
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

53 | P a g e

www.ijarai.thesai.org

AutoBeeConf
A swarm intelligence algorithm for MANET administration

Luca Caputo, Cristiano Davino, Filomena de Santis,Vincenzo Ferri

Dipartimento di Informatica

Facoltà di Scienze, Università degli Studi di Salerno

 Fisciano (SA), Italy

Abstract— In a mobile ad-hoc network (MANET) nodes are

self-organized without any infrastructure support: they move

arbitrarily causing the network to experience quick and random

topology changes, have to act as routers as well as forwarding

nodes, some of them do not communicate directly with each

other. Routing and IP address auto-configuration are among the

most challenging tasks in the MANET domain. Swarm

Intelligence is a property of natural and artificial systems

involving minimally skilled individuals that exhibit a collective

intelligent behavior derived from the interaction with each other

by means of the environment. Colonies of ants and bees are the

most prominent examples of swarm intelligence systems.

Flexibility, robustness, and self-organization make swarm

intelligence a successful design paradigm for difficult

combinatorial optimization problems, such as routing and IP

address allocation in MANET. This paper proposes

AutoBeeConf, a new IP address auto-configuration algorithm

based on a bee swarm labor that may be applied to large scale

MANET with low complexity, low communication overhead,

even address distribution, and low latency. Both the protocol

description and the simulation experiments are presented to

demonstrate the advantages of AutoBeeConf over two known

algorithms, namely Buddy and Antbased protocols. Eventually,

future research directions are established, especially toward the

principle that swarm intelligence paradigms may be usefully

employed in the redefinition or modifications of each layer in the

TCP/IP suite in such a way that it can efficiently work even in

the infrastructure-less and dynamic nature of MANET

environment.

Keywords—MANET; Routing protocols; IP address auto-

configuration; Swarm intelligence.

I. INTRODUCTION

Advances in wireless communication technology have
strongly encouraged the use of low-cost and powerful wireless
transceivers in mobile applications. As compared with wired
networks, mobile networks exhibit unique features: recurrent
network topology changes, link capacity fluctuations, critical
bounds to their performances. Mobile networks can be
classified into infrastructure networks and mobile ad-hoc
networks, [1]. In an infrastructure mobile network, mobile
nodes communicate through wired access points that work in
the node transmission range and create the backbone of the
network. In a mobile ad-hoc network (MANET) nodes, acting
potentially both as routers and hosts, are generally equipped
with either omnidirectional or directional antennas for sending
and receiving information. They have a packet-forwarding
capability in order to communicate via shared and limited
radio channels. Communication may be performed by one-to-

one transmissions (single-hop) or using other nodes as relay
stations (multi-hop). In both cases each sender node must
adjust its emission power in order to reach the respective
receiver node. In cases where energy is supplied by batteries,
the network lifetime is limited by the batteries of the wireless
devices. Therefore, energy saving is critical in all network
operations. Ad-hoc networks are suitable for situations where
only temporary communication is needed, and establishing a
communication infrastructure is either not possible or not
desirable. As an example for an ad-hoc network, we can
imagine a meeting in which the members want to interchange
data. The participants do not want to make high efforts for the
network configuration since; perhaps, the users are not
technically skilled. Notwithstanding, users wish a convenient
way for their cooperation.

A challenging task in the MANET domain is routing
where a path between a source and its destination must be
found, possibly in an efficient way. Proactive routing, reactive
routing and hybrid routing [2] are the most popular classes of
MANET routing protocols. In a proactive routing protocol
nodes continuously evaluate routes towards all reachable
nodes and maintain consistent, up-to-date routing information
even though network topology changes occur (e.g. Destination
Sequenced Distance Vector, DSDV, [3]) . In a reactive routing
protocol, routing paths are searched only when needed by
means of a route discovery operation established between the
source and destination node (e.g. Dynamic Source Routing,
DSR, [4]). Hybrid routing protocols combine the merits of
both proactive and reactive protocols and overcome their
shortcomings (e.g. Core Extraction Distributed Ad-Hoc
Routing, CEDAR, [5]). However, before a path between the
nodes can be found, the nodes must be identified according to
an uniform address scheme and an unique address assignment
policy in sight of an IP (Internet Protocol) correct operation
[6]. The strong centralization of DHCP (Dynamic Host
Configuration Protocol) and the local broadcast of IPv4 Link-
Local Addresses are not suited for MANETs, where topology
changes, network partitioning and merging cannot assure that
every mobile node will be connected at a given time neither
predict the topology or size of the network. Several
approaches have been proposed to solve this problem,
generally classified into categories reflecting the allocation
features of protocols. Stateful, stateless, and hybrid
approaches are the most popular classes of MANET address
assignment protocols. For statefull approaches, the state of
each address is held in such a way the network have a vision
of assigned and non assigned IPs, so address duplication could
be avoided. For stateless approaches, each node randomly

