
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  
Vol. 2, No.5, 2013 

56 | P a g e  
www.ijarai.thesai.org 

Path Based Mapping Technique for Robots

Amiraj Dhawan
1
, Parag Oak, Rahul Mishra, George Puthanpurackal

2 

Department of Computer Engineering, 

Fr. C. Rodrigues Institute of Technology, Vashi, 

Navi Mumbai, Maharashtra, India 

 
Abstract—The purpose of this paper is to explore a new way 

of autonomous mapping. Current systems using perception 

techniques like LAZER or SONAR use probabilistic methods 

and have a drawback of allowing considerable uncertainty in the 

mapping process. Our approach is to break down the 

environment, specifically indoor, into reachable areas and 

objects, separated by boundaries, and identifying their shape, to 

render various navigable paths around them. This is a novel 

method to do away with uncertainties, as far as possible, at the 

cost of temporal efficiency. Also this system demands only 

minimum and cheap hardware, as it relies on only Infra-Red 
sensors to do the job. 

Keywords—Robots; map generation; navigation; AI planning; 

path planning; 

I. INTRODUCTION 

As the research in robotics continues and has become more 
involved in the past decade, the need for an intelligent 
navigation system has been realized. Many students and 
researchers around the world have devoted great amounts of 
time in developing new ways for an artificial agent to navigate 
both locally and globally. It has become essential for an agent 
to be able to navigate unknown environments autonomously. 
Hence when we talk about navigation we imply three things  

• Mapping (the new environment)  

• Path Finding 

• Actuation 

Several methods have been devised but most of them 
require expensive perception techniques using laser (LIDAR), 
SONAR or expensive cameras. Such methods are justified 
when time is crucial or when the environment is highly 
stochastic. But for simple indoor navigation something 
simpler can be sufficient. 

The maps generated by existing mapping methods are 
usually discrete and hence can be made more informative and 
less stochastic either by increasing the resolution of the sensor 
or by increasing the input sampling rate. Unfortunately, this 
either increases the cost or increases the processing time and 
the storage space required. 

 

A desired system would be the one that renders the 
required map resolution without unreasonable rise in resource 
consumption. We propose a method that will help an artificial 
agent map its immediate surroundings in an indoor setting. 
This method can work with cheap sensors (IR) and will 
generate a map which is technically discrete but logically 
continuous. It will allow motion planning with continuous 
paths. 

The proposed system is such that irrespective of the 
environment complexity or the map resolution, the memory 
space requirement does not vary drastically and the sensor 
used will still be the same. The only dimension affected is 
time and that too varies only with environment complexity 
while it remains independent of the map resolution. The main 
steps involved are: 

• Generation of Boundaries: The unknown environment is 
mapped and the boundaries are generated. As a result 
reachable and unreachable areas are demarcated. Also the 
detected objects are classified. 

• Shape identification: The generated boundaries are 
analyzed. It is determined whether they are concave or 
convex in shape. This will supplement the next step. 

• Preparing path plan: Finally, continuous paths are 
generated such that they occupy only the reachable areas 
of the environment. Path generation depends on the 
boundary shape. 

The layout of the paper is as follows: Section II reviews 
few existing systems, followed by the proposed system in 
Section III. The proposed system is broken down into several 
sections explaining the environment, hardware, boundary 
generation, shape identification of the boundary, path planning 
etc. Section IV discusses several merits of the proposed 
system. Finally we conclude with Section V. 

II. EXISTING SYSTEM 

Robotic Mapping is a branch in Robotics, dealing with the 
application and study of map or floor plan construction by an 
autonomous robot. There are two types of internal 
representation: 

  



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  
Vol. 2, No.5, 2013 

57 | P a g e  
www.ijarai.thesai.org 

•Metric:  The metric framework is the most common for 

humans. It considers a 2D space in which it places the objects 

at their known coordinates. This model is very useful, but is 

sensitive to noise. Calculation of precise distance is also quite 

difficult. 

