
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.5, 2013

63 | P a g e
www.ijarai.thesai.org

A New Optimization Algorithm For Combinatorial

Problems

Azmi Alazzam and Harold W. Lewis III

Systems Science and Industrial Engineering Department

State University of New York at Binghamton

Binghamton, NY 13902, USA

Abstract—Combinatorial optimization problems are

those problems that have a finite set of possible solutions.

The best way to solve a combinatorial optimization

problem is to check all the feasible solutions in the search

space. However, checking all the feasible solutions is not

always possible, especially when the search space is large.

Thus, many meta-heuristic algorithms have been devised

and modified to solve these problems. The meta-heuristic

approaches are not guaranteed to find the optimal solution

since they evaluate only a subset of the feasible solutions,

but they try to explore different areas in the search space

in a smart way to get a near-optimal solution in less cost

and time. In this paper, we propose a new meta-heuristic

algorithm that can be used for solving combinatorial

optimization problems. The method introduced in this

paper is named the Global Neighborhood Algorithm

(GNA). The algorithm is principally based on a balance

between both the global and local search. A set of random

solutions are first generated from the global search space,

and then the best solution will give the optimal value. After

that, the algorithm will iterate, and in each iteration there

will be two sets of generated solutions; one from the global

search space and the other set of solutions will be

generated from the neighborhood of the best solution.

Throughout the paper, the algorithm will be delineated

with examples. In the final phase of the research, the

results of GNA will be discussed and compared with the

results of Genetic Algorithm (GA) as an example of

another optimization method.

Keywords—meta-heuristic; optimization; combinatorial

problems

I. INTRODUCTION

Many optimization problems have been encountered in
different domains of manufacturing and industry. Usually the
optimization problem that needs to be solved is first formulated
and all the constraints are given. The optimization problem
mainly consists of an objective function and a set of
constraints. The objective function can be in mathematical
form or combinatorial form. Once the objective function of the
optimization problem is formulated and all the constraints are
defined, then the main issue is to solve this problem.

The solution is usually the best values of the variables or
the best scenarios which can also be called the optimal
solution. This optimal solution should give us the best
performance or best fitness in terms of the objective function.

In most optimization problems there is more than one local
solution. Therefore, it becomes very important to choose a
good optimization method that will not be greedy and look
only in the neighborhood of the best solution; because this will
mislead the search process and leave it stuck at a local solution.
However, the optimization algorithm should have a mechanism
to balance between local and global search. An example of a
two-dimensional function that has more than one local and
global solution is shown in Fig.1 [1].

There are multiple methods used to solve optimization
problems of both the mathematical and combinatorial types. In
fact, if the optimization problem is simple or if the search space
is small, then the optimization problem can be solved using
conventional analytical or numerical procedures. However, if
the optimization problem is difficult or if the search space is
large, it will become difficult to solve the optimization problem
by using conventional mathematics or using numerical
induction techniques. For this reason, many meta-heuristic
optimization methods have been developed to solve such
difficult optimization problems. These include Genetic
algorithm (GA), simulated annealing (SA), ant colony
algorithm (ACA), and particle swarm (PS). Most of these
meta-heuristic optimization problems are inspired by nature,
biology, or environment.

The term meta-heuristic refers to a specific class of
heuristic methods. Fred Glover first used this term and defined
it as follows, “A meta-heuristic refers to a master strategy that
guides and modifies other heuristics to produce solutions
beyond those that are normally generated in a quest for local
optimality.

The heuristics guided by such a meta-strategy may be high
level procedures or may embody nothing more than a
description of available moves for transforming one solution
into another, together with an associated evaluation rule.” [2].

The meta-heuristic algorithms do not always guarantee an
optimal solution. However, in most cases a near optimal
solution can be obtained in much less time than the
computational methods [3-4].

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.5, 2013

64 | P a g e
www.ijarai.thesai.org

Fig. 1. Global and local optima of two-dimensional function [1].

