
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

44 | P a g e
www.ijarai.thesai.org

A Knowledge-Based System Approach for Extracting

Abstractions from Service Oriented Architecture

Artifacts

George Goehring, Thomas Reichherzer, Eman El-Sheikh, Dallas Snider, Norman Wilde, Sikha Bagui,
John Coffey, Laura J. White

Department of Computer Science

University of West Florida

Pensacola, Florida, U. S. A.

Abstract—Rule-based methods have traditionally been

applied to develop knowledge-based systems that replicate expert

performance on a deep but narrow problem domain. Knowledge

engineers capture expert knowledge and encode it as a set of rules

for automating the expert’s reasoning process to solve problems

in a variety of domains. We describe the development of a

knowledge-based system approach to enhance program

comprehension of Service Oriented Architecture (SOA) software.

Our approach uses rule-based methods to automate the analysis

of the set of artifacts involved in building and deploying a SOA

composite application. The rules codify expert knowledge to

abstract information from these artifacts to facilitate program

comprehension and thus assist Software Engineers as they

perform system maintenance activities. A main advantage of the

knowledge-based approach is its adaptability to the

heterogeneous and dynamically evolving nature of SOA
environments.

Keywords—expertise; rule-based system; knowledge-based

system; service oriented architecture; SOA; software maintenance;

search tool.

I. SOA, MAINTENANCE AND THE ROLE OF EXPERTISE

Rule-based methods have been very effective in supporting
decision making in many complex domains. Can they also
assist Software Engineers in dealing with the emerging
complexities of Service Oriented Architecture (SOA)
applications?

SOA is not a single software architecture, but rather a style
for constructing complex systems, especially those that need to
cross organizational boundaries. SOA systems, often called
composite applications, typically resemble Fig. 1.

An organization, whether governmental, non-profit, or
private, finds that it needs to work with other organizations to
carry out key workflows.

For example fulfilling a purchase order requires getting
stock from a partner company, planning employee travel
involves reservations on several airlines, or providing a doctor
with a patient’s medical history entails assembling information
from many medical records systems.

As shown in Fig. 1, in a SOA architecture the software to
support these workflows is organized as services having

defined interfaces, running on different nodes and
communicating via message passing. Some of these services
will be owned and managed by the home organization but
others will belong to partners or be offered by commercial
vendors.

Most commonly the Web Services group of standards is

used to define the service interfaces and protocols [1]. In
theory, these standards are supported by a broad group of
providers so that services can interoperate across many
different programming languages, operating systems, and data
definition schemas. However, the standards have turned out to
be both very complex and very loose, leading different
implementers to create services and interfaces having vastly
different styles.

SOA composite applications began to appear at the start of
the twenty first century and by now are very widespread. They
have faced many technical and managerial difficulties, but
perhaps none will be more difficult than the challenge of
software maintenance as these systems begin to age.
Traditionally, maintenance of large software applications has
been particularly expensive and slow because typically:

a) There is a large code base of existing, legacy

software.

Fig. 1. A SOA Composite Application

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

45 | P a g e
www.ijarai.thesai.org

b) To make changes safely, scarce and expensive

Software Engineering personnel must first invest time to

understand that existing software.

c) Turnover of such personnel leads to loss of human

knowledge and the application gradually slides into a state

sometimes called "servicing" in which only very limited

changes may be safely attempted [2].

The essential reason for the cost and delays of software
maintenance is thus the difficulty of acquiring and sustaining
necessary Software Engineering expertise. As several authors
have pointed out, sustaining that expertise for SOA may be
even harder than with earlier application styles [3] [4] [5] [6]
[7] [8]. The challenges include:

1) The heterogeneity of SOA applications, so that

maintainers may need expertise in many different languages,

environments, and implementation styles.

2) The distributed ownership of services, so that for

business reasons source code or key documents may not be

made available to the maintainers.

3) Poorly coordinated changes, as the different service

owners are driven by different business needs, leading to crises

and to multiple fielded versions of each service.
SOA Software Engineers will thus have to respond to

continual and often unpredictable change as they maintain large
heterogeneous applications exhibiting a bewildering variety of
programming styles. This research explores how knowledge-
based methods can help provide the necessary expertise to help
SOA systems evolve at reasonable cost.

In this paper we describe a knowledge-based approach to
this problem, in which a rule-based system is used to enhance
search techniques so that a Software Engineer can more rapidly
understand a given composite application. The rule-based
system generates abstractions, snippets of information that
summarize complex application relationships to provide
context quickly. The main benefit of the rule-based method is
adaptability; different application styles and changing
environments may be handled by relatively simple
modifications to the rules. Thus a rule set can itself
dynamically evolve as the composite application evolves to
meet changing needs.

In the next section the article reviews related work followed
by a presentation of an illustrative example to motivate the
need for SOA abstractions. Then it describes the design
principles appropriate for search in a SOA context, discusses
the knowledge-based approach to SOA abstraction, and
presents the results of an evaluation case study. The article
concludes with a summary of key contributions and
suggestions for future work.