 
•Topological: The topological framework only considers 

places and their relation. Usually, the metric stored is the 

distance separating the places. Finally a graph is created in 

which the nodes correspond to places and the arcs correspond 

to the paths. Some of the existing systems related to robot 

mapping are as follows: 

A. Robot Localization and Mapping Using Sonar Data 

Without any prior knowledge of the environment the robot 
generates a global map dynamically and computes the robot 
location for localization by correlating it with the local map. 
To create the local map, the robot uses range measurements in 
different directions from the sonar sensor. A servo holds the 
sonar sensor, so that 180 degree sweeps are possible [1]. This 
system uses 2-dimensional grid to provide a map of the 
robot’s environment. Each grid stores the occupancy and 
certainty value obtained from the robot mapping algorithm 
which is later used for its localization. 

B.  Occupancy Algorithm  

The system uses occupancy algorithm to create the map. 
As the robot explores its environment over time, it uses its 
range of range sweeping sensor values and current location to 
determine the occupancy of each grid. It classifies every grid 
as occupied, empty or unexplored. The occupancy of each cell 
in the pie is finally updated based on the previous value and 
the one inferred from the range readings which contributes to 
the generation of the grip map. 

C. Autonomous topological modeling of an environment 

This system uses the method of autonomous topological 
modeling and localization in a home environment using 
SONAR. The topological model is extracted from a grid map 
using cell decomposition and normalized graph cut. 
Autonomous topological modeling involves the incremental 
extraction of a sub-region without predefining the number of 
sub-regions [2]. The following are the important steps 
involved: 

• Cell decomposition can systematically extract empty 
regions in the grid map and produce a roughly modeled 
graph structure for an empty environment. 

• Normalized graph cut produces an effective clustering 
result by maximizing the similarity within clusters; this 
has low computational burden because of the cell 
decomposition process. 

• Finally the topological map is constructed with an 
unknown number of sub-regions. 

 

D. Robot Map Creation Algorithm using sensor data 

This system describes an algorithm by which a robot can 
construct a map on the fly, and localize itself to the self-
constructed map. In the given system, the robot begins by 
taking sonar readings, to generate a polar distance map of the 
robot's immediate neighborhood. These initial soundings are 
taken to be the robot's initial map [3].  

Then the robot starts to move in some direction, stops at a 
particular location, and takes another sounding. The 
assumption is taken that there is no major changes in robot’s 
environment, which contributes the best fit sounding map. The 
best fit returns a most likely location of the robot relative to 
the origin. The soundings are then shifted with respect to the 
robot's current location and used to modify the map. Several 
iterations of this cycle are performed until the robot has 
finished exploring. 

III. PROPOSED SYSTEM 

We plan to implement a system for construction of a 
navigation map and mapping the position and shape of the 
objects present in an area using a robot. The system would be 
limited to finite indoor geographical locations. The robot 
moves around in the enclosed area and at the end gives a map 
of the area reachable by the robot and the position of the 
objects present in the area with their estimated shape and size. 

A. Environment 

The environment needs to be a finite indoor geographical 
location like room or courtyards which are surrounded by 
some form of boundary (like walls). There can be two types of 
objects: 

• Objects which are not in contact with the boundary of the 

area i.e. Extrinsic Objects 

• Objects which are in contact with the boundary of the area i.e. 

Intrinsic Objects 

 

 

Fig.1. Boundary generated for Intrinsic and Extrinsic objects. 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  
Vol. 2, No.5, 2013 

58 | P a g e  
www.ijarai.thesai.org 

Intrinsic objects are considered as part of the boundary. 
Hence the system maps only the reachable area, the boundary 
of which can be the outline of an Intrinsic Object. For 
extrinsic objects, the system can report their positions and 
shapes accurately. Figure 1 shows these two types of objects. 

B. Robot Hardware 

 The robot will consist of a four wheel or two wheel drive 
chassis with geared DC motors. The detection of the walls or 
boundaries can be done by using Digital Infrared Proximity 
Sensor’s on all four sides of the robot. The sensors only detect 
the presence of the wall at a fixed distance d. More such 
sensors can be used on the diagonals to increase the mapping 
quality of the curved boundaries of the room or courtyards. In 
addition to infrared proximity sensors, the robot would also 
use wheel encoders to measure the distance traveled in a given 
time frame.  