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

54 | P a g e

www.ijarai.thesai.org

chooses its own address and performs a duplicate address
detection test to ensure that the chosen address is not already
used. Hybrid approaches combine mechanisms from both
stateful and stateless approaches, in order to improve
reliability and scalability. The price is a more complex
protocol.

Swarm Intelligence (SI) is an novel distributed paradigm
for the solution of hard problems taking insight from
biological examples such as colonies of ants, bees, and
termites, schools of fish, flocks of birds, [7]. The most
interesting property of SI is the involvement of multiple
individuals that interact with each other and the environment,
exhibit a collective intelligent behavior, and are able to solve
complex problems. Many applications, mainly in the contexts
of computer networks, distributed computing and robotics are
nowadays being designed using SI, [8], [9]. The basic idea
behind this paradigm is that many tasks can be more
efficiently completed by using multiple simple autonomous
agents instead of a single sophisticated one. Regardless of the
improvement in performance, such systems are usually much
more adaptive, scalable and robust than those based on a
single, highly capable, agent. An artificial swarm can
generally be defined as a decentralized group of autonomous
agents having limited capabilities. Due to the adaptive and
dynamic nature of MANETs, the swarm intelligence approach
is considered a successful design paradigm to solve the
routing and the IP address auto-configuration problems.

The rest of this paper is organized as follows. Section 2
briefly reviews references on the swarm paradigm, specifically
based on ant and bee behaviors, with a glance at their use for
the solution of the MANET routing problem. Section 3 first
defines the IP address auto-configuration problem for ad-hoc
networks, then describes two well kwon protocols, such as the
Buddy protocol and the AntConf protocol, developed with a
stateful approach based on the binary split idea of [10], and
with a swarm intelligence based model targeted at network
administration [11], respectively. Section 4 contains the
description of the AutoBeeConf protocol, our proposal for the
IP address auto-configuration for MANET that integrates the
advantages deriving from the classical approaches with the
benefits arising from the most typical activities of a bee
swarm. Section 5 presents the simulations carried on to test
and compare the performances of the three before mentioned
protocols. Eventually, section 6, after reviewing the main
features of AutoBeeConf, sketches potential future extensions
to the work.

II. THE SWARM PARADIGM

Many ant species (Argentine ant, Linepithema humile) are
able to discover the shortest path to a food source and to share
that information with other ants through stigmergy [12]. In ant
colonies, indeed, an odor substance, the pheromone, is used as
an indirect communication medium. When a source of food is
found, the ants lay some pheromone to mark the path. The
quantity of the laid pheromone depends upon the distance,
quantity and quality of the food source. While an isolated ant
that moves at random detects a laid pheromone, it is very
likely that it will decide to follow its path. This ant will itself
lays a certain amount of pheromone, and hence enforces the

pheromone trail of that specific path. Accordingly, the path
that has been used by more ants will be more attractive to
follow. The local intensity of the pheromone field, which is
the overall result of the repeated and concurrent path sampling
experiences of the ants, encodes a spatially distributed
measure of goodness associated with each possible move. This
form of distributed control, based on indirect communication
among agents which locally modifies the environment and
reacts to these modifications, is called stigmergy. These basic
ingredients have been reverse-engineered in the framework of
Ant Colony Optimization (ACO), which exploits the ant
behavior to define a nature-inspired meta-heuristic for
combinatorial optimization. ACO has been applied with
success to a variety of combinatorial problems, such as
traveling salesman, routing, scheduling, and has been shown
to be an effective tool in finding good solutions.

