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Abstract—In this paper we present the optimal control of the
relative motion of formation flying consisting of two spacecrafts.
One of the spacecraft is considered as the chief, orbiting the
Earth on a Highly Elliptical Orbit(HEO), and the other ,orbiting
the chief, is considered as the deputy. The Keplerian relative
dyanmics of the formation as well as the the second zonal
hamonics of the Earth’s gravitational field (J2) are studied.
To study these perturbative effect the linearized true anomaly
varying Tschauner-Hempel equations are augmented to include
the effect of J2. We solve the nonlinear feedback optimal control
of the relative motion using the state dependent Riccati Equa-
tion(SDRE). The results are validated through a nummerical
example.

I. INTRODUCTION

The multi-spacecraft mission have proved powerful than
the monolithic ones in the sense of reliability Reconfig-
urability, and redundancy. In addition to large apertures in
the interferometric missions and therefore longer baseline.
The new challenging technology require a high- Precision
relative orbit control. Relative motion between a chief and
a chaser spacecraft has been extensively studied over past
several decades. The well-known Clohesssy-Wiltshire(CW)
equations[1] originally known as Hills equations[2] used to
study the linearised equation of motion around the orbit
of the chief satellite, which is circular and subject to the
Keplerian motion only. Other models have been introduced in
which the chief orbit is eccentric subject to the non-Keplerian
perturbation forces [3], [4], [5], [6], [7], [8] .For near Earth
space missions, the second zonal harmonic (J2) perturbation
is the dominant in for long term modelling context , and
therefore has drawn considerable attention [9], [10], [11].
An analytic solution introduced [4]. A numerical solution
based on the linear quadratic regulator (LQR), with limited
thrust implemented, has been developed in [12]. The feedback
optimal control of the relative motion of sun-facing formation
flying using the generating function technique introduced by
Scheeres 2006 to solve the Linear True Anomaly Variant
Quadratic Regulator(LTAVQR) has been developed [16]. One
of the most common strategies of controlling the relative
position of a formation of satellite, is the chief and deputy
strategy. In which, one of the spacecraft is considered as the
chief, orbiting the Earth on a Highly Elliptical Orbit(HEO),
and the other ,orbiting the chief, is considered as the deputy.
The reference orbit of the chief spacecraft is elliptic and
the Tschauner-Hempel equations are used to formulated the
dynamical model based on the gravitational filed of the Earth

up to the second zonal harmonics. We get closed loop feedback
optimal control solution based on the State Dependent Riccati
Equation(SDRE) that is able to accommodate some errors in
the initial condition.

II. STATMENT OF THE PROBLEM

Due to the limitation of the Cartesian coordinate system,
we use the Local Vertical Local Horizontal (LVLH)coordinate
system to overcome some drawbacks incurred by the Cartisan
one such as, equation linearization and perturbation inclusion.
We study the motion of two-spacecraft formation flying mov-
ing under the main gravitational field of the Earth and the
second zonal harmonic. The chief spacecraft will move on an
elliptic orbit described by the orbital elements(a, e, i,Ω,ω, θ)
as shown in Figure 1 and the chaser one will be described
with the chief’s orbit as reference . The equation of motion
can be written as[13], [14], [15]

�̈
r =

�
g (

�
r ) +

�
J (

�
r ) (1)

where�g ,and
�
J are accelerations due to the spherical and oblate

Earth.
We assume that the chief spacecraft is at reference orbit

�
Rfc and the chaser spacecraft at position vector

�
R . We can

use equ(1) to write the accelerations of the two spacecrafts

�̈
R =

�
g (

�
R) +

�
J (

�
R) +

�
a (

�
R)

�̈
Rfc =

�
g (

�
Rfc) +

�
J (

�
Rfc) +

�
a (

�
Rfc)

where we have (
�
Rfc) and (

�
R) are defined as follows

�
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The relative acceleration in the non-inertial frame
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Figure 1.

