compared to the popular Kohonen 
Self Organizing Map (SOM) model. This performance gap, 
ascribed to the fact that GNG algorithm,  that dynamically add 
and remove nodes, can approximate the input space more 
accurately than a network with a predefined structure and size - 
such as a SOM.  This is true also since SOM resembles a lossy 
compression scheme by applying a data projection from a 
multidimensional space, where perceptual signatures are 
described, to preferably only a two dimensional space.  

 

Fig. 2. Topology preservation for SOM and GNG respectively. 

VI. THE NAVIGATION PHASE 

A. Path Planning 

Prior to navigation, path planning is an important issue as it 
directs the robot on how to get from an initial position to a goal 
position. Since the environment is stationary with no other 
moving obstacles, the process of path planning is 
straightforward.  



(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 2, No.11, 2013 

41 | P a g e  

www.ijarai.thesai.org 

Topologically, this problem is equivalent to the shortest 
path problem of finding a route between two nodes in the 
graph. Many algorithms have been developed to find a path in 
a graph. For example, Dijkstra's algorithm [25] computes the 
optimal path between a single source point to any other point in 
a graph (figure 3). Since we compute the path once after the 
mapping phase, a real time algorithm is not necessary.  

B. Self-localisation 

The robot continuously keeps track of the current location. 
While the robot moves, collects snapshots and exports 
corresponding color histograms. Every newly acquired 
histogram is being compared with every stored histogram in the 
graph structure. The robot self-localizes when the closest 
histogram on the topological map is found. Each of the nodes 
in the graph represents a specific histogram and the closest one 
indicates the current position of the robot on the map.  

C. Visual Navigation 

For the robot to conduct point to point navigation, a 
controller is necessary that will move the robot through a set of 
intermediate points towards the final position.  The proposed 
robot behavior controller realizes an Elman neural network 
(Elman NN) and a genetic algorithm (GA).  Neural network 
architectures are particularly well suited for complex pattern 
classification tasks and genetic algorithms are good 
optimization procedures because they can explore large and 
multidimensional spaces to find global solutions. Hence, they 
are well suited for training neural networks.   

The neural controller is composed of a grid of input 
neurons whose activations are given by the color bins of the 
corresponding histograms. Two output neurons control the 
angular torque applied to the left and right wheel of the robot.  

A set of neurons with recurrent connections fed from 
hidden and output neuron layer, help to learn past instances and 
correlate them with new information. The input neurons of the 
neural network are activated by sensory data, and the output 
neurons control the motors of the robot. Within a population, 
each individual has a different genome describing a different 
neural network (different weight vectors), thus resulting in 
specific individual responses to sensory-motor interactions with 
the environment. These behavioral differences affect the 
robot’s fitness, which is defined, by the number of successive 
milestones traversed by the robot.   

 

 

 

 

 

 

 

 

Fig. 3. Disjkstra's graph search algorithm output. 

 

Evolutionary strategies require that a large population of 
individuals be evaluated over the course of many generations. 
In the case of evolutionary robotics it has been assumed that it 
would take far too long to do all of these evaluations in the real 
world. The main practice is to evaluate in simulation, whether 
partial or in whole. The aim of this evolutionary strategy is to 
create a population of agents with different genomes, each 
defining a set of parameters of the control system of the robot. 
The genome is this set of parameters whose translation into a 
phenotype, the actual behavior of the controller, can cause the 
system to depict biological behaviors.  The artificial genome 
decodes the weight values associated to synaptic connections of 
an artificial neural network that determines the global visual 
navigation behavior.  

D. Neural Network Controller 

The neural network we use (figure 4) is a typical feed-
forward architecture with evolvable thresholds and discrete-
time, fully-recurrent connections at the output layer [26]. This 
type of neural network is used to do sequence processing, 
especially when these sequences are made of indexed data [28]. 
The processing occurs in steps and it is assumed that neuron 
outputs are computed instantaneously. A set of twelve input 
neurons receive information about the color distribution from 
the images captured from the panoramic camera.  

Each neuron covers a band of the color variations in the 
image that is a bin value is assigned to each input. Each of the 
RGB color components of the image are divided into four 
bands.  The activation of each neuron is scaled in the interval 
[0, 1] so that activation 0.5 corresponds to zero torque applied 
in the wheels. Activation values above and below 0.5 stands for 
forward and backward rotational speeds, respectively. The two 
output neurons act also as proprioceptive information about the 
speed of each wheel. A set of short term memory units stores 
the values of the output neurons at the previous sensor-motor 
state and sends them back to the output units through a set of 
recurrent connections [26]. All other neurons in the hidden 
layer have recurrent connections to store previous activity.  

                                  f(x) = 1/(1 + exp(-x))                            (2) 

Neurons use the sigmoid activation function in the range 
[0,1], where x is the weighted sum of all inputs (equation 2). 
For each discrete time interval they encode both the sensorial 
information and the motor commands passed to the wheels.  