A Gyroscope sensor would be used to maintain orientation 
of the robot.  The robot will be wireless capable for 
communication with a host system. The host system would 
collect data acquired by the robot’s sensors and execute the 
resource heavy algorithm. The host system controls the 
actions of the robot using a command set. The host system can 
also be built on the robot itself if the mobile system can 
provide sufficient computing power for the algorithm to be 
executed in real time. 

C. Generation of Boundaries 

The first task is to map the reachable area by the robot 
which gives the boundaries of the area and the intrinsic 
objects. The intrinsic objects and the boundaries are 
indistinguishable.  

The robot starts inside the closed area and randomly 
moves in any one direction until its proximity sensors give a 
high signal indicating an obstacle. This obstacle can be: 

• An Intrinsic object or the boundary of the area: In which 
case the robot just moves along the detected obstacle and 
tries to alter its path whenever the sensor stops detecting 
the obstacle until the obstacle is again detected by the 
sensor. For example if the left side sensor detects an 
obstacle, and on moving along it, the sensor losses the 
obstacle, the robot would keep moving left, until the 
sensor again picks up the lost obstacle. The wheel 
encoders’ & proximity sensors’ data are sent to the host 
which checks if the robot has reached the same point from 
which it first picked up the obstacle signal. At this point 
the host sends a STOP command to the robot and 
generation of the boundaries of the area is done. Figure 2 
below illustrates this scenario. 

• An Extrinsic object:  In which case the robot again moves 
along the detected obstacles and follows the same 
procedure as in Intrinsic or boundary scenario. But after 
the boundary generation, the robot finds itself outside the 
last boundary formed. Since it is a closed finite 
environment and the robot starts from inside the closed 
area, this is an impossible case and thus the obstacle 
found has to be an extrinsic object. Figure 3 shows the 
mapped extrinsic object.   

Now the robot starts again by selecting a random 
direction and repeats the process but this time ignoring all 
the previous extrinsic objects mapped. 

The boundary generation phase repeats every time when 
the extrinsic object scenario is detected and it ends successfully 

as soon as the system detects that the mapped obstacle is an 

intrinsic object or a boundary scenario. 

 

Fig.2. Generation of Boundary of an Intrinsic Object 

 

Fig.3. Generation of Boundary phase for Extrinsic Object Scenario 

D. Shape Identification of the Generated Boundary 

After the generation of the boundary, we try to identify the 
shape of the boundary. This phase is important since different 
strategies are applied to boundaries depending on its shape.  

The types of shapes that are to be identified are Concave 
Polygon, Convex Polygon, Circular and Complex shapes 

 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  
Vol. 2, No.5, 2013 

59 | P a g e  
www.ijarai.thesai.org 

. The complex shape is basically a mixture of 
Convex/Concave Polygon and Circular arcs.  

The first step is to detect all the points where the robot 
took a turn of more than 1 degree in any direction. If no such 
points are detected then the shape of the generated boundary is 
Circular. Using these points, the shape can be identified as 
Concave or Convex Polygon easily using one of various 
Convex Hull algorithms with slight variations [4]. The 
preferred algorithm is Jarvis’s March also known as Gift 
Wrapping algorithm due to its running time of O(n) where n is 
the number of points [5]. According to Jarvis’s March 
algorithm, if at any time the succeeding point vector goes in 
an anti-clockwise direction then the boundary is classified as a 
concave polygon and convex polygon otherwise. A complex 
shape also is passed as either a concave or a convex polygon. 
For this, the generated boundary is passed through Hough 
Transform for Circle. If a circle or curve is detected by the 
algorithm then it is a complex shape. In case a complex shape 
is detected, the shape is divided into convex/concave polygon 
and a circular part. These parts are then treated as individual 
reachable areas by the rest of the algorithm and the objects are 
mapped independently in these parts.  