II. RELATED WORK

Although little literature is available regarding the use of
rule-based systems for SOA system maintenance, rule-based
systems have been applied more broadly to software
understanding. Canfora and Di Penta [4] describe two tools,
Design Maintenance System [9] and TXL [10] which parse
source code and, through rule-based transformations, produce
artifacts that facilitate program understanding. Braun [11]

describes a server-based analysis system based upon rules that
is designed to play a role in configuration management of
software. The idea is that checked-out versions can be
subjected to rule-based checks for various attributes before they
are committed to a version control system.

Rule-based information extraction akin to the idea of
summarizing software abstractions in the current work appears
to be an area of increasing interest. Zaghouani [12] describes a
system for named entity extraction from text in natural
language processing. Wang [13] describes named entity
extraction with rules and a machine learning approach using
"conditional random fields." Michelakis et al. [14] describes
rule-based information extraction in which structured objects
are extracted from text, based on user-defined rules.

Research on tools to support maintenance of SOA systems
has been fairly limited. Most of the proposals involve dynamic
analysis, usually of a trace from a running system. A group
from IBM has described a tool called Web Services Navigator
that uses dynamic analysis to provide five different views of an
executing system [15]. Two papers describe ways of locating
user features within a SOA system. One approach produces a
sequence diagram showing the feature [16] while the other
does an analysis of dynamic call trees [17]. Halle et al. have a
somewhat different approach that starts from a hypothesized
service contract and automatically sends a series of trial
invocations to see if the service actually conforms to the
hypothesis [18]. Dynamic analysis is a powerful approach to
understanding a system; the main difficulty is that it is
frequently impractical to gather the needed data from a large
system running across multiple nodes.

III. SOA MAINTENANCE CHALLENGES: AN ILLUSTRATIVE

EXAMPLE

To illustrate the problem of understanding SOA, consider
an example from WebAutoParts.com, one of the composite
applications in our Open SOALab collection of resources for
SOA teaching and research [19]. WebAutoParts.com (Fig. 2) is
a hypothetical online automobile parts supplier that uses
external services to facilitate agile development. As is true for
many SOA composite applications that are based on the Web
Services standards, the main artifacts that describe
WebAutoParts are BPEL program code, WSDL service
interface descriptions and XSD data type definitions.

Fig. 2. Webautoparts.Com - Order Processing Workflow

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

46 | P a g e
www.ijarai.thesai.org

BPEL, the Business Process Execution Language, is an
XML formatted language that describes how services are
orchestrated together to perform a complete workflow [20].
Each BPEL program itself becomes a service when it is
interpreted on an application server. WSDL stands for Web
Services Description Language [21]. WSDL files, which again
have an XML format, describe the interface that a service
presents to its clients. XML Schema Descriptions (XSDs) are
an XML language used to describe the data types for the
message data that is passed between services [22]. The data
type descriptions for a particular service may either be
incorporated into the <types> section of the service's WSDL
file or else included from an external XSD file.

WebAutoParts has an order processing workflow shown in
Fig. 2. There are two "stubbed" in-house services written in
BPEL (Order Processing and Inventory Repository) and four
external services from three well-known vendors:

 Amazon Web Services - Amazon Simple DB (database)
and Message Queue (message queuing)

 StrikeIron.com - Tax Data Basic (sales tax rates)

 Ecocoma - USPS (shipping costs)

In this workflow, an incoming order is first checked against
inventory to confirm that it can be processed. Then sales tax is
computed based on the rules of the state where the customer
resides. Shipping costs are then computed and added and
finally the order is added to a message queue to be picked up
by the order fulfillment service. While the WebAutoParts
application does not actually execute, it consists of
syntactically correct BPEL code which deploys successfully to
the Ode BPEL environment along with XSD and WSDL
documents typical of current industrial practice.

Suppose a Software Engineer unfamiliar with this
application is trying to implement a change to the database
design and needs to know what data is passed when Order
Processing checks inventory levels. If he has extensive
BPEL/Web Services experience he might figure this out using
a series of searches (Fig. 3). In these searches he must match
the names appearing in different XML elements and navigate
up and down the containment hierarchy of these elements:

1) Search the Order Processing BPEL file to find the

<invoke> tag that is checking inventory. That provides him a

partnerLink. Then search the partnerLinks to get the

partnerLinkType which turns out to be IRepositoryLinkType.

2) However, there is no indication of which service

implements this link type, so the Software Engineer now

searches all the WSDL documents for that link type. He will

find it in InventoryRepository Artifacts.wsdl with a pointer to

the WSDL portType for the service. The portType in turn gives

the operation and its input and output message names. A

further search on the message name reveals that the message

contains an element called inventoryQuery.

3) However inventoryQuery is not defined within the

WSDL so the Software Engineer now has to search XSDs to

eventually locate the definition of inventoryQuery, determine

its type, and from its type finally conclude what data fields are

being passed.

Even for a Software Engineer who is an expert in Web

Services, tracing such chains of relationships requires a tedious
and error-prone sequence of searches. Furthermore, the
heterogeneity of SOA services will mean that expertise may
not generalize well from one composite application to another.
Each such application may use a different combination of
technologies and apply them in different ways. There are, for
example, many textually different ways to describe essentially
the same message data using WSDLs and XSDs. Worse, the
Web Services standards themselves are evolving so it is likely
that a maintainer will encounter fielded systems based on
different versions. Finally, since the WSDLs, XSDs, and
configuration files that describe a composite application are
often machine-generated, they contain "clichés" or patterns that
are peculiar to a particular development environment. For
example, an XSD generated by Microsoft’s WCF framework
contains five-tag sequences of XML to simply declare a void
return type for an operation [23].