Bee colonies (Apis mellifera), show structural
characteristics similar to those of ant colonies, such as the
presence of a population of minimalist social individuals, and
must face analogous problems such as distributed foraging,
nest building and maintenance. A honey bee colony consists
of morphologically uniform individuals with different
temporary specializations. The benefit of such an organization
is an increased flexibility to adapt to the changing
environments. Thousands of worker bees perform all the
maintenance and management jobs in the hive. There are two
types of worker bees, namely scouts and foragers. The scouts
start from the hive in search of a food source randomly
keeping on this exploration process until they are tired. When
they return back to the hive, they convey to the foragers
information about the odor of the food, its direction, and
distance with respect to the hive by performing dances. A
round dance indicates that the food source is nearby whereas
waggle dances indicate that the food source is far away.
Waggling is a form of dance in eight-shaped circular direction.
It is repeated again and again; its intensity and direction gives
information about the food source quality and location,
respectively. The better is the quality of food; the greater is the
number of foragers recruited for harvesting. In analogy with
ACO, the Bee Colony Optimization (BCO) meta-heuristic has
been defined and satisfactorily tested on many combinatorial
problems [13].

While referring to the specialized literature for an
exhaustive coverage of swarm-inspired algorithms, in the
sequel we will limit our attention to a short description of a
few routing algorithms, namely modeled on both ant and bee
behaviors, which can help in appreciating equivalent solutions
in the IP address auto-configuration domain.

A. AntNet and AdHocNet

The first ACO routing algorithm, AntNet [14], [15] was
designed for wired packet-switched networks. It is a proactive
algorithm where each node periodically sends a forward ant to
a random destination. The forward ant records its path as well
as the time needed to arrive at each intermediate node. The
timing information recorded by the forward ant, which is
forwarded with the same priority as data traffic, is returned
from the destination to the source by means of a high priority
backward ant. Each intermediate node updates its routing

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

55 | P a g e

www.ijarai.thesai.org

tables with the information from the backward ant. Routing
tables contain per destination next hop biases so that faster
routes are used with greater likelihood. The algorithm exhibits
a number of interesting properties which are also desirable for
MANET: it can work in a fully distributed way, is highly
adaptive to network and traffic changes, uses mobile agents
for active path sampling, is robust to agent failures, provides
multipath routing, and automatically takes care of data load
spreading. However, the fact that it crucially relies on repeated
path sampling can cause significant overhead.

AntHocNet is a hybrid multipath algorithm for routing in
mobile ad-hoc networks consisting of reactive and proactive
components, [16], [17]. It does not maintain routes to all
possible destinations at all times (like AntNet), but only sets
up paths when they are needed at the start of a data session.
This is done in a reactive route setup phase, where the
reactive forward ants are launched by the source in order to
find multiple paths to the destination, and the backward ants
return to the source to set up the paths. According to the
common practice in ACO algorithms, the paths are set up in
the form of pheromone tables indicating their respective
quality. After the route setup, data packets are routed
stochastically over the different paths following these
pheromone tables. While the data session is going on, new
ants, the proactive forward ants, monitor, maintain and
improve paths. This allows to adapt to changes in the network,
and to construct a mesh of alternative paths between source
and destination. The proactive behavior is supported by a
lightweight information bootstrapping process. Link failures,
detected by unicast transmissions or expected hello messages
crashes, and are coped with either a local route repair or by
warning preceding nodes on the paths.

Antnet and AntHocNet have been evaluated on the basis of
a relatively large number of simulation experiments using a
custom network simulator. The algorithms have been tested on
a variety of different scenarios based on different topologies
with a variable number of nodes, and considering UDP traffic
patterns with different geographical and generation
characteristics. The reported experiments show that they
robustly outperform several different dynamic state-of-the-art
algorithms in terms of throughput and delay.

B. BeeHive and BeeAdHoc

BeeHive is a proactive algorithm that models bee agents in
packet switching networks for routing purposes, [18], [19].
Since in nature the majority of forager’s exploits food sources
nearby the hive whereas a minority visits food sites far away
from it, the algorithm provides for two types of agents: short
distance bees and long distance bees which collect and
disseminate routing information in the neighborhood of their
source and in the entire network, respectively. They differ in
their life time that is the number of hops they can travel
across. Nodes periodically send a bee agent, by broadcasting
replicas of it to each neighbor. When a replica of a particular
bee agent arrives at a site, it updates routing information
before being flooded again. This process continues until the
life time of the agent expires, or if a same replica had been
received already at a site. Short and long distance bees allow
to partition the network in foraging zones and foraging

regions so that each node maintains current routing
information to reach all nodes in its zone and only the address
of a region representative node to reach nodes located outside
its zone. The next hop for a data packet is selected in a
probabilistic manner according to a quality measures assigned
to the current node. As a result, not all packets follow “best”
paths. This will help in maximizing the system performance
though a data packet may not follow a best path, a concept
directly borrowed from a principle of bee behavior: a bee
could only maximize her colony profit if she refrains from
broadly monitoring the dance floor to identify the single most
desirable food.