E.  Preparing The Path Plan 

To map the extrinsic objects, we first create a Path Plan 
using which the robot decides the movement in the reachable 
area. The path plan is basically a set of straight lines starting 
from one of the vertices of the reachable area to the edge 
opposite to the vertex. It also contains the angle at which the 
robot should start moving from the starting point of the line. 
We define a parameter which defines how accurately extrinsic 
objects are detected. This accuracy factor is denoted by the 
variable α. The accuracy factor α can help us deduce the 
approximate dimensions of the extrinsic objects which might 
not be mapped by the robot. Thus by customizing the accuracy 
factor, it would be possible to alter the completeness in the 
mapping of extrinsic objects. Also, increasing the accuracy 
would increase the time required for the mapping. We use 
different approaches for the different types of shapes of the 
reachable area mapped by the robot as follows:  

• Convex Shape 

The host system first finds all the vertices of the convex 
shape. Then from the first vertex a straight line is formed with 
any vertex of the opposite edge. This straight line is added into 
the path plan for the robot. Figure 4 shows the vertex P of a 
convex reachable area. 

 

 

  
Fig.4. First path formed from Vertex P 

Now we recursively form such straight lines from the same 
vertex P towards the opposite edges until we reach the other 
end vertex say R of the opposite edge. The endpoint of each 
straight line is at a distance α apart from the previous straight 
line. If the opposite edge length is not a multiple of α, then the 
last straight line is at a distance less then α from the straight 
line between P and R maintaining the accuracy of α.  

From the reachable area we can deduce the vertical 
distance between the vertex P and the opposite edge. Using 
this vertical distance and α, we calculate the angle that each 
straight line makes with the opposite edge and store them in 
the path plan. 

 

Fig.5. Straight lines from vertex P to the current opposite edge 

We now take another edge opposite to the vertex P, if any, 
and redo the process considering this new edge. Figure 6 
shows all the straight lines from the vertex P. 

 

  



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  
Vol. 2, No.5, 2013 

60 | P a g e  
www.ijarai.thesai.org 

 

Fig.6. All the straight lines from vertex P towards the opposite edge 

A sample entry in the path plan would consist of the 
starting vertex, angle made by the line to the boundary in the 
anti-clockwise direction and a line identifier. For example [P, 
P1, L1] and [P, P2, L2]. The path plan is complete when the 
above procedure is repeated for all the vertices. Straight lines 
in the completed path plan that coincides with any of the 
reachable area boundary are excluded from the path plan since 
the path was already used by the robot for mapping the 
reachable boundary. Figure 7 shows the complete path plan of 
the example convex shape. 

• Concave Shape 

For concave shape, we do the same procedure as we did in 
the convex shape with one addition. Every time a straight line 
is added into the path plan, it is first checked if the entire line 
falls with the boundary or not. If any part of the line is outside 
the reachable area i.e. the concave shape, it is not added into 
the path plan. Figure 8 shows the accepted and rejected 
straight lines from the Vertex P.  

After every vertex is done, the final Path Plan for the 
sample Concave Shape is shown in Figure 9. 

 

Fig.7.  Path Plan for the sample convex shape 

• Circular Shape 

For Circular shape reachable area, the host system starts 
from a random point on the circular shape and makes a 
straight line passing from the center. The next point on the 
circular shape is selected at an arc length of α from the last 
point in a clockwise direction. The process ends when the new 
point has already been processed. If the circular shape is a 
semicircle, then the straight lines start from the boundary and 
ends at the center. But in a full circle, the straight lines start 
the boundary, passes through the center and ends on the other 
side of the boundary. Figure 10 shows the complete path plan 
for a circle shape [6]. 

F. Mapping an Extrinsic Object 

After preparing the path plan, the host system commands 
the robot to move according to this plan. At all times, the 
proximity sensors are active and sends a stop signal to the 
robot if an obstacle is detected. The vertex, say C, closest to 
the robot’s current position after mapping the boundary and 
getting the reachable area, is first selected, and all the paths 
stored in the path plan with starting vertex C are traversed. 
The path with the lowest angle is selected first and after 
reaching the opposite edge, the next path, which is closest to 
the first path, is traversed from the opposite edge to the vertex. 
During traversing on any path, if any of the proximity sensors 
send a Stop signal, the robot sends back the information to the 
host system indicating that it has detected an extrinsic object. 
The host system, who knows the current position of the robot, 
the position of the boundary and the direction of the proximity 
sensor, act differently as follows: 

• The robot is sufficiently close to the boundary. In this 
case the robot is commanded to continue its path without 
any deviation. 

