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Abstract—Combinatorial optimization problems are 

those problems that have a finite set of possible solutions. 

The best way to solve a combinatorial optimization 

problem is to check all the feasible solutions in the search 

space. However, checking all the feasible solutions is not 

always possible, especially when the search space is large. 

Thus, many meta-heuristic algorithms have been devised 

and modified to solve these problems. The meta-heuristic 

approaches are not guaranteed to find the optimal solution 

since they evaluate only a subset of the feasible solutions, 

but they try to explore different areas in the search space 

in a smart way to get a near-optimal solution in less cost 

and time. In this paper, we propose a new meta-heuristic 

algorithm that can be used for solving combinatorial 

optimization problems. The method introduced in this 

paper is named the Global Neighborhood Algorithm 

(GNA). The algorithm is principally based on a balance 

between both the global and local search. A set of random 

solutions are first generated from the global search space, 

and then the best solution will give the optimal value. After 

that, the algorithm will iterate, and in each iteration there 

will be two sets of generated solutions; one from the global 

search space and the other set of solutions will be 

generated from the neighborhood of the best solution. 

Throughout the paper, the algorithm will be delineated 

with examples. In the final phase of the research, the 

results of GNA will be discussed and compared with the 

results of Genetic Algorithm (GA) as an example of 

another optimization method.   
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I. INTRODUCTION  

Many optimization problems have been encountered in 
different domains of manufacturing and industry. Usually the 
optimization problem that needs to be solved is first formulated 
and all the constraints are given. The optimization problem 
mainly consists of an objective function and a set of 
constraints. The objective function can be in mathematical 
form or combinatorial form. Once the objective function of the 
optimization problem is formulated and all the constraints are 
defined, then the main issue is to solve this problem.  

The solution is usually the best values of the variables or 
the best scenarios which can also be called the optimal 
solution. This optimal solution should give us the best 
performance or best fitness in terms of  the objective function.  

In most optimization problems there is more than one local 
solution. Therefore, it becomes very important to choose a 
good optimization method that will not be greedy and look 
only in the neighborhood of the best solution; because this will 
mislead the search process and leave it stuck at a local solution. 
However, the optimization algorithm should have a mechanism 
to balance between local and global search. An example of a 
two-dimensional function that has more than one local and 
global solution is shown in Fig.1 [1]. 

There are multiple methods used to solve optimization 
problems of both the mathematical and combinatorial types. In 
fact, if the optimization problem is simple or if the search space 
is small, then the optimization problem can be solved using 
conventional analytical or numerical procedures. However, if 
the optimization problem is difficult or if the search space is 
large, it will become difficult to solve the optimization problem 
by using conventional mathematics or using numerical 
induction techniques. For this reason, many meta-heuristic 
optimization methods have been developed to solve such 
difficult optimization problems. These include Genetic 
algorithm (GA), simulated annealing (SA), ant colony 
algorithm (ACA), and particle swarm (PS). Most of these 
meta-heuristic optimization problems are inspired by nature, 
biology, or environment. 

The term meta-heuristic refers to a specific class of 
heuristic methods. Fred Glover first used this term and defined 
it as follows, “A meta-heuristic refers to a master strategy that 
guides and modifies other heuristics to produce solutions 
beyond those that are normally generated in a quest for local 
optimality.  

The heuristics guided by such a meta-strategy may be high 
level procedures or may embody nothing more than a 
description of available moves for transforming one solution 
into another, together with an associated evaluation rule.” [2]. 

The meta-heuristic algorithms do not always guarantee an 
optimal solution. However, in most cases a near optimal 
solution can be obtained in much less time than the 
computational methods [3-4]. 
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Fig. 1. Global and local optima of two-dimensional function [1]. 

The meta-heuristic algorithms can be classified based into 
different categories[5-6]: 

1) Constructive  and Improvement:  
A constructive heuristic (also known as a greedy approach) 

usually constructs a solution from scratch based on a certain 
criteria. Some of the common constructive heuristics are 
nearest neighbor, multiple fragment and insertion heuristics 
[7]. An improvement or neighborhood search, which is usually 
known as a local search, attempts to improve the solution by 
exploring the neighborhood of the current solution [8]. The 
neighborhood of a solution is the set of solutions that are close 
to the current solution. The local optimal solution is the best 
solution in each neighborhood and the global optimum is the 
best solution with respect to the whole search space. An 
improvement or local search begins the search from a given 
solution, and then iteratively attempts to improve the solution 
quality by using move operators, the move operator is usually 
determined based on the neighborhood structure, and it aims to 
change (move) the solution to a newer solution in the same 
neighborhood but with a better fitness. 