E. Evolving Controllers 

Algorithms in Evolutionary Robotics (ER) frequently 
operate on populations of candidate controllers, initially 
selected from some random initial population of controllers. 
This population is then repeatedly modified according to a 
fitness function, a particular type of objective function that is 
used to indicate the closeness of a given design solution to 
achieving a set of aims. 

Evolutionary Robotics builds upon several aspects of 
artificial evolution. The Genetics aspect is about what goes into 
the artificial chromosomes and how these chromosomes are 
mapped into individuals. Genetic encoding and genotype-
phenotype mappings are the key to the evolvability of a system.  
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In our case the genotype represents the architecture of a 
controller in a form of a binary string and the phenotype 
represents the possible solution space. The population of robot 
controllers is also referred to as genomes.  

 

Fig. 4. Discrete-time recurrent neural network 

Evolutionary algorithms have been widely used to design 
cognitive architectures for robots with emergent behaviors (see 
[16, 17] for an overview). The main strength is their ability to 
cope well with high complexity problems using only a high-
level reward function. Best candidates are rewarded only for 
their global efficiency because of the impossibility of 
foreseeing every sub-goal the robot has to solve.  If the global 
objective is very hard then initial performance may be so poor 
that the evolutionary process is hard to initiate.  Another 
problem is local minima in which the evolutionary process may 
become trapped. A fitness function must be simplistic yet 
descriptive enough for targeting specific goals. Designing a 
fitness function is essential to the successful use of a genetic 
algorithm.  If the fitness function is poorly designed, the 
algorithm will either converge on an inappropriate solution, or 
will have difficulties in converging at all. 

For a successful incremental evolution process the system 
requires an accurate knowledge of the problem to be solved so 
as to lead the evolutionary algorithm to perfect convergence. 
For graph based robot navigation the global task can be divided 
into smaller tasks. Both global task and sub-tasks are self-
similar, i.e. the goal is to transfer the robot from one point to 
another.  Since in our case the different sub-tasks are in nature 
exact copies of the main task, by just dividing the path that the 
robot needs to traverse, the only requirement is to determine 
when to switch from one sub-task to another. Fitness function 
is an objective function used as a metric to calculate the 
distance of each individual from a set of goals. 

 The success of evolutionary algorithms depends on the 
fitness function design.  

A good function design must guarantee that a collection of 
solutions exists, differentiating enough, with values that 
changes neither too rapidly nor too slowly with the given 
parameters of the optimization problem. The fitness function 
was designed to select robots for their ability to arrive at the 
goal zone.   The neural network has a set of evolvable 
connections that are individually encoded in the genome. A 
population of 100 individuals is randomly initialized and each 
individual genome is decoded into the synapses of the neural 
network.  The twenty percent of the population with the highest 
values are used for reproduction and the rest discarded. The 
new genomes have a crossover value of 0.1 per pair and 
mutation probability of 0.01.  The meaning of crossover is 
swapping a pair of genetic strings around a randomly chosen 
point. Mutation consists of toggling the value of a random bit 
in the genetic sequence. The best two genomes from the 
previous generation are inserted to the current generation, 
unaltered, to improve the stability of the process. This strategy 
is known as elitist selection.  

F. The Evolution Process  

The fitness function was designed to select the best robots 
to arrive at the goal node and is described as follows.   The 
fitness value is the percentage of the distance the robot covered 
between two adjacent nodes in the path. Every time the robot 
reaches a node in the node sequence, as extracted from the path 
planning phase, it is rewarded with a value of 1. Since it is 
extremely difficult for the robot to match the current perceived 
histogram with the target node, we made the assumption that 
90% of the covered distance corresponds to successful goal 
reaching.   

The robot must traverse the nodes in the specific order as 
dictated from the outcome of the Dijkstra's algorithm. If the 
robot arrives at a goal node that is not successive in order, the 
robot is not awarded for this sub-goal. Successful individuals 
have to arrive at all sub-goal nodes through this specific order. 
The running fitness value for every agent in the population is 
the summation of extra value gained for each successive step 
plus the current percentage of the distance between currently 
arrived at node and the next one in the sequence. 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 5. The simulated environment and the robot used in our experiments 
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VII. EXPERIMENTAL SETUP 

A. The Robot 

The simulated robot can be seen in figures 5. The 
omnidirectional camera is widely used in visual based robot 
navigation and localization, which is due to the large field of 
view. Images are obtained by placing a convex mirror a short 
distance from a camera. The main advantage that led us to 
promote this solution is the large field of view compared to 
orthographic or standard cameras. The system provides a 360

o
 

view of the robot’s environment around the vertical axis when 
it is mounted on top of the robot. Landmarks are always in the 
field of view except for occasional occlusion and therefore 
have increased reliability. This is advantageous when utilizing 
topological representations as the more information the image 
contains the more stable it is.  Another advantage is the 
orientation independency when employed with statistical 
methods such as color histograms.   