There is a lot of information contained in the artifacts
describing a SOA composite application. Experts with long
application-specific experience may be able to navigate these
artifacts, but such experts will be scarce. Thus, the focus of this
research is to develop a rule-based system that mimics expert
reasoning on the SOA artifacts to provide useful information
for a wider range of Software Engineers lacking specific
knowledge in handling the artifacts.

IV. INTELLIGENT SEARCH FOR SOA MAINTENANCE

Intelligent search tools can help users find the kinds of
information in SOA composites that maintainers may need.
Search tools based on text matching are usable on a variety of
document types making them a good fit for the heterogeneous
world of SOA composite applications. Our group has been
conducting research on the application of intelligent search for

SOA maintenance using SOAMiner, a prototype SOA-specific
search engine. Case studies with different groups of academic
and real-world programmers have been exploring "what SOA
maintainers will want to know" [23] [24].

The results of these studies have shown that participants
found it easy and natural to search a large corpus of artifacts
from a SOA composite application. They quickly found
relevant snippets of information, such as all the XML tags
containing a keyword such as "inventory". However search

Fig. 3. Searching BPEL, Wsdls And Xsds

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

47 | P a g e
www.ijarai.thesai.org

identified each snippet in isolation and did not show its context
within the application as a whole. In some cases it was
sufficient to simply show more of the surrounding text, but it is
clear that for other problems a Software Engineer would need
to make a tedious sequence of searches such as those in the
example given earlier.

We conclude that, for SOA, search needs to be enhanced
with a process of abstraction. For example, a search should take
the user to relevant fragments of a BPEL, WSDL or XSD, and
then provide a higher-level abstraction that shows how that
fragment fits into a wider reality. A difficulty, of course, is that
in SOA’s open environment the relevant abstractions will vary
from system to system and over time as standards, practices,
and tools change.

Thus we need an adaptive and dynamic abstraction
mechanism to complement SOA search. An ideal tool would
index the collection of artifacts from a composite application
and:

1) Provide abstraction-enhanced search where it can.

2) Provide useful text-based search where it cannot.

3) Allow the definition of additional abstractions so that

more and more searches can be moved into the first category.
Such a tool should be flexible to adapt to a wide range of

SOA artifacts from different environments and allow for the
inclusion of new abstractions as they are discovered.

V. A KNOWLEDGE-BASED SYSTEM FOR SOA

ABSTRACTION

Knowledge plays a key role in achieving intelligent
behavior. Knowledge-based systems capture human
knowledge, represent it in a machine readable form, and
facilitate reasoning with it for solving problems. The following
describes our approach to capture human expertise in SOA
code analysis and to use that expertise for analyzing SOA
artifacts and providing intelligent search support.

A. Rationale for Using a Rule-Based System

Rule-based systems have traditionally been used to capture
human expertise as a set of rules to draw conclusions from
chains of rules applied to initial facts stored in a working
memory. As the rules execute, new facts are being generated
and added to the working memory causing other rules to
execute. Eventually, the rules have completely transformed the
facts in memory and no rule can execute. The working memory
contains the conclusions that the rules derived. This flexible
control, inherent to rule-based systems, differs from predefined
control structures found in programs of traditional
programming languages. Rules can be easily modified or
extended to adjust the performance of the rule-based system.
Thus, rule-based systems are an ideal method for dealing with
the heterogeneous nature of SOA applications and their

evolving artifacts, to identify and extract abstractions
automatically and make them available for inspection.

Through experiments and case studies involving domain
experts we create a set of rules that identify abstractions within
the SOA artifacts, and extract and transform these abstractions
into machine-readable representations. In essence, the rules
capture an expert’s knowledge and skills to identify useful
excerpts of information relevant to software maintenance tasks
and the reasoning engine automates the process of the expert’s
analysis of SOA artifacts by executing chains of rules on the
artifacts once they are committed to the engine’s working
memory.

B. System Architecture

Fig. 4 shows the system architecture of the knowledge-
enhanced search tool. The tool is composed of an XML
annotator, a search indexer, and a reasoning engine. It
processes XML Files since many SOA artifacts have XML
structure (WSDL, XSD, BPEL and many configuration files).
As a first step, the tool annotates every element in the input
XML files with a unique identifier so that it can be referenced
in the reasoning engine and during searches. After annotation,
the files are loaded both into the search indexer and the
reasoning engine. This engine runs the DROOLS Expert rule-
based system to identify and construct abstractions from the
input sources [25].

The engine executes rules on XML elements in the
imported files to identify abstractions existing within the
artifacts and build them in working memory. As abstractions
are committed to the working memory as temporary results the
rules may subsequently discover new abstractions and
relationships between them. Finally after all rules have fired,
working memory is queried to store the abstractions in files that
can then be displayed in response to searches in support of
maintenance tasks. Each abstraction is formatted as an XML
snippet that includes constituents and relations from the SOA
artifacts to model the abstraction. The final output is in the
form of three XML files, one containing the set of abstractions,
another containing cross-references when one abstraction refers
to another, and a third describing the search index for the
Apache Solr search platform [26].