The meta-heuristic algorithms can be classified based into
different categories[5-6]:

1) Constructive and Improvement:
A constructive heuristic (also known as a greedy approach)

usually constructs a solution from scratch based on a certain
criteria. Some of the common constructive heuristics are
nearest neighbor, multiple fragment and insertion heuristics
[7]. An improvement or neighborhood search, which is usually
known as a local search, attempts to improve the solution by
exploring the neighborhood of the current solution [8]. The
neighborhood of a solution is the set of solutions that are close
to the current solution. The local optimal solution is the best
solution in each neighborhood and the global optimum is the
best solution with respect to the whole search space. An
improvement or local search begins the search from a given
solution, and then iteratively attempts to improve the solution
quality by using move operators, the move operator is usually
determined based on the neighborhood structure, and it aims to
change (move) the solution to a newer solution in the same
neighborhood but with a better fitness.

2) Single Solution and Population based approaches:
In the single based solution, a unique solution is first

generated and then based on a certain move criteria, other
solutions are generated. Some of the meta-heuristic methods
that start with a single solution are: Tabu Search (TS) and
Simulated Annealing (SA). Population based algorithms on the
other hand start by generating a set of multiple initial solutions.
Examples of those methods would be Genetic Algorithm (GA)
and Ant Colony Algorithm (ACA).

The computational drawbacks of mathematical techniques
and methods (i.e., complex derivatives, sensitivity to initial
values, and the large amount of enumeration memory required)
have forced researchers to rely on meta-heuristic algorithms
based on simulations and some degree of randomness to solve
optimization problems [9]. Although, these meta-heuristic
approaches are not very accurate and they do not always give
the optimal solution, in most cases they give a near optimal
solution with less effort and time than the mathematical
methods [10].

The meta-heuristic algorithms are general purpose
stochastic search methods simulating natural selection and

biological or natural evolution [11]. Different meta-heuristic
algorithms have been developed in the last few decades
simulating and emulating different processes. Some of these
meta-heuristic algorithms were inspired by the biological
evolutionary processes; such as the evolutionary strategy (ES)
[12], evolutionary programing [13-15], and the genetic
algorithm (GA) proposed by Holland [16-17].

 Some meta-heuristic algorithms emulate different animal
behaviors; like the tabu search (TS) proposed by Glover [18],
the ant colony algorithm (ACA) by Dorigo et al [19], Particle
Swarm Optimization (PSO) [20], Harmony Search (HS)
algorithm [21], Bee Colony Optimization (BCO) [22]. Other
meta-heuristic algorithms were inspired by different physical
and natural phenomena like the simulated annealing (SA) [23],
and the Gravitational Search Algorithm (GSA) [24].

The distribution of publications which applied the meta-
heuristics methods to solve the optimization problem in the
past decade is shown in Fig.2. [25].

Fig. 2. Pie chart showing the publication distribution of the meta-heuristics
algorithms [25].

In this paper we introduce a new optimization algorithm
that can be applied to combinatorial problems. The new
optimization problem is named Global Neighborhood
Algorithm (GNA), and it is a population based and derivative
free algorithm like other evolutionary optimization algorithms
including Genetic Algorithm (GA), Ant Colony (ACA) and
Evolutionary Strategy (ES). A set of randomly generated
solutions from the entire search space are first generated and
then the best of these solutions is chosen. After that, the
algorithm will iterate, and in each iteration there will be two
sets of generated solutions; one from the global search space
and the other set of solutions will be generated from the
neighborhood of the best solution. This paper starts with a
background about optimization problems, then the
methodology of the GNA algorithm is explained, and after that
results for using this algorithm to solve the well-known
Traveling Salesman(TSP) problem are also discussed.

II. METHOLODOLGY

The algorithm proposed in this paper is used to optimize
combinatorial problems. The combinatorial problems could
have more than one local and global optimal value within the

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.5, 2013

65 | P a g e
www.ijarai.thesai.org

Define objective function (g)

Initialize the values for all parameters: m,t

Generate (m) feasible solutions from the search space

Evaluate the fitness from the objective function (g)

Optimal solution= the best solution.

i=1

Do while i<t,++

Generate 50% × m solutions from the

neighborhood of the best solution

Generate 50% × m solutions from the

search space

Find the best solution from the (m)

generated solution

If best solution is less (better) than

optimal solution

Optimal solution=best solution

End If

End DO

search space values. The proposed methodology will work to
find the optimal value among these local optima by switching
between exploration and exploitation. Exploration allows for
exploring the whole search space. Exploitation allows focusing
the search in the neighborhood of the best solution of generated
solutions.