Fig. 6. Simulated differential drive robot. The robot has four bumpers to 

detect collisions with walls and obstacles.   

The robot is cubical in shape with two independent drive 
wheels attached in the middle of the chassis and two trailing 
casters, front and rear. This is a typical differential drive setup 
and the robot can change its direction by varying only the 
relative rotation speed of its wheels and hence does not require 
an additional steering mechanism. The robot is equipped with 
two, one bit, horizontal axis bumper bars. The purpose of the 
tactile sensors, when a reaction to a collision occurs, is to 
reposition the next individual to initial conditions and start a 
new simulation trial. 

B. The Environment  

For the experiments we used a simple 3D world, a closed 
rectangular arena with colored obstacles, dark gray walls and 
no ceiling (figure 6). This environment is not as visually 
complex as a typical real life environment. The primary goal 
was to demonstrate the plausibility of evolving agents that 
could use cognitive maps and behaviors based on visual 
information which otherwise would be very difficult if not 
impossible to employ.     

Both for the robot and the simulated environment we used 
the Bullet physics libraries, a freely available software package 
that models gravity, mass, friction, and collisions. For 
modeling the environment as well as the view from the 
omnidirectional camera, we used the XNA graphics 

framework. Well understood image processing tasks such as 
color histogram extraction were accomplished using the well 
known open Computer Vision (openCV) library. To model the 
reflective surface of the sphere we applied a method of 
environmental mapping known as Cube Mapping [27]. This is 
a technique for approximating the appearance of a reflective 
surface by means of a pre-computed texture image.  The image 
is generated, for every simulation step, by projecting the 
surroundings of the sphere onto the six faces of a cube. This 
cubical texture is then wrapped onto the sphere to represent 
reflection lighting properties. 

Fig. 7. Best individual fitness value from each generation. 

C. Experimental Procedure  

Initially a robot is allowed to freely navigate in the 
environment in order to build a collection of 500 panoramic 
snapshots of the environment from different perspective views.  
A GNG algorithm, performing off-line, formed a grid with 
topological relations between these visual cues. The grid starts 
with only two nodes and grows until the criterion of 20 nodes is 
met.  Based on this grid, a shortest path is extracted to indicate 
optimal route from a starting position to a global target position 
in the arena.  A genetic algorithm evolved a neuro-controller to 
allow a robot to successively follow the six nodes the optimal 
path consists of. Each individual robot tested for a period of 
time lasting for 10 seconds or 1000 simulation cycles. Trials 
were truncated earlier if collisions detected from the bumpers. 

VIII. RESULTS 

This section shows experimental results of the proposed 
method. Several sets of experiments were performed with 
varying parameters relating with the GNG algorithm, the neural 
network architecture and the genetic algorithm. Something 
worth mentioning is the fact that the dark shades of the 
environment gave better results than other colorations. This is 
simple to explain since black color interprets as absence of 
color and does not interfere with the three other landmarks, the 
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discrete nature of which is being enhanced.  Figure 7 depicts a 
record of the best individual score for each generation to 
evaluate the solution domain. As can be seen, a navigation 
controller evolved after 66 generations. The robot that used this 
controller, managed to pass through all the intermediate points 
until the final objective. The path followed by the robot is 
shown in Figure 8. The gray and red points correspond to 
intermediate sub-goals and final goal respectively. The optimal 
path planning computed with Dijkstra's algorithm between an 
initial and final position in the graph that was generated by the 
GNG algorithm.  

 

Fig. 8. .The robot successfully followed the sequence of nodes. The small 

gray dots are the positions that the robot encountered the threshold of 90% of 

the distance covered between two adjacent nodes. (A successful controller is 
always awarded with a fitness value of 5).  The difference between the actual 

position and the robot position is due to the error in the calculation of the best 

matching unit and the 90% accuracy threshold. 

IX. CONCLUSIONS 

This paper explores the advantages of evolutionary sub-
goal robot navigation with a cognitive map architecture.  All 
methods used have been tested using a simulated environment. 
The GNG algorithm has been previously shown to be effective 
in forming topological maps through an appearance based 
framework. Evolutionary strategies have also been applied 
successfully in solving complex problems such as visual 
navigation. However these algorithms may take some time to 
converge to an optimal solution. Feature selection is a 
particularly important step for building robust learning models. 
Our method is based on global only image properties and may 
suffer from the problem of perceptual aliasing [30], the fact 
that different physical locations correspond to similar sensory 
perceptions.  

However the purpose of this study was to demonstrate the 
efficiency of simple algorithms to solve complex systems.  
After verification of the aforementioned algorithms using 
simulations, these need to be evaluated on actual robots and 
modify as necessary to ensure acceptable real life robot 
navigation. 

Further research might explore alternative visual scene 
interpretation methods for dealing with more complex 
navigation scenarios. 
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