2) Single Solution and Population based approaches: 
In the single based solution, a unique solution is first 

generated and then based on a certain move criteria, other 
solutions are generated. Some of the meta-heuristic methods 
that start with a single solution are: Tabu Search (TS) and 
Simulated Annealing (SA). Population based algorithms on the 
other hand start by generating a set of multiple initial solutions. 
Examples of those methods would be Genetic Algorithm (GA) 
and Ant Colony Algorithm (ACA). 

The computational drawbacks of mathematical techniques 
and methods (i.e., complex derivatives, sensitivity to initial 
values, and the large amount of enumeration memory required) 
have forced researchers to rely on meta-heuristic algorithms 
based on simulations and some degree of randomness to solve 
optimization problems [9]. Although, these meta-heuristic 
approaches are not very accurate and they do not always give 
the optimal solution, in most cases they give a near optimal 
solution with less effort and time than the mathematical 
methods [10].  

The meta-heuristic algorithms are general purpose 
stochastic search methods simulating natural selection and 

biological or natural evolution [11]. Different meta-heuristic 
algorithms have been developed in the last few decades 
simulating and emulating different processes. Some of these 
meta-heuristic algorithms   were inspired by the biological 
evolutionary processes; such as the evolutionary strategy (ES) 
[12], evolutionary programing [13-15], and the genetic 
algorithm (GA) proposed by Holland [16-17]. 

 Some meta-heuristic algorithms emulate different animal 
behaviors; like the tabu search (TS)  proposed by Glover [18],  
the ant colony algorithm (ACA) by Dorigo et al [19], Particle 
Swarm Optimization (PSO) [20], Harmony Search (HS) 
algorithm [21], Bee Colony Optimization (BCO) [22]. Other 
meta-heuristic algorithms were inspired by different physical 
and natural phenomena  like the simulated annealing (SA) [23],   
and the  Gravitational Search Algorithm (GSA) [24]. 

The distribution of publications which applied the meta-
heuristics methods to solve the optimization problem in the 
past decade is shown in Fig.2. [25]. 

 

Fig. 2. Pie chart showing the publication distribution of the meta-heuristics 
algorithms [25]. 

In this paper we introduce a new optimization algorithm 
that can be applied to combinatorial problems. The new 
optimization problem is named Global Neighborhood 
Algorithm (GNA), and it is a population based and derivative 
free algorithm like other evolutionary optimization algorithms 
including Genetic Algorithm (GA), Ant Colony (ACA) and 
Evolutionary Strategy (ES). A set of randomly generated 
solutions from the entire search space are first generated and 
then the best of these solutions is chosen. After that, the 
algorithm will iterate, and in each iteration there will be two 
sets of generated solutions; one from the global search space 
and the other set of solutions will be generated from the 
neighborhood of the best solution. This paper starts with a 
background about optimization problems, then the 
methodology of the GNA algorithm is explained, and after that 
results for using this algorithm to solve the well-known 
Traveling Salesman(TSP)  problem are also discussed.  

II. METHOLODOLGY 

The algorithm proposed in this paper is used to optimize 
combinatorial problems. The combinatorial problems could 
have more than one local and global optimal value within the 
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Define objective function (g) 

 

Initialize the values for all parameters: m,t 
   

Generate (m) feasible solutions from the search space 

 

Evaluate the fitness from the objective function (g) 

 

Optimal solution= the best solution. 

 

i=1 

 

Do while i<t,++ 

Generate 50% × m solutions from the 

neighborhood of the best solution 

 

Generate 50% × m solutions from the 

search space  
 

Find the best solution from the (m) 

generated solution 

 

If best solution is less (better) than 

optimal solution 

 

Optimal solution=best solution 

 

End If 

 

End DO   

search space values. The proposed methodology will work to 
find the optimal value among these local optima by switching 
between exploration and exploitation. Exploration allows for 
exploring the whole search space. Exploitation allows focusing 
the search in the neighborhood of the best solution of generated 
solutions. 

In order to explain the methodology of the GNA algorithm, 
assume we have discrete function that we need to optimize and 
let us say that we need to minimize this function (without loss 
of generality). 