BeeAdHoc is a reactive source routing algorithm based on
the use of four different bee-inspired types of agents: packers,
scouts, foragers, and bee swarms. [20], [21]. Packers mimic
the task of a food-storekeeper bee, reside inside a network
node, receive and store data packets from the upper transport
layer. Their main task is to find a forager for the data packet at
hand. Once the forager is found and the packet is handed over,
the packer will be killed. Scouts discover new routes from
their launching node to their destination node. A scout is
broadcasted to all neighbors in range using an expanding time
to live (TTL). At the start of the route search, a scout is
generated; if after a certain amount of time the scout is not
back with a route, a new scout is generated with a higher TTL
in order to incrementally enlarge the search radius and
increase the probability of reaching the searched destination.
When a scout reaches the destination, it starts a backward
journey on the same route that it has followed while moving
forward toward the destination. Once the scout is back to its
source node, it recruits foragers for its route by dancing. A
dance is abstracted into the number of clones that could be
made of the same scout. Foragers are bound to the bee hive of
a node. They receive data packets from packers and deliver
them to their destination in a source-routed modality. To
attract data packets foragers use the same metaphor of a
waggle dance as scouts do. Foragers are of two types: delay
and lifetime. From the nodes they visit, delay foragers gather
end-to-end delay information, while lifetime foragers gather
information about the remaining battery power. Delay foragers
try to route packets along a minimum-delay path, while
lifetime foragers try to route packets in such a way that the
lifetime of the network is maximized. A forager is transmitted
from node to node using a unicast, point-to-point modality.
Once a forager reaches the searched destination and delivers
the data packets, it waits there until it can be piggybacked on a
packet bounded for its original source node. In particular,
since TCP (Transport Control Protocol) acknowledges
received packets, BeeAdHoc piggybacks the returning
foragers in the TCP acknowledgments. This reduces the
overhead generated by control packets, saving at the same
time energy. Bee swarms are the agents that are used to
explicitly transport foragers back to their source node when
the applications are using an unreliable transport protocol like
UDP (User Datagram Protocol). The algorithm reacts to link
failures by using special hello packets and informing other
nodes through Route Error Messages (REM). In BeeAdHoc,
each MANET node contains at the network layer a software
module called hive, which consists of three parts: the packing
floor, the entrance floor, and the dance floor. The entrance

Sun

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

56 | P a g e

www.ijarai.thesai.org

floor is an interface to the lower MAC layer; the packing floor
is an interface to the upper transport layer; the dance floor
contains the foragers and the routing information.

Beehive and BeeAdHoc have been implemented and
evaluated both in simulation and in real networks. Results
demonstrate a very substantial improvement with respect to
congestion handling, for example due to hello messages
overhead and flooding, and proved both the algorithm far
superior to common routing protocols, both single and
multipath.

III. IP ADDRESS AUTO-CONFIGURATION

The most important constraint of ad-hoc addressing
schemes is to guarantee the uniqueness of node addresses so
that no uncertainty appears in communication. This is not a
trivial task because of the dynamic topology of ad-hoc
networks. A MANET, indeed, can be split into several parts,
and several MANETs can merge into one, and an indefinite
number of nodes coexisting in a single network may
participate concurrently in the configuration process.
Moreover, the wireless nature, such as limited bandwidth,
power, and high error rate make the problem even more
challenging. Besides handling a dynamic topology, the
protocols must take into account scalability, robustness, and
effectiveness. Finally, in IPv6, a protocol is expected not only
to deal with the local addressing, but also the global
addressing. Since 1998, several address auto-configuration
protocols for IPv4 and IPv6 have been proposed, each of them
attempting to achieve a level of optimization for a particular
aspect [6], [22].

In the sequel we will describe two well known IP auto-
configuration protocols, namely Buddy and AntConf, that we
implemented with the aim to compare their performances with
those of the proposed algorithm AutoBeeConf.