• An extrinsic object, which the host system is already 
aware of, is detected. In this case, the robot is commanded 
to ignore the object and alter the path to move along the 
boundary of the object until it reaches its original path 
and then continues. 

• Detects an extrinsic object, which the host system is 
unaware of. In this case the host system creates an entry 
of the extrinsic object. The robot is commanded to alter 
its path to move along the boundary of the object. It 
moves in the anti-clockwise direction, along the object if 
the right or the center proximity sensors detected the 
object else it moves clockwise. After moving along the 
object if the robot comes back on its actual path which it 
was following, the robot stops altering its path according 
to the object and continues along the original path, 
reaching the opposite edge of the starting vertex. Then it 
again takes the exact same path from the path plan but 
this time starts from the opposite edge and towards the 
vertex. 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  
Vol. 2, No.5, 2013 

61 | P a g e  
www.ijarai.thesai.org 

Again it picks up the same object and it alters its path 
along the boundary of this object going along the same 
side as it did in the previous traversal.  The movement 
data from the wheel encoders and gyroscope data are used 
by the host system to map the extrinsic object detected, 
into the reachable area. After reaching the starting vertex, 
the entire object would be mapped since the robot went 
around the object for the entire 360 degrees during the 2 
traverses of the same path. 

When all of the paths in the path plan are traversed at least 
once, the mapping system ends. The Host system gives an 
image of the reachable area boundary, and the mapped 
Extrinsic objects in the environment. 

 

Fig.8. Accepted and rejected straight lines from Vertex P for a Concave 

shaped boundary 

 

Fig.9. Shows the final path plan for the sample Concave boundary 

 

Fig.10.  Sample path plan for a circle 

IV. COMPARISION WITH EXISTING SYSTEM 

One major advantage of our proposed system over existing 
ones is our system uses IR technology unlike SONAR, 
LASER technique as used by others. Besides this some points 
worth noting are: 

1) The storage space required by the map does not vary 

too much with change in the accuracy factor unlike current 

systems using LASER or SONAR. On the other hand, 

increasing accuracy of any of the existing systems, demands 

better sampling rates or higher resolution, hence requiring 

more storage and processing resources. The complexity in 

processing or using the map generated by proposed system 

remains independent of the accuracy. 

2) Since the proposed system does not use any SONAR 

sensor, that use audio frequencies, to detect objects, the 

drawbacks posed by the existing SONAR technology such as 

with textured walls are not an issue. Also in case of mapping 

of an auditorium kind of a structure where sound gets 

absorbed and reflected in a particular way, the accuracy of 

the SONAR technology worsens, whereas in our proposed 

system the accuracy would still remain intact. 

3) Mapping in areas like courtyards without any roofs is 

not possible using the SONAR technology since the sound 

wave loss is far too much. But our proposed system can be 

used in such conditions and areas since IR technology is 

unidirectional and the loss is minimal. 

4) The object detection by the proposed system is 

robust. That is the user can be sure that an object of 

particular dimensions would be recognized by the robot, while 

in case of the current sound based systems, object detection 

depends on the extent of its reflective nature and probabilistic 

models used. 

5) Extending the above point, the accuracy factor α 

described in the proposed system gives a measure to the 

dimension of the objects that would be detected by the robot. 

For example, if the robot is mapping in an area where a lot of 

small objects are expected to be encountered, the accuracy 

factor can be set to suit the environment i.e. detect the smaller 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence,  
Vol. 2, No.5, 2013 

62 | P a g e  
www.ijarai.thesai.org 

objects. Thus changing the accuracy factor allows the robot to 

behave optimally in different surroundings. 