In order to explain the methodology of the GNA algorithm,
assume we have discrete function that we need to optimize and
let us say that we need to minimize this function (without loss
of generality).

So the objective function we have is:

Where:

 , are the different combinations of the
solution sequence; we can think of these combinations as the
city sequence in the TSP problem.

We need to find the optimal combination or solution
 that will give the optimal (minimum) value for
the objective function (.In general, if each of the variables
 can be chosen in ways
respectively, then if we want to enumerate all the possible
solutions this will yield solutions.
However, this process could take several hours or days
depending on the size of the problem. Thus, using a meta-
heuristic approach is better even if does not always give the
optimal solution, but in most cases it will give a solution that is
close to the optimal solution with less computational power.

According to the GNA algorithm, a set of (random
solutions are first randomly generated from the set of all
possible solution, where: can be chosen in
 ways.

The generated solutions will then look like:

 where

The fitness for the above solution will be evaluated and this
can be done by substituting them in the objective function (.

The solutions are then sorted according to their fitness
obtained from the objective function:

 is the solution sequence with best

fitness.

The best combination (is then used as a good measure
for the local optimal solution and it is also initially set as the
best known solution.

In the next iteration, 50% of the (generated solutions
will be generated near the best solution neighborhood by using
a suitable move operator.

The other 50% of the (generated solutions will be still
generated from the whole search space, and the reason for that
is to allow for the exploration of the search space, because if
we just choose the solutions close to the best solution we will
only be able to find the local solution around this point, and
since the function that need to be optimized could have more
than one local optima, which might lead us to get stuck at one
of these local optima.

Next, the best solutions from the above (solutions
(50%, 50%) is calculated. The new value for the best solution
is compared to best known solution and if it was found to be
better it will replace it.

The procedure is then repeated until a certain stop criterion
is met. This stop criterion can be a pre-specified number of
iterations (t), or when there is no further improvement on the
final value of the optimal solution we obtained.

The pseudo code for the GNA algorithm is shown in Fig.3.

Fig. 3. Psuedo Code For GNA Algorithm

The flowchart for the GNA algorithm is shown in Fig.4.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.5, 2013

66 | P a g e
www.ijarai.thesai.org

Fig. 4. Flow Chart For GNA Algorithm.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The GNA algorithm was used to solve the Traveling Sales
man Problem (TSP). The TSP problem consists of a number of
cities that need to be visited one time for each, starting from
one city and ending at the same city. In order to optimize the
TSP problem, the optimal sequence of the different cities that
gives the minimum cost (distance) of the tour length has to be

found. Thus, the objective (distance) function for the TSP is
given by:

Where:

 : The total distance for a sequence of N cities.

 : The Euclidean distance between the current city
and the next city to be visited.

 : The Euclidean distance between the last visited

city and the first visited city.

To solve the TSP problem, we have to find the optimal

sequence (S) that will give the shortest distance. If all the
possible solutions are to be checked, then a total number of the
combinations will be (N!) for asymmetric TSP or (N!/2) for
the symmetric TSP. Obviously, if the number of the cities (N)
is small then all the combination can be tried and a
deterministic optimal solution can be found. However, if the
number of the cities is large, then checking all the possible
solution will take very long time and the complexity of the TSP
problem will grow exponentially. For this reason, different
meta-heuristic algorithms have been widely used to solve TSP
problems.

In this paper, the GNA algorithm is used to solve a 29
cities TSP problem. The data were obtained from a real world
problem that contained 29 cities in Bavaria, Germany; the
source of these data is Zuse Institute Berlin [26]. The optimal
solution for this problem is known and documented (2020).
The GNA algorithm was implemented using MATLAB
software, and the total number of solutions (m) generated at
each iteration was 50.

At, each iteration 25 feasible solutions were generated from
the whole search space and the other 25 solutions were
generated from the neighborhood of the fittest solution. The
neighborhood move operator that was used in our case is the
two-opt swap; where two cities were randomly chosen and
swapped. The code was run for different times and at each time
the obtained optimal solution and the run time were recorded.
The stopping criteria used was 10000 iterations. The results for
the GNA algorithm from the MATLAB code are shown in
TABLE.1.