C. Design of the Knowledge Base

Our case study produced three types of abstractions to
support maintenance activities: A) data type summaries, B)
services, and C) BPEL invoke relationships. Based on these
findings, we analyzed artifacts from the WebAutoParts SOA
composite application to look for abstractions and to identify
the information that is needed to produce them. From this
information, rules and representations were built that match
XML elements in the SOA artifacts and transform them into
new representations to describe the different abstractions.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

48 | P a g e
www.ijarai.thesai.org

In order to make the program extendable, XML elements

from the SOA artifacts are loaded into a generic structure
called an Entity object that holds each element’s type, as well
as all of its attributes This structure is then used by the
DROOLS rules, which contain the knowledge of how to
operate on specific vocabularies of XML, to make
transformations leading to the construction of Abstraction
objects added by the rules to the working memory.
Abstractions are subclasses of Entity to ensure that each
Abstraction is also an Entity. Finally, Dependency objects store
relationships between two Abstraction objects as established by
the DROOLS rules. For example, a Dependency object may
describe a relationship that exists between a message in a
service abstraction and a data type summery abstraction. Each
Entity has a Location, which corresponds to a single input file.
Location objects also store statistics about the number of
Abstractions identified in imported SOA artifact files. The
entire object model is depicted in Fig. 5.

Fig. 5. Object Model For Storing Xml Elements

The rules perform multiple transformations on the XML
elements, extracting patterns and tracing the links between
complex structures it identifies in the artifacts. The conditional
parts of each rule matches against the objects in working
memory and its specific values. The action part generates new
objects. The rule engine executes the rules until no further
transformations can be performed and all abstractions have
been identified. Since a generic structure was used for
representing XML nodes, additional DROOLS rules may be
easily added to the system for new XML vocabularies.

The initial rule set included six rules, three that work
together for creating data type summaries, two that create

service abstractions, and a single rule that generates high-level
BPEL invoke relationships. The three data type summaries
rules include a general preprocessing rule, a rule for generating
Complex Type Sequences (CTS) and a rule for generating
Complex Element Sequences (CES) (details to follow later).
The two rules for generating service abstractions perform two
independent steps. The first rule looks for services and its
operation and the second rule looks for messages associated
with operations.

D. Example Application

To show the expressive power of the rule-based approach,
consider the problem of identifying which services a BPEL
program actually calls. This is not explicit in the code since, to
allow for loose coupling of services, BPEL only contains
"partner links" which may be resolved to a specific service on
deployment or even at runtime.

Table I shows the DROOLS rule and sample fragments of
the BPEL and WSDL elements that it operates on. The first
part of the table shows the DROOLS rule (lines 1 – 15) and the
second part shows the XML fragments from the BPEL and
WSDL files (lines 16 – 28). Specifically:

 On line 3, the rule accesses a BPEL partnerLink such as
the one on line 16.

 Lines 4 and 5 of the rule match the WSDL’s
partnerLinkType and role elements from lines 18 and 19
using the "IRepositoryLinkType" and "repository"
values.

 On line 6 the rule locates the WSDL binding element of
line 22 by matching on the "InventoryRepository
PortType".

 Lines 7 and 8 of the rule match the WSDL’s service and
port elements (lines 23 to 28) using
"InventoryRepositoryBinding".

 Finally on lines 10 through 14 the rule creates and
stores a new abstraction with the name of the service,
thus identifying the actual service called.

As can be seen, a Software Engineer could find it very
tedious to follow this chain of relationships by hand, but the
rule can abstract the chain to a simple conclusion:
OrderProcessing calls InventoryRepository.

Entity

Abstraction

Location

Dependency

1

*1

1 *

*

Fig. 4. Architecture For Knowledge-Based Search Tool

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

49 | P a g e
www.ijarai.thesai.org

VI. EVALUATION CASE STUDY AND RESULTS

To illustrate the power and flexibility of the knowledge-
based approach to SOA abstraction, we performed an
evaluation case study using two different SOA composite
applications.

The first case study involved the WebAutoParts example
mentioned earlier, and the second involved a Travel
Reservation Service originally included as a tutorial example
with the NetBeans IDE, version 6.0. Both applications
consisted of BPEL orchestration code which invokes services
defined by WSDLs and XSDs. Table II shows the dimensions
of each application.

In our case studies for SOA search ([23], [24]), Software
Engineers had identified several different kinds of abstractions
that they thought would be useful. For the evaluation case
study of the knowledge-based system, we used the three most
prominent of these:

A. Tree representation of a service

The description of a service in a WSDL is dispersed and
usually needs to be read "bottom up" starting from the port
element at the end of the file and proceeding upward through
binding, portType, and message elements to arrive at the input
and output message structures [1].