6) The proposed system as compared to the existing 

system also gives more focus on detecting objects present at 

corners, this is due to the fact that one of the endpoint of each 

path line is a corner, so they have a denser network of path 

lines thus they provide more precision for mapping objects. 

Hence smaller objects present near the corners have better 

chances of detection, as compared to one in the interiors. It 

has applications in areas like autonomous cleaning robots 

where corners need to be emphasized. 

V. CONCLUSION  

The gist of the entire technique is as follows: 

A. Generation of the boundaries: 
The outermost boundary is mapped and objects within it 

are also detected. They are classified as follows: 

• Extrinsic - these are isolated objects. Only some or none 
of the objects may be detected at this stage. The 
remaining ones are mapped after the path generation 

• Intrinsic - these are objects attached to the outermost 
boundary and not differentiated from it. 

B. Shape Identification of the Generated Boundary: 
It is determined whether the boundaries are concave, 

convex, circular or complex. For this the turns made by the 
robot if greater than 1 degree are recorded as points. 

• If there are no such points on a boundary, then it is a 
circle 

• Else Jarvis March Algorithm is used to determine whether 
it is concave or convex boundary 

• Complex boundaries are broken into their simpler 
components i.e. concave polygon or convex polygon and 
a circle (detected using Hough Transform) 

C. Preparing the Path Plan: 
Depending on the boundary shape the following steps are 

applied: 

• Convex shape - For this the vertices and the edges (at 
distances determined by accuracy factor α) are connected 
to form paths. 

• Concave shape - The approach is same as that for convex 
but requires removing the paths that do not lie entirely 
within the boundary. 

• Circular shape - Multiple diameters act as paths. Each 
adjacent diameter is spaced apart by an angle determined 
by accuracy factor α. 

D. Mapping extrinsic objects: 
Here we are only mapping the objects that were not 

covered in the first step. The paths that have been generated 
are traversed. Whenever objects are encountered for the first 
time they are mapped. 

We must keep in mind that the effectiveness of this 
technique will vary with the type of environment. For example 
more number of corners will require more paths to be 
traversed, in turn increasing time required for mapping. 

The variable accuracy factor α is the essence of this 
technique, but it needs to be used carefully. With increase in 
the accuracy, i.e. with decrease in value of α, the number of 
paths traversed will increase. This means the system will 
require more time to complete the mapping process. The time 
required is directly proportional to the number of paths to be 
traversed. 

We are trying to make major improvements by finding out 
ways to eliminate paths during planning, mainly redundant 
paths. As we eliminate more paths, the time required to map 
will also improve. This will make the technique useful in a 
wider range of environments. 

ACKNOWLEDGMENT 

We would like to express our sincere gratitude to Prof. 
H.K. Kaura, the Head of Department, Computer Engineering, 
our guide Ms. M. Kiruthika and Ms. Smita Dange for their 
support and guidance. Also we thank our friend Rohit Jha for 
his invaluable views. 

REFERENCES 

[1] Vassilis Varveropoulos. Robot Localization and Map Construction 

Using Sonar Data [Online]. Available:  http://rossum.sourceforge.net. 

[2] Jinwoo Choi et al., “Autonomous topological modeling of a home 
environment and topological localization using a sonar gridmap” in 

Springer Science+Business Media, vol. 30, Issue. 4, pp. 351-368, May, 
2011. 

[3] Jon Howell. A Robot Map-Creation Algorithm [Online]. Available: 

http://www.jonh.net/~jonh/robots/ mapping/submitted-paper.html. 

[4] Eric Eilberg. Convex Hull Algorithms [Online]. Available: 

http://www.denison.edu/academics/ departments/mathcs/eilberg.pdf. 

[5] Thomas H. Cormen et al., “Finding the convex hull”, in Introduction to 
Algorithms, 2

nd
 ed. MIT Press and McGraw Hill, 2001, pp. 955-956. 

[6] Gary Bradsky and Adrian Kaehler, “Image Transforms”, in Learning 

OpenCV, 1
st
 ed. Mumbai, India:  SPD, 2008, ch. 6, pp. 158-16

 