A. The Buddy Protocol

Buddy is a stateful protocol where every node stores a
disjoint set of IP addresses which it can assign to a new node
without consulting any other node in the network. At the
beginning, only one node in the network has the entire pool of
IP addresses; this node detects no neighbors, thus it auto-
assigns itself with the first IP of the pool, entitles the network
with an ID (Identifier), and becomes the network initiator. A
new node, that wants to join the network, periodically sends
broadcast messages reclaiming an IP address. The initiator
assigns an address to it, divides the pool of IP addresses into
two sets, gives one half to the requesting node, and keeps the
other half with itself; the protocol agreement makes the
requesting node to auto-assign itself with the first address in
the received set. This process continues and eventually all the
nodes in the network have a set of addresses to assign to other
nodes. As a consequence, a requesting node can also receive
one or more responses; in such a case, it will choose the first
node that replies. If a node receives a request and has no
available addresses, it should request its neighbors. Three
different scenarios are possible: it searches its IP address table
for possible one hop neighbor candidates and increment by
one the radius of search if it finds no address availability; it
sends a broadcast message to its one hop neighbors and a 2

hop broadcast if it receives no reply; it searches its IP address
table for the node with the biggest block and contacts it
directly. The synchronization of the address tables makes each
node to periodically broadcast its address table. The detection
of address leaks is accomplished by buddy nodes: if one node
detects that another is missing, it merges its IP pool with its
own IP pool. When networks merge, conflicting nodes have to
give up their address space and acquire a new set of addresses.
The protocol guarantees address uniqueness, does not generate
unnecessary address changes, and is distributed, but it is
complex to implement, produces a scarce balanced address
assignment, and requires a consistent flooding that strongly
increases the network overhead, [10].

B. The AntConf Protocol

AntConf is a stateful protocol based on the Ant Colony
meta-heuristic, where every node creates and propagates
through the network at least one originator ant. The node may
destroy, reproduce or duplicate the originator ant that, on its
own, has the exclusive right to initiate any change involving
its parent IP address when a conflict is detected. The ants,
usually identified by means of the Medium Access Control
(MAC) of their originator nodes, spread their own node
information, collect other node information, and induce
feedback within the network using the environment as
interchange means. The environment is usually realized as a
small segment of memory that nodes and ants hold and
employ during their mutual updating interactions. Basically,
the memory segments contain the MAC address, the IP
address and a timestamp for each of the currently known
nodes. Timestamp reflects the time elapsed since the node
initialization; in order to deal with a totally distributed control,
nodes do not need synchronization. When the process begins,
each memory segment would have only one entry pointing to
itself; as the algorithm progresses information about other
nodes will be brought in, and the environment will be
dynamically built. At the boot time, a set of IP addresses is
available for auto-configuration; each node randomly picks up
a unique address, and creates its originator ant that starts its
journey through the network. At each step the next hop is
chosen with respect to the optimization criterion suggesting to
reach the least recently updated node. The exchange of
information between a node and an ant is based on the
timestamps the ants carry on a per entry basis. On a network
with n nodes, the ants carry n IP addresses, one for each node,
usually the most recent ones according to its knowledge.
When information exchange between the node and the
arriving ants takes places, either of them updates itself based
on the timestamps. Whenever an ant during the process of its
journey detects a conflict for the node it has originated from, it
takes responsibility to inform and have it changed. A conflict
is detected when two or more nodes have chosen the same IP
address. Conflict resolution mechanism is based on
mechanisms followed in Zero-Configuration networks. The
node that has the least MAC address takes the responsibility to
have its node change its IP address to a different one. This is
not a one step process but the result of various interactions
among the swarms. The conflict resolution mechanism will
continue until a state wherein all the nodes have unique IP
address is reached. Due to the completely distributed control
and feedback flow, the swarm based system guarantees that,

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

57 | P a g e

www.ijarai.thesai.org

even in case of node or link failure, only a partial component
of information is lost so that the system can quickly recover
from it. An important feature of the swarm based model is
concerned with partitions which do not need to be considered
as special cases. On the contrary, when partitions merge, there
is a sudden increase in the number of IP address conflicts and
the system has to make a large effort to respond to the new
environmental change, [11], [23].