As it can be seen from TABLE.1, in the 10 different run
times, we obtained a near-optimal solution that is very close to
the known optimal solution.

TABLE I. MATLAB CODE OUTPUT FOR USING GNA TO SOLVE THE TSP

PROBLEM.

RUN
Fitness of Optimal

Solution

Number of

iterations
Run Time

1 2026 10000 28.64

2 2022 10000 28.31

3 2026 10000 28.39

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.5, 2013

67 | P a g e
www.ijarai.thesai.org

Two-Sample T-Test and CI: GNA, GA

Two-sample T for GNA vs GA

 N Mean StDev SE Mean

GNA 10 2030.10 9.65 3.1

GA 10 2180.7 86.9 27

Difference = mu (GNA) - mu (GA)

Estimate for difference: -150.6

95% CI for difference: (-213.1, -

88.1)

T-Test of difference = 0 (vs not =)

 T-Value = -5.45 P-Value = 0.000 DF

= 9

4 2033 10000 27.94

5 2046 10000 28.11

6 2033 10000 27.77

7 2022 10000 28.24

8 2020 10000 28.09

9 2047 10000 27.68

10 2026 10000 28.05

The results of the GNA algorithm were also compared to
the Genetic algorithm (GA).

The parameters for the genetic algorithm were as the
following:

Generation size: 50

Crossover probability: 90%

Mutation probability: 10%

Number of iterations: 10000

TABLE II. MATLAB CODE OUTPUT FOR USING GA TO SOLVE THE TSP

PROBLEM.

RUN
Fitness of Optimal

Solution

Number of

iterations
Run Time

1 2132 10000 66.90

2 2295 10000 72.48

3 2066 10000 71.23

4 2191 10000 69.35

5 2084 10000 74.12

6 2097 10000 67.97

7 2178 10000 70.59

8 2226 10000 68.24

9 2320 10000 67.38

10 2218 10000 73.82

TABLE. II shows that the run time for the GA is more than
twice the run time for the GNA, and the solution obtained by
the GA is not always close to the known optimal solution.
MINTAB software was used to conduct a statistical analysis
between the means of the two optimal solutions obtained by
both GA and GNA.

Statistical Analysis was conducted to test if there is a
statistical difference between the average for each algorithm.
A two- Sample T-Test was used for this purpose. The output
from MINITAB is shown in Fig.5.

Fig. 5. MINITAB output for GNA and GA statistical analysis.

A 2-Sample t test showed that there is a significant
difference between the optimal solution obtained from both
GNA and GA , P-value= 0.000. The 95% CI for difference was
(-213.1, -88.1).

Since the difference is always negative as indicated by the
confidence interval, This shows us that on average the
optimal solution is always higher for the GNA.

The difference in the means between the solutions obtained
by the two algorithms is also clear in the Box plot, as shown in
Fig.6. It can be seen the GNA outperformed the GA in terms of
obtaining a near optimal solutions, and the run time to get this
solution was also less. The reason for that is the selection
process in GA is more complicated, and it requires sorting the
solutions in each generation, whereas in our GNA, the best
solution is always selected. Also, the method by which the
solutions evolve in each iteration is much simpler in the GNA,
unlike the GA that uses Crossover and mutation at each
iteration; which makes it take longer time.

Fig. 6. Boxplot for GNA and GA output.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No.5, 2013

68 | P a g e
www.ijarai.thesai.org

IV. CONCLUSION

In this paper, a new meta-heuristic optimization method
was introduced and named Global Neighborhood algorithm
(GNA). This optimization method is a population based
algorithm; since it starts with generating a set of random
solutions from the search space for the optimization problem.
The proposed algorithm can be used to solve combinatorial
optimization problems. These combinatorial problems are
usually more difficult to solve than other continuous
optimization problems. The methodology of this algorithm was
elaborated and 29-cities TSP optimization problem was solved
using the GNA. The TSP optimization problem was also
solved using genetic algorithm (GA) and the results were
compared to the GNA. Statistical analysis was conducted using
MINITAB software, and it was found that the GNA showed
better performance, and the results obtained were very close to
the known optimal solution. Future studies can include
different variants for the basic GNA algorithm to enhance the
search power.