Where
�̇
θ ,

�̈
θ correspond to the angular velocity and acceleration of this orbiting reference frame.
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The relation between time and true anomaly is given by
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Where n =
�µ�

a3
�1/2 is the mean motion of the reference orbit.

If we use θ as the free variable, the equation of motion can be transformed using the relationships
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Using the above equation we get

d

dt




ẋ
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From equ (4) we can write the state equation of system in terms of (θ) as the free variables as follows
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Where θ̇� = −2n(1+e cos θ)e sin θ

(1−e2)3/2
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B. The gravitational acceleration

To find the garvitional acceleration due to the spherical Earth and the second zonal harmonics (J2) term we should write
the gravitational potential in the following augmented form
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�
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and hence the acceleration resulting from this potential will be
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where �
g and

�
J are the the accelerations of the spherical and oblate Earth reseptively and K̂ is unit vector in the inertial ECI

frame.
The last term can be written in the orbiting non-inertial frame as follows
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where A(θ) =
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Pluging equs 9, and 10 into equ.3 and then substituting into equ.5 we get the state equation of the system as

X � = A(θ)X +B(θ)U (11)

where X = [x, y, z, x�, y�, z�] is the state vector and U = [ux, uy, uz] is the control vector

A(θ) =





a11 a12 a13 a14 a15 a16
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0 0 0
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0 1 0
0 0 1





where
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a14 = 1, a11 = a12 = a13 = a15 = a16 = 0,

a21 = a22 = a23 = a24 = a26 = 0, a25 = 1,

a34 = a31 = a35 = a32 = a33 = 0, a36 = 1,
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III. STATE DEPENDENT RICCATI EQUATION

Consider the consider the State Dependent Linear Quadratic Regulator written as follows:

ẋ = A(x)x(t) +B(x)u(t), x(t0) = x0 ∈ Rn

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the control vector.
The optimization problem is to find the control u∗ that minimizes the cost function :

JLQR =
1

2

� tf

t0

(xTQx+ uTRu)dt (12)

where Q and R are the weight matrices.
State Dependent Riccati Equation The feedback optimal solution of the above problem u∗ is given by
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u∗(x) = −R−1(x)BT (x)P(x)x (13)

Where P(x) is obtained by solving the SDRE State Dependent Riccati equation:

Ṗ(x) +AT (x)P(x) +P(x)A(x) +Q(x)−
P(x)B(x)R−1(x)BT (x)PT (x) = 0

(14)

We note that the Riccati matrix, P(x) depends on the choice of A(x), and since A(x) is not unique we
have multiple optimal solutions.

IV. FACTORED CONTROLLABILITY

For the factored system equ.(11) the controllability is established by verifying that the controllability
matrix

Mcl = [B AB A2B A3B]

has a rank equals to n = 6 ∀x in the domain.
Since A and B have nonvanishing rows the controllability matrix Mcl for the System equ.(11) is of rank 6.

V. NUMERICAL EXAMPLE

The elements of the reference satellite are
eccentricity = 0.6
Semi-major axis = 60 ∗106 m
inclination = PI/3.0 rad
argument of perigee = 0 rad
right ascention of the ascending node = 0.69813 rad

and the intial condition are
θ0 = -0.1 rad
X0 = [150, 1 , 1, 0 ,0 0]

and the final condition are
θf = 0.1 rad
Xf = [150, 1 , 1, 0 ,0 0]

Q(t) =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




R(t) = 1012 ∗




1 0 0
0 1 0
0 0 1





Qf (t) =





0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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VI. CONCLUSIONS

• The feedback optimal control of relative motion of formation flying problem is solved by linearizing
the original nonlinear dyanmics.

• The time varying linearized problem has been solved using the State Dependent Riccati Equation
technique.

• The method can be used for arbitrary boundary condition.
• The result is valid for any short time span formation flying rendezvous maneuver.
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