IV. AUTOBEECONF

Auto-BeeConf is the new auto-configuration algorithm for
efficient ad-hoc network administration presented in this
paper. The algorithm is inspired by the foraging principles of
honey bees and it is supposed to share the services of the IP
layer; more precisely, Auto-BeeConf is supposed to relay on
the services of the BeeAdHoc routing protocol placed in the
TCP/IP suite of any network node. The main features of Auto-
BeeConf are two: first, the acquirement of the controlled
multicast, and second, the intelligent division of the labor
force which is done proportionally to the available food
resources. The controlled multicast allows to limit the
information to propagate only through a node subset in such a
way that the network is poorly flooded inducing a noticeable
overhead and energy saving. The labor division allows nodes
to manage a number of addresses proportionally to their
battery charges in such a way that the address losses are
reduced when nodes leave the network because of a battery
discharge. Auto-BeeConf is a hybrid algorithm that works
through two phases. In the first one, a node that wants to join a
MANET tries to get an IP address by means of state-full
policy that allows it to look for an address among its neighbor
nodes; in case of an iterated number of failures with respect to
its request, it assumes that none of its neighbors has free
addresses and starts trying with a stateless policy. In such a
way the incoming node has the chance to look for conflicts as
well as for a valid available address. The two phases strongly
balance themselves inducing a promising improvement in
performances as compared to existing state-of-the-art auto-
configuration algorithms due to the reduced use of control
packets.

A. Protocol Operation

A node that wants to join a MANET senses its neighbors
by means of Hello Messages and sends an IP Assignment
Request Bee Agent to the best of them soon after the
initializations of two variables, my_back-off and my_patience.
A node is better than another when its battery charge is larger;
the incoming node gets such information from the Hello
Messages.

Phase 1: The neighbor nodes receiving the request look
for a free IP address in their tables. If they do not have free
addresses, they only discard the request; otherwise, they
divide their tables proportionally to the requiring device life-
time and type , send a part to it by using the just received bee
agent, and start waiting for an acknowledgment (ACK). In the
case where the ACK does not return within a certain amount
of time, neighbor nodes restore their original IP address table.
The requiring node might receive various address blocks
depending on the number of neighbors which captured its bee;
it will only retain the first one acknowledging the owner in

such a way that the other blocks it received may be released.
However, the requiring node might also not receive any
response from its neighbors. Thus it is necessary to enlarge the
search radius. The IP Assignment Request Bee Agent must be
now flooded to all neighbors in range using a number of
iteration (my_patience) and a back-off time (my_back-off).
Phase 1 will be iterated until the maximum value of
my_patience will be reached. If the requiring node has not still
be configured, it must enter the Phase 2 of the algorithm.

Phase 2: The node generates an IP address that is coherent
with the address class, the network mask and the my_patience
value using a MAC address based function. In order to verify
the uniqueness of such an address, the node auto-assigns it to
itself, resets the my_patience value, and generates a BeeARP
according to the specification of the Address Resolution
Protocol (ARP) in the TCP/IP suite, and the setting of a TTL.
The bee-agent is sent to its best neighbors, and, each time it
reaches a node, it verifies whether or not it is the destination
node. In the former case, it asks the destination for a free IP
address that, if available, quickly is brought back to the
requiring node. In case a free IP address is not available, the
bee-agent starts its journey back toward the source trying to
get a free IP address from each intermediate node. In the latter
case, when the bee-agent has reached a node that is not the
destination, it is tried to be forwarded to the destination by
means of the BeeAdHoc algorithm until its TTL expires. Thus,
from the requiring node point of view, a BeeARP might come
back or not. If it does, the next step is to verify whether or not
it has certified the absence of an address conflict since in one
case the node can begin its network activities whereas in the
other it is still in lack of an address. The requiring node might
also consider itself configured when the BeeARP TTL expires
before returning home. Phase 2 is allowed to be iterated a
my_patience maximum value number of times.

In case of failure, a max_try value bounds possible
iteration of both phase1 and phase 2; after that the access to
the MANET is forbidden to the requiring node since it is
reasonable to think that IP addresses are all over, or the node
is in a hotspot or dead-zone.

Network partitions do not affect the protocol operation.
Network merging might create conflicts. In this case, as soon
as the merging is detected by some node via the ID network, a
bee swarm might be quickly broadcasted through the network
with the task to resolve conflicts according to phase 2.

V. SIMULATION FRAMEWORK

The performance of AutoBeeConf has been evaluated as
compared to AntConf, and BuddyConf using a MASON
(Multi-Agent Simulator Of Neighborhoods. ….or
Networks...or something), [24], [25], based simulator. Even
though MASON “is a fast discrete-event multiagent
simulation library core in Java, designed to be the foundation
for large custom-purpose Java simulations, and also to
provide more than enough functionality for many lightweight
simulation needs”, it does not allow to vary among different
routing protocols. Nevertheless, MASON is Java based so that
this has made it possible to design a suitable environment for
the necessary scenarios.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

58 | P a g e

www.ijarai.thesai.org

Simulations were carried out for the set of parameters
reported in TABLE I. Node and link failures were considered
during burst intervals. Every node was given a set of neighbor
nodes to which it can directly communicate in a duplex
manner.