So the objective function we have is: 

                           

Where:  

  ,           are the different combinations of the 
solution sequence; we can think of these combinations as the 
city sequence in the TSP problem. 

We need to find the optimal combination or solution 
             that will give the optimal (minimum) value for 
the objective function (  .In general, if each of the variables 
             can be chosen in              ways 
respectively, then if we want to enumerate all the possible 
solutions this will yield               solutions. 
However, this process could take several hours or days 
depending on the size of the problem. Thus, using a meta-
heuristic approach is better even if does not always give the 
optimal solution, but in most cases it will give a solution that is 
close to the optimal solution with less computational power. 

According to the GNA algorithm, a set of  (    random 
solutions are first randomly generated from the set of all 
possible solution, where:              can be chosen in 
             ways. 

The generated solutions will then look like: 

   
 
   

 
     

 
   where             

The fitness for the above solution will be evaluated and this 
can be done by substituting them in the objective function (  . 

The solutions are then sorted according to their fitness 
obtained from the objective function: 

                                                

       
    

      
   is the solution sequence with best 

fitness. 

The best combination (     is then used as a good measure 
for the local optimal solution and it is also initially set as the 
best known solution. 

In the next iteration, 50% of the (    generated solutions 
will be generated near the best solution neighborhood by using 
a suitable move operator.    

The other 50% of the (    generated solutions will be still 
generated from the whole search space, and the reason for that 
is to allow for the exploration of the search space, because if 
we just choose the solutions close to the best solution we will 
only be able to find the local solution around this point, and 
since the function that need to be optimized could have more 
than one local optima, which might lead us to get stuck at one 
of these local optima. 

Next, the best solutions from the above (    solutions 
(50%, 50%) is calculated. The new value for the best solution 
is compared to best known solution and if it was found to be 
better it will replace it. 

The procedure is then repeated until a certain stop criterion 
is met. This stop criterion can be a pre-specified number of 
iterations (t), or when there is no further improvement on the 
final value of the optimal solution we obtained. 

The pseudo code for the GNA algorithm is shown in Fig.3.  

Fig. 3. Psuedo Code For GNA Algorithm 

The flowchart for the GNA algorithm is shown in Fig.4.  
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Fig. 4. Flow Chart For GNA Algorithm. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

The GNA algorithm was used to solve the Traveling Sales 
man Problem (TSP). The TSP problem consists of a number of 
cities that need to be visited one time for each, starting from 
one city and ending at the same city. In order to optimize the 
TSP problem, the optimal sequence of the different cities that 
gives the minimum cost (distance) of the tour length has to be 

found. Thus, the objective (distance) function for the TSP is 
given by: 

                                                       

   

   

 



Where: 

    : The total distance for a sequence of N cities.  

           : The Euclidean distance between the current city 
and the next city to be visited. 

         : The Euclidean distance between the last visited 

city and the first visited city. 

 
To solve the TSP problem, we have to find the optimal 

sequence (S) that will give the shortest distance. If all the 
possible solutions are to be checked, then a total number of the 
combinations will be  (N!) for asymmetric TSP or (N!/2) for 
the symmetric TSP. Obviously, if the number of the cities (N) 
is small then all the combination can be tried and a 
deterministic optimal solution can be found. However, if the 
number of the cities is large, then checking all the possible 
solution will take very long time and the complexity of the TSP 
problem will grow exponentially. For this reason, different 
meta-heuristic algorithms have been widely used to solve TSP 
problems. 

In this paper, the GNA algorithm is used to solve  a 29 
cities TSP problem. The data were obtained from a real world 
problem that contained 29 cities in Bavaria, Germany; the 
source of these data is Zuse Institute Berlin [26]. The optimal 
solution for this problem is known and documented (2020). 
The GNA algorithm was implemented using MATLAB 
software, and the total number of solutions (m) generated at 
each iteration was 50.  

At, each iteration 25 feasible solutions were generated from 
the whole search space and the other 25 solutions were 
generated from the neighborhood of the fittest solution. The 
neighborhood move operator that was used in our case is the 
two-opt swap; where two cities were randomly chosen and 
swapped. The code was run for different times and at each time 
the obtained optimal solution and the run time were recorded. 
The stopping criteria used was 10000 iterations. The results for 
the GNA algorithm from the MATLAB code are shown in 
TABLE.1. 