TABLE II. SOA APPLICATION COMPOSITION

File
Type

WebAutoParts Travel Reservations

Files Lines Files Lines

BPEL 2 189 1 417

WSDL 6 2433 4 524

XSD 2 64 1 17034

Total 10 2686 6 17975

Software Engineers requested a more compact, top-down

view of a service, its operations, and its input and output
messages.

TABLE I. CREATION OF AN ABSTRACTION FROM RULES

DROOLS Rule

1 rule "High Level BPEL Partner Link Invokes Abstraction"

2 when

3 $plnk : Abstraction(type == "partnerLink")

4 $plnkType : Entity (type == "partnerLinkType" && getAttribute("name") == $plnk.getAttribute("partnerLinkType"))

5 $role : Entity (type == "role" && parent == $plnkType && (getAttribute("name").equals($plnk.getAttribute("partnerRole"))))

6 $binding : Entity (type == "binding" && getAttribute("type") == $role.getAttribute("portType"))

7 $port : Entity (type == "port" && getAttribute("binding") == $binding.getAttribute("name"))

8 $service : Entity (type == "service" && hasChild($port))

9 then

10 Abstraction root = new Abstraction($plnkType);

11 root.setType("partnerLinkType");

12 root.setAbbreviation("PLType");

13 root.addAttribute("name", $service.getAttribute("name"));

14 $plnk.addChild(root);

15 end

Excerpt from OrderProcessing.BPEL

16 <bpel:partnerLink name="inventoryRepositoryLink" partnerLinkType="ns2:IRepositoryLinkType" partnerRole="repository" />

Excerpts from InventoryRepositoryArtifacts.WSDL

17 <!-- PARTNER LINK DEFINITION -->

18 <plnk:partnerLinkType name="IRepositoryLinkType">

19 <plnk:role name="repository" portType="tns:InventoryRepositoryPortType"/>

20 </plnk:partnerLinkType>

 •••

21 <!-- BINDING DEFINITION -->

22 <binding name="InventoryRepositoryBinding" type="tns:InventoryRepositoryPortType">

 •••

23 <!-- SERVICE DEFINITION -->

24 <service name="InventoryRepository">

25 <port name="InventoryRepositoryPort" binding="tns:InventoryRepositoryBinding">

26 <soap:address location="http://WebAutoParts.com:9990/InventoryRepository" />

27 </port>

28 </service>

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

50 | P a g e
www.ijarai.thesai.org

Fig. 6 gives an example for the USPS shipping-cost service
abstraction from the WebAutoParts application.

B. Compact data type summaries

Data handled by a service can be described in many
different locations: directly in message structure, in the "types"
section of the WSDL, or in imported XSD statements. In turn,
each element or type can reference other elements and types, so
the Software Engineer trying to understand data must often pull
together information from many different parts of several
different files. Not surprisingly, participants in our studies
requested a more compact summary so that the complete
structure could be viewed in one place.

Fig. 6. Tree Representation Of The Shipping Cost Service

The two most common patterns for describing structured
data in XSD are either as a <complexType> that can be reused
in several places or directly in an <element>. Accordingly two
kinds of data type summary abstractions were defined in the
rule set: Complex Type Sequences (CTS) and Complex
Element Sequences (CES). Fig. 7 gives an example of the
InventoryQuery CTS used in WebAutoParts. The description
of this element in the original XSD takes 12 lines distributed in
different parts of the file. The CTS reduces that to the 5
contiguous lines of Fig. 7.

Fig. 7. Compact Abstraction Of A Complex Type

C. High-level BPEL invoke relationships

The example in Section II showed some of the complexities
of tracing BPEL code. For our rule set we defined an "invoke
operation" abstraction that traces from the <invoke> tag in the
original BPEL to locate the actual service and operation being
called. These "invoke operation" abstractions can be combined
to give an approximation of the service call tree of the
composite application. Fig. 8 shows an example recovered
from WebAutoParts. Note the similarity to the workflow
diagram of Fig. 2. For some services, such as USPS_Service,
two links are shown because the service offers two different
bindings for clients using different versions of SOAP or
different transports. Statically, the BPEL cannot reflect which
is in use.

Fig. 8. Services And Operations Called In Webautoparts

D. The evaluation study and its results

The starting point for the evaluation case study was an
initial set of rules that had emerged while the knowledge-based
system was under development. To guide that development we
used our background expertise about Web Services in general,
with WebAutoParts being a prominent running example. We
wanted to see how hard it would be to adapt this set of rules
when we moved to a second, less-familiar system. An
independent evaluator who had not participated previously in
the project inspected both WebAutoParts and
TravelReservations composite applications by manually
examining the corresponding BPEL, WSDL, and XSD files.
The evaluator identified the services, data types, and invoke
relationships which should have been discovered from his
perspective. Anything perceived to be unusual or incomplete as
assessed by the evaluator was marked as an "anomaly". The
results are given in Table III.

Not surprisingly, since WebAutoParts was one of the
examples used in developing the initial rule set, only 9
anomalies were encountered, and these fell into 3 categories.
One CTS encountered by the evaluator was actually an
extension of another data type; the <extension> element in
XML schema may be used to add additional data items to a
data structure, providing a form of inheritance. The initial rules
were not sophisticated enough to identify this case, which only
appeared once across both examples.