TABLE I. SIMULATION PARAMETERS

Parameters Values

Simulation Area 35 m x 35 m to 200 m x 200 m

Mobile Node Number 50 to 1600

Mobility Pattern Random Walk 2d Mobility Model

Node Range or Coverage 30 m

Simulation Number 288

Comparisons have been made both in discharging and not

discharging modalities with a binary exponential increment of
the node number step by step as shown in TABLES II and III,
where each result is the average of 8 simulations grouped by
number of nodes.

As TABLES II and III show, AutoBeeConf performances
appear promising with respect to AntConf and BuddyConf ,
both for the number of connected nodes and the requested
time to converge as the network size increases. The ant-based
algorithm holds good with respect to the execution time
suffering yet for the number of configured nodes. BuddyConf
behaves well with respect to configured nodes suffering yet
for the execution time as compared with both the swarm-like
algorithms. AutoBeeConf takes advantages from the
cooperation of the two phases it uses: when the number of
devices that want to join the network increases, and thus the
probability of the address space depletion increases, the
second phase of the algorithm allows to quickly recovering all
the lost addresses. TABLES IV and V simply synthesize
results of TABLES II and III.

VI. CONCLUSIONS AND FUTURE WORKS

A new auto-configuration algorithm for wireless ad-hoc
networks, AutoBeeConf, has been presented. Its simulation
showed that ideas inspired from natural systems provide a
sufficient motivation for designing and developing algorithms
for scheduling and routing problems as well as for auto-
configuration. According to the literature a reverse
engineering approach has been followed that has allowed
mapping concepts from a bee colony to an auto-configuration
problem. The algorithm has been evaluated in a simulation
environment; however, the simulation model was developed in
such a way that the constraints of a real network would be
taken into account. Extensive testing and evaluation under
varying environmental parameters that represent a real
network conditions have been done. The results from all
experiments reveal that the performance of AutoBeeConf is of
the order of the best auto-configuration algorithms, even
though it is achieved at a much less energy expenditure.

Future works could consider extension of the protocol to
deal with:

 network merging,

 global connectivity with Internet,

 security issue,

 TCP congestion,

 exploration of the honey bee colony behavior for its

reengineering in other problem framework,

 Exploration of the different swarm intelligence

forms.
A last consideration about the amount of things that nature

has still to teach to everybody is due. It has very recently been
discovered by two Stanford researchers that Pogonomyrmex
barbatus colonies, a species of harvester ants, determine how
many foragers to send out of the nest in much the same way
that TCP discovers how much bandwidth is available for the
transfer of data in Internet in order to avoid or recover from
network congestion. The researchers are calling them the
anternet. According to Prabhakar it is worthwhile to conclude
by saying "Ants have discovered an algorithm that we know
well, and they've been doing it for millions of years", [26].

REFERENCES

[1] C. Siva Ram Murthy and B. S. Manoj, “Ad-hoc wireless networks:
architectures and protocols”, Prentice Hall, 2004

[2] E. Royer and C.K. Toh, “A review of current routing protocols for ad-
hoc mobile wireless networks”, IEEE Personal Communications, vol. 6,
1999, pp. 46-55.

[3] C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance vector routing (DSDV) for mobile computers”, Proceedings of
SIGCOMM, 1994, pp. 234–244.

[4] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad-hoc
wireless networks”, Mobile Computing, 1996, pp. 153–181.

[5] P. Sinha, R.Sivakumar and V. Bharghavan, “CEDAR: a core extraction
distributed ad-hoc routing protocol”, Proceedings IEEE INFOCOM,
1999, pp. 202-209.

[6] C. Perkins, J. T. Malinen, R. Wakikawa, E. M. Belding-Royer and Sun
Y, “IP address auto-configuration for ad-hoc networks”, IETF Draft,
2001.

[7] E. Bonabeau, M. Dorigo and G. Theraulaz, “Swarm intelligence. From
natural to artificial systems, 1999, Oxford University Press, 0-19-
513159-2.