As it can be seen from TABLE.1, in the 10 different run 
times, we obtained a near-optimal solution that is very close to 
the known optimal solution. 

TABLE I.  MATLAB CODE OUTPUT FOR USING GNA TO SOLVE THE TSP 

PROBLEM. 

RUN 
Fitness of Optimal 

Solution 

Number of 

iterations 
Run Time 

1 2026 10000 28.64 

2 2022 10000 28.31 

3 2026 10000 28.39 
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Two-Sample T-Test and CI: GNA, GA  

 
Two-sample T for GNA vs GA 

 

      N     Mean  StDev  SE Mean 

GNA  10  2030.10   9.65      3.1 

GA   10   2180.7   86.9       27 

 

 

Difference = mu (GNA) - mu (GA) 

Estimate for difference:  -150.6 

95% CI for difference:  (-213.1, -

88.1) 

T-Test of difference = 0 (vs not =) 

 T-Value = -5.45  P-Value = 0.000  DF 

= 9 

 

4 2033 10000 27.94 

5 2046 10000 28.11 

6 2033 10000 27.77 

7 2022 10000 28.24 

8 2020 10000 28.09 

9 2047 10000 27.68 

10 2026 10000 28.05 

 

The results of the GNA algorithm were also compared to 
the Genetic algorithm (GA).  

The parameters for the genetic algorithm were as the 
following: 

Generation size: 50 

Crossover probability: 90% 

Mutation probability: 10% 

Number of iterations: 10000 

TABLE II.  MATLAB CODE OUTPUT FOR USING GA TO SOLVE THE TSP 

PROBLEM. 

RUN 
Fitness of Optimal 

Solution 

Number of 

iterations 
Run Time 

1 2132 10000 66.90 

2 2295 10000 72.48 

3 2066 10000 71.23 

4 2191 10000 69.35 

5 2084 10000 74.12 

6 2097 10000 67.97 

7 2178 10000 70.59 

8 2226 10000 68.24 

9 2320 10000 67.38 

10 2218 10000 73.82 

 

TABLE. II shows that the run time for the GA is more than 
twice the run time for the GNA, and the solution obtained by 
the GA is not always close to the known optimal solution. 
MINTAB software was used to conduct a statistical analysis 
between the means of the two optimal solutions obtained by 
both GA and GNA. 

Statistical Analysis was conducted to test if there is a 
statistical difference between the average  for each algorithm.  
A two- Sample T-Test was used for this purpose. The output 
from MINITAB is shown in Fig.5. 

 

 

 

 

 

Fig. 5.    MINITAB output for GNA and GA statistical analysis. 

A 2-Sample t test showed that there is a significant 
difference between the optimal solution obtained from both 
GNA and GA , P-value= 0.000. The 95% CI for difference was 
(-213.1, -88.1). 

Since the difference is always negative as indicated by the 
confidence interval,  This  shows us that on average the 
optimal solution  is always higher for the GNA. 

The difference in the means between the solutions obtained 
by the two algorithms is also clear in the Box plot, as shown in 
Fig.6. It can be seen the GNA outperformed the GA in terms of 
obtaining a near optimal solutions, and the run time to get this 
solution was also less. The reason for that is the selection 
process in GA is more complicated, and it requires sorting the 
solutions in each generation, whereas in our GNA, the best 
solution is always selected. Also, the method by which the 
solutions evolve in each iteration is much simpler in the GNA, 
unlike the GA that uses Crossover and mutation at each 
iteration; which makes it take longer time. 

 

Fig. 6. Boxplot for GNA and GA output. 
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IV. CONCLUSION 

In this paper, a new meta-heuristic optimization method 
was introduced and named Global Neighborhood algorithm 
(GNA). This optimization method is a population based 
algorithm; since it starts with generating a set of random 
solutions from the search space for the optimization problem. 
The proposed algorithm can be used to solve combinatorial 
optimization problems. These combinatorial problems are 
usually more difficult to solve than other continuous 
optimization problems. The methodology of this algorithm was 
elaborated and 29-cities TSP optimization problem was solved 
using the GNA. The TSP optimization problem was also 
solved using genetic algorithm (GA) and the results were 
compared to the GNA. Statistical analysis was conducted using 
MINITAB software, and  it was found that the GNA showed 
better performance, and the results obtained were very close to 
the known optimal solution. Future studies can include 
different variants for the basic GNA algorithm to enhance the 
search power. 
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