In another case the evaluator was surprised to see one CES
that seemed to appear twice. In fact, two different services
happened to use elements having exactly the same name.
Perhaps the most interesting case was 6 CESs from one WSDL
file which were correctly found, but without their structure. It
turned out that this WSDL attached <documentation> tags to
the input message of each service operation. These tags
confused the rule that assembled the structure of the CES. This
particular anomaly illustrates the heterogeneity of SOA
implementation styles, with each service developer making
different choices about where to place documentation.

More interesting was the Travel Reservations application
where we saw even more the effects of heterogeneous
implementation styles. The initial rule set correctly identified
the large number of data types (CTS and CES) but encountered
some significant variations in service and "invoke operation"
abstractions.

OrderProcessing invokes:

 USPS_Service.USPS_ServiceSoap12.GetUSPSRate

 USPS_Service.USPS_ServiceSoap.GetUSPSRate

 TaxDataBasic.TaxDataBasicSoap.GetTaxRateUS

 MessageQueue.MessageQueueHttpsPort.SendMessage

 MessageQueue.MessageQueuePort.SendMessage

 AmazonSimpleDB.AmazonSDBPortType.PutAttributes

 InventoryRepository.InventoryRepositoryPort.checkInventory

InventoryRepository invokes:
 AmazonSimpleDB.AmazonSDBPortType.GetAttributes

CTS - InventoryQueryItemType

 E - element - PartNumber

 E - element - Description

 E - element - UnitPrice

 E - element - NumberInStock

SERV - USPS_Service

 OP - GetUSPSRate

 OUT-MSG - GetUSPSRateSoapOut

 ref - GetUSPSRateResponse

 IN-MSG - GetUSPSRateSoapIn

 ref - GetUSPSRate

 OP - GetExtendedUSPSRate

 OUT-MSG - GetExtendedUSPSRateSoapOut

 ref - GetExtendedUSPSRateResponse

 IN-MSG - GetExtendedUSPSRateSoapIn

 ref - GetExtendedUSPSRate

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

51 | P a g e
www.ijarai.thesai.org

TABLE III. EVALUATION RESULTS FOR THE INITIAL RULE SET

 Services Operations Messages CTS CES Invoke

WebAutoParts
 - correct 7 44 88 74 135 6
 - anomalies 1 8

Travel
Reservations

 - correct 4 12 16 543 172 0
 - anomalies 3 6

Travel Reservations includes 4 distinct services, a "top

level" BPEL orchestration service and 3 partner services
representing airline, hotel, and rental car companies. In this
application the services use an asynchronous "request/callback"
message exchange pattern, unlike the synchronous
"request/response" of WebAutoParts. This means that the top
level service provides 3 callback ports in addition to its main
entry port. The initial rule set identified these 3 callbacks as
additional services, but confusingly it named them the same
name as the main entry port so that there appeared to be 3
additional services having the same name.

Another interesting anomaly came in the "invoke
operation" abstractions; the initial rule set failed to identify the
6 locations where the top level service called operations on its
3 partners. It turned out that Travel Reservations used
extensively the control flow elements of BPEL, leading to a
much more complex program structure with more levels of
nested XML. This structure defeated the simple initial rule.

Only 7 lines needed modification in the initial rule set to
allow the system to handle all the Travel Reservations
anomalies. The initial rule base correctly identified most
abstractions, with only a few being missed due to anomalies in
the way SOA artifacts are constructed. These results are very
encouraging; only a few adjustments were need to improve the
system’s performance in accurately identifying abstractions,
which might suggest that with every iteration of applying and
refining the rules in the knowledge base, fewer and fewer
changes are needed. This illustrates the adaptability of the rule-
based approach and its suitability for the heterogeneous and
changing nature of SOA applications.

VII. CONCLUSIONS

Ongoing maintenance of SOA composite applications will
require scarce and expensive Software Engineering expertise.
This expertise will be especially difficult to acquire and sustain
because of the heterogeneity of SOA applications and the rapid
changes to the environments in which they operate.

One approach to reducing this burden is knowledge-
enhanced search: a search tool that integrates higher-level
coaching about structures it can analyze with text-based
matching for structures that it cannot. However, a search tool
must go beyond a simple text matching engine on SOA
artifacts because such artifacts require interpretation. An
intelligent search tool must provide meaningful results that can
assist a software maintainer to discover the relationships
between components in the system. We developed a
knowledge-based system that automates the task of interpreting
SOA artifacts to generate useful abstractions on the collection
of services and messages in a SOA composite application. The

evaluation case study results indicate that a rule-based
approach may provide the much needed adaptability that
complex and heterogeneous SOA environment will impose on
Software Engineering.

There are a number of enhancements that could be applied
to the current tool including 1) a better user interface to provide
a smooth integration of text search results and abstraction
information and 2) integration of namespace rules to handle
namespace information that occur in XML files of SOA
artifacts. Ideally both the text search and the abstraction rules
should take namespaces into account to improve both search
precision and automated reasoning.

Researchers at several of our industry partners have
suggested that search could be integrated with ontologies, both
domain specific ontologies to clarify the terms used in a
specific composite application, and Web Services ontologies to
aid the novice in understanding the many element and attribute
types that are defined in the standards. Ontologies could
provide a deeper meaning to search results that could improve
ordering and interpretation of output.