[8] D. Chrysostomou and A. Gasteratos, "Optimum multi-camera
arrangement using a bee colony algorithm”, Proceedings of IEEE Int.
Conf. on Imaging Systems and Techniques, 2012, pp. 387 – 392.

[9] D. Chrysostomou, A. Gasteratos, L. Nalpantidis and G. Ch. Sirakoulis,
"Multi-view 3D scene reconstruction using ant colony optimization
techniques", Measurement Science and Technology, 2012, vol. 23, 11.

[10] M. Mohsin and R: Prakash, “IP address assignment in a mobile ad-hoc
network, Proceedings IEEE MILCOM, 2002.

[11] S. Ring, V. Kumar and M. E. Cole, “Ant colony optimization based
model for network zero-configuration”, Proceedings SPCOM, 2004,
423-427.

[12] M. Dorigo and T. Stützle, “Ant colony optimization”, MIT Press, 2004,
0-262-04219-3.

[13] M. Farooq, “Intelligent network traffic engineering through bee-inspired
natural protocol engineering”, Natural Computing Series, Springer,
2006.

[14] M. Dorigo, V. Maniezzo and A. Colorni, “ Ant system: optimization by
a colony of cooperating agents”, IEEE Transactions on Systems, Man,
and Cybernetics-Part B, 1996, 26 (1), pp. 29-41.

[15] G.A Di Caro, “Ant Colony Optimization and its application to adaptive
routing in telecommunication networks”, PhD thesis, Facultè des
Sciences Appliquèes, Universitè Libre de Bruxelles, 2004.

[16] G.A Di Caro, F. Ducatelle and L.M. Gambardella, “Anthocnet: an ant-
based hybrid routing algorithm for mobile ad-hoc networks. Proceedings
PPSNVIII, 2004 ,LNCS , (3242), pp. 461–470.

[17] G.A Di Caro, F. Ducatelle and L.M. Gambardella, “Anthocnet: an
adaptive nature-inspired algorithm for routing in mobile ad-hoc

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

59 | P a g e

www.ijarai.thesai.org

networks”, European Transactions on Telecommunications, 2005, 16
(5), pp. 443–455.

[18] H.F. Wedde and M. Farooq, “Beehive: new ideas for developing
routing algorithms inspired honey bee behavior”, Handbook of
Bioinspired Algorithms and Applications, 2005, 21, pp. 321–339.

[19] H.F. Wedde and M. Farooq, “The wisdome of the hive applied to
mobile ad-hoc networks”, Proceedings of IEEE Swarm Intelligence
Symposium, 2005, pp.341–348.

[20] H.F. Wedde and M. Farooq, “A performance evaluation framework for
nature insired routing algorithms”, Applications of Evolutionary
Computing, 2005, LNCS (3449), pp.136–146.

[21] H.F. Wedde and M. Farooq, “Beeadhoc: an energy-aware scheduling
and routing framework, Technical report-pg439, LSIII, School of
Computer Science, University of Dortmund., 2004.

[22] J. Jeong, J. Park, H. Kim, H. Jeong and D. Kim, “Ad-hoc IP address
auto-configuration”, IETF draft, 2005.

[23] V. Kumar and E. Cole, “An ant colony optimization model for wireless
ad-hoc auto-configuration”, Proceedings of IEEE Int. Conf. on Systems,
Man and Cybernetics, 2005, vol. I, pp. 103-108.

[24] http://cs.gmu.edu/~eclab/projects/mason/

[25] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan and G. Balan,
“MASON: A Multiagent Simulation Environment”, Simulation 2005,
(81), 517-527.

[26] B. Prabhakar, K. N. Dektar and M. Gordon, “The regulation of ant
colony foraging activity without spatial information, PLOS
Computational Biology, 2012 , vol. VIII, 8, e1002670

TABLE II. NUMBER OF CONNECTED NODES BY AUTOBEECONF, ANTCONF AND BUDDYCONF

AutoBeeConf AntConf BuddyConf

Connected nodes Connected nodes Connected nodes

Nodes No Discharging Discharging Nodes No Discharging Discharging Nodes No Discharging Discharging

TABLE III. CONNECTION TIMES FOR AUTOBEECONF, ANTCONF AND BUDDYCONF

AutoBeeConf AntConf BuddyConf

Time Time Time

Nodes No Discharging Discharging Nodes No Discharging Discharging Nodes No Discharging Discharging

TABLE IV.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 2, No. 2, 2013

60 | P a g e

www.ijarai.thesai.org

TABLE V.