REFERENCES

[1] T. Weise, Global Optimization Algorithms – Theory and Application,

Germany: it-weise.de (self-published), [Online]. Available:
http://www.it-weise.de/ , 2009

[2] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers,

1997.

[3] C. R. Reeves and J. E. Beasley, Modern heuristic techniques for
combinatorial problems, McGraw-Hill, 1995

[4] W. Wang, P. C. Nelson, and T. M. Tirpak, “Optimization of high-speed

multistation SMT placement machines using evolutionary algorithms,”
IEEE Transactions on Electronics Packaging Manufacturing, 22(2), 137-

146, 1995.

[5] E. Silver, R. V. Vidal, and D. de Werra, “A tutorial on heuristic

methods,” European Journal of Operational Research, 5, 153-162, 1980.

[6] S. H. Zanakis, J. R. Evans, and A. A. Vazacopoulos, “ Heuristic
methods and applications: a categorized survey,” European Journal of

Operational Research, 43, 88-110, 1989.

[7] D. S. Johnson, “Local optimization and the traveling salesman
problem,” In Goos, G. and Hartmanis, J. (eds) Automata, Languages and

Programming, Lecture Notes in Computer Science, 442, Springer,
Heidelberg, 446-461, 1990.

[8] E. Aarts and J. K Lenstra, “Local search in combinatorial optimization,”

Wiley,1997.

[9] K. S. Lee, and Z. W. Geem, “ A new structural optimization method

based on the harmony search algorithm,” Computers and Structures 82(2
004) 781–798, 2004.

[10] K. S. Lee , Z. W. Geem, “A new meta-heuristic algorithm for
continuous engineering Optimization,” Comput. Methods Appl. Mech.

Engrg. 194 (2005) 3902–3933, 2005.

[11] M. G. Omran and M. Mahdavi, “Global-best harmony search,” Applied
Mathematics and Computation 198 ,643–656, 2008.

[12] I. Rechenberg, Cybernetic solution path of anexperimental problem,

Royal Aircraft Establishment, Library Translation no. 1122, 1965.

[13] L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial intelligence through
simulated evolution, Chichester, UK: John Wiley,1966.

[14] K. De Jong, “Analysis of the behavior of a class of genetic adaptive

systems”, Ph.D. Thesis, Ann Arbor, MI: University of Michigan, 1975.

[15] J. R. Koza, “Genetic programming: A paradigm for genetically breeding
populations of computer programs to solve Problems,” Report No.

STAN-CS-90-1314, Stanford, CA:Stanford University, 1990.

[16] D. E. Goldberg, Genetic algorithms in search optimization and machine

learning, Boston, MA: Addision-Wesley, 1989.

[17] J. H. Holland, Adaptation in natural and artificial systems, Ann Arbor,
MI: University of Michigan Press, 1975.

[18] F. Glover, “Heuristic for integer programming using surrogate

constraints,” Decision Science, 8(1):156–66, 1977.

[19] M. Dorigo, V. Maniezzo and A. Colorni, “The ant system: Optimization
by a colony of cooperating agents,” IEEE Trans Systems Man Cybernet,

26(1), 29–41, 1996.

[20] J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE
International Conference on Neural Networks Perth, Australia, pp:

1942-1948, 1995.

[21] Z. W. Geem, J. H. Kim and G. Loganathan, “A new heuristic
optimization algorithm: Harmony search,” Simulation, 76(2), 60, 2001.

[22] S. Nakrani and C. Tovey, “On honey bees and dynamic server allocation
in internet hosting centers,” Adapt. Behav., 12(3-4), 223, 2004.

[23] S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by simulated

annealing,” Science 1983, 220(4598), 671–80, 1983.

[24] E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, “GSA: A
gravitational search algorithm,” Inform. Sci., 179(13): 2232-2248, 2009.

[25] M. Khajehzadeh, M. R. Taha, A. El-Shafie and M. Eslami “A Survey

on Meta-Heuristic Global Optimization Algorithms,” Research Journal
of Applied Sciences, Engineering and Technology 3(6), 569-578, 2011.

[26] Z. I. Berlin, “MP-TESTDATA- the TSPLIB Symmetric Traveling

Salesman Problem Instances," vol. 2010: Zuse Institute Berlin, 2010.