However, perhaps the most important research would be to
try knowledge-enhanced search on a wider variety of SOA
composite applications with different artifacts. It should be
quite possible, for example, to develop rule sets for handling
deployment descriptors, enterprise service bus configuration
files, database definitions and possibly logged SOAP messages.
Such research could help to define the benefits and limitations
of knowledge-enhanced search and the application of rule-
based systems to extract meaningful information from SOA
artifacts.

ACKNOWLEDGMENT

Work described in this paper was partially supported by the
University of West Florida Foundation under the Nystul
Eminent Scholar Endowment and by the Blue Cross Blue
Shield Association and by Intelligent Information
Technologies, both industrial affiliates of the Security and
Software Engineering Research Center (www.serc.net).

REFERENCES
[1] N. M. Josuttis, SOA in practice: The art of distributed systems design,

O’Reilly, 2007, ISBN 0-596-52955-4.

[2] V. T. Rajlich, and K. H. Bennett, "A staged model for the software life
cycle," Computer, vol.33, no.7, pp.66-71, Jul 2000, doi:

10.1109/2.869374.

[3] N. Gold, C. Knight, A. Mohan, M. Munro, "Understanding Service-
Oriented Software." IEEE Software 2004; 21(2): 71-77. DOI:

http://dx.doi.org/ 10.1109/MS.2004.1270766.

[4] G. Canfora and M. Di Penta, "New Frontiers of Reverse Engineering."
Proceedings Future of Software Engineering. IEEE Computer Society:

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.3, 2013

52 | P a g e
www.ijarai.thesai.org

Washington, DC, 2007; 326-341. DOI:

http://dx.doi.org/10.1109/FOSE.2007.15.

[5] G. A. Lewis and D. B. Smith, "Service-Oriented Architecture and its

implications for software maintenance and evolution." Proceedings
Frontiers of Software Maintenance. IEEE Computer Society:

Washington, DC, 2008; pp.1-10. DOI: http://dx.doi.org/
10.1109/FOSM.2008.4659243.

[6] K. Kontogiannis, "Challenges and opportunities related to the design,

deployment and operation of Web Services." Proceedings Frontiers of
Software Maintenance. IEEE Computer Society: Washington, DC, 2008;

11-20. DOI: http://dx.doi.org/ 10.1109/FOSM.2008.4659244.

[7] M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou, "Managing
Evolving Services," IEEE Software, vol. 28, no. 3, pp. 49-55, May/June

2011, doi:10.1109/MS.2011.26.

[8] N. Gold and K. Bennett, "Program Comprehension for Web Services,"
Proc. 12th IEEE International Workshop on Program Comprehension

2004, p.151, doi:10.1109/ WPC.2004.1311057.

[9] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS: program
transformations for practical scalable software evolution. In 26th

International Conference on Software Engineering (ICSE 2004), 23-28
May 2004, Edinburgh, United Kingdom, pages 625–634, 2004.

[10] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider. Source

transformation in software engineering using the TXL transformation
system. Information & Software Technology, 44(13):827–837, 2002.

[11] B. Braun. SAVE - Static Analysis on Versioning Entities. Proceedings
of SESS’08, May 17–18, 2008, Leipzig, Germany. pp 25 - 31.

[12] W. Zaghouani. RENAR: A Rule-Based Arabic Named Entity

Recognition System. ACM Transactions on Asian Language Information
Processing, 11(1), Article 2, 2012, pp 2:1 - 2:13.

[13] Y. Wang. Annotating and Recognising Named Entities in Clinical Notes.

Proceedings of the ACL-IJCNLP 2009 Student Research Workshop,
pages 18–26, Suntec, Singapore, 4 August 2009.

[14] E. Michelakis, R. Krishnamurthy, P. J. Haas, and S. Vaithyanathan.

Uncertainty Management in RuleBased Information Extraction Systems.
Proceedings of SIGMOD’09, June 29–July 2, 2009, Providence, Rhode

Island, USA. pp 101 - 114.

[15] W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold and J. F. Morar,
"Web Services Navigator: Visualizing the execution of Web Services,"

IBM Systems Journal, vol. 44, no. 4, 2005, pp. 821-845,
doi:10.1147/sj.444.0821.

[16] J. Coffey, L. White, N. Wilde, and S. Simmons, "Locating Software

Features in a SOA Composite Application," Proc. 2010 Eighth IEEE
European Conference on Web Services, ECOWS'10, pp. 99-106,

doi:10.1109/ECOWS.2010.28.

[17] A. Yousefi and K. Sartipi, "Identifying distributed features in SOA by

mining dynamic call trees," 27th IEEE International Conference on
Software Maintenance, 2011, pp. 73-82, 2011

doi:10.1109/ICSM.2011.6080774.

[18] S. Halle, T. Bultan, G. Hughes, M. Alkhalaf and R. Villemaire,
"Runtime Verification of Web Service Interface Contracts," Computer,

vol. 43, no. 3, 2010, pp. 59-66, doi:10.1109/mc.2010.76.

[19] N. Wilde, J. Coffey, T. Reichherzer, L. White, "Open SOALab: Case
Study Artifacts for SOA Research and Education," Principles of

Engineering Service-Oriented Systems, PESOS 2012, Zurich,
Switzerland, pp. 59-60, June 4, 2012, doi:

10.1109/PESOS.2012.6225941.

[20] "OASIS Web Services Business Process Execution Language
(WSBPEL) TC", https://www.oasis-open.org/committees/wsbpel/, link

accessed December 2012.

[21] "Web Services Description Language (WSDL) 1.1",
www.w3.org/TR/wsdl, link accessed December 2012.

[22] E. R. Harold and W. S. Means, XML in a Nutshell, O'Reilly 2001,

ISBN:0-596-00764-7.

[23] L. White, N. Wilde, T. Reichherzer, E. El-Sheikh, G. Goehring, A.

Baskin, B. Hartmann, M. Manea, "Understanding Interoperable Systems:
Challenges for the Maintenance of SOA Applications," 45th Hawaii

International Conference on System Sciences (HICSS), pp. 2199-2206,
2012.

[24] T. Reichherzer, E. El-Sheikh, N. Wilde, L. White, J. Coffey, and S.

Simmons , "Towards intelligent search support for web services
evolution: identifying the right abstractions," 13th IEEE International

Symposium on Web Systems Evolution (WSE-2011), pp.53-58, 30 Sept.
2011, doi: 10.1109/WSE.2011.6081819.

[25] "Drools - The Business Logic integration Platform",
http://www.jboss.org/drools, link accessed December 2012.

[26] "Apache Lucene - Apache Solr," http://lucene.apache.org/solr/, link

accessed December 2012.

AUTHORS PROFILE

George Goehring received his M.Sc. in Computer Science from the
University of West Florida in 2012. His graduate research focused on providing
knowledge-based enhancement of SOA composite applications through the use
of artificial intelligence techniques. His research interests include distributed
systems and artificial intelligence.

Dr. Thomas Reichherzer is an Assistant Professor in the Computer
Science Department at the University of West Florida. He received a Ph.D. in
Computer Science at Indiana University in 2009. Dr. Reichherzer’s interest
include knowledge representation, the Semantic Web, information retrieval,
management, and visualization. More recently, he focused on sentiment
analysis of unstructured text and AI approaches to smart home environments.

Dr. Eman El-Sheikh is the Associate Dean for the College of Arts and
Sciences and an Associate Professor of Computer Science at the University of
West Florida. She received her Ph.D. and M.Sc. in Computer Science from
Michigan State University and B.Sc. in Computer Science from the American
University in Cairo. Her research interests include artificial intelligence-based
techniques and tools for education, including the development of intelligent
tutoring systems and adaptive learning tools, agent-based architectures,
knowledge-based systems, machine learning, intelligent support for service-
oriented architectures, and computer science education.

Dr. Dallas Snider is an Assistant Professor of Computer Science at the
University of West Florida. He received his Ph.D. in Integrated Computing and
M.S. in Instrumental Sciences from the University of Arkansas at Little Rock.
He received a B.A. in Physics from Hendrix College. Dr. Snider’s teaching and
research interests include data mining, data warehousing.

Dr. Norman Wilde is Nystul Chair and Professor of Computer Science at
the University of West Florida. He received his BS (Hons) in Physics from the
University of Manitoba in 1967 and his Ph.D. in Mathematics and Operations
Research from the Massachusetts Institute of Technology in 1971. Dr. Wilde
has been on the faculty of the University of West Florida since 1986. His
research interests are Software Engineering, Software Maintenance, Program
Comprehension, and Services Oriented Architecture.

Dr. Sikha Bagui is Chair and Associate Professor in the Department of
Computer Science at the University of West Florida, Pensacola, Florida, USA.
Dr. Bagui’s primary research areas are database design, web databases, data
mining and statistical computing. Dr. Bagui has published many journal articles
and co-authored several books.

Dr. John W. Coffey holds a B.S. in Psychology from the College of
William and Mary (1971), a B.S. in Systems Science (1989), an M.S. in
Computer Science/Software Engineering (1992), and an Ed.D. with an
emphasis in Computer Science (2000) from the University of West Florida
(UWF). He was one of the first members of the Institute for Human and
Machine Cognition (IHMC) and he has worked with that organization for many
years. He has been in the Department of Computer Science at the University of
West Florida since 1992, starting as a Lecturer and working his way up to his
current rank of Professor. He has published a total of more than 70 refereed
journal articles, book chapters, and conference proceedings. His research
interests include advanced technology for education, knowledge elicitation and
representation, student modeling, web services, and Service Oriented
Architecture.

Dr. Laura J. White is an Associate Professor in the Department of
Computer Science at the University of West Florida, and a Visiting Research
Scientist at the Florida Institute for Human & Machine Cognition. She received
her B.S. from the University of New Mexico, M.S. from the Naval
Postgraduate School, and her Ph.D. from Capella University. Laura is a retired
U.S. Navy Surface Warfare Officer, and her research interests include software
engineering teams, software engineering maintenance, mobile programming,
and the scholarship of teaching and learning.

