
A DiscreteMechanics Approach to
Gait Generation on Periodically Unlevel Grounds

for the Compass-type Biped Robot

Tatsuya Kai
Department of Applied Electronics

Faculty of Industrial Science and Technology
Tokyo University of Science

6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 JAPAN
Email: kai@rs.tus.ac.jp

Takeshi Shintani
Kyocera Corporation

6 Takeda Tobadono-cho, Fushimi-ku, Kyoto 612-8501, JAPAN

Abstract—This paper addresses a gait generation problem for
the compass-type biped robot on periodically unlevel grounds.
We first derive the continuous/discrete compass-type biped robots
(CCBR/DCBR) via continuous/discrete mechanics, respectively.
Next, we formulate a optimal gait generation problem on peri-
odically unlevel grounds for the DCBR as a finite dimensional
nonlinear optimization problem, and show that a discrete control
input can be obtained by solving the optimization problem
with the sequential quadratic programming. Then, we develop
a transformation method from a discrete control input into a
continuous zero-order hold input based on the discrete Lagrange-
d’Alembert principle. Finally, we show numerical simulations,
and it turns out that our new method can generate a stable gaits
on a periodically unlevel ground for the CCBR.

I. I NTRODUCTION

Numerous work on humanoid robots have been done via
various approaches in the fields of robotics and control theory
until now. For instance, there are the following approaches:
theoretical analysis of passive walking [1], [2], [3], [4], re-
searches associated with nonlinear dynamical theory such as
Poinćare sections and limit cycles [5], [6], [7], [8], [9], [10],
[11], gait pattern generation based on CPG (central pattern
generation) and ZMP (zero-moment point) [12], [13], [14],
[15], and self-motivating acquirement of gaits by learning
theory and evolutionary computing [16], [17], [18], [19].
Especially, as one of the simplest models of humanoid robots,
the compass-type biped robot has been mainly studied by a
lot of researchers. In general, it is quite difficult to realize
stable gaits for humanoid robots in terms of nonlinear control
problems, and hence there are still a lot of problems left to
solve.

In almost every work on humanoid robots, models derived
by normal continuous-time mechanics are used. On the other
hand,discrete mechanics, which is a new discretizing tool for
nonlinear mechanical systems and is derived by discretization
of basic principles and equations of classical mechanics, has
been focused on [20], [21], [22], [23], [24], [25]. a discrete
model (the discrete Euler-Lagrange equations) in discrete me-
chanics has some interesting characteristics; (i) less numerical
error in comparison with other numerical solutions such as
Euler method and Runge-Kutta method, (ii) it can describe
energies for both conservative and dissipative systems with less

errors, (iii) some laws of physics such as Noether’s theorem
are satisfied. (iv) simulations can be performed for large
sampling times. Hence, discrete mechanics has a possibility
of analysis and controller synthesis with high compatibility
with computers.

We have focused on discrete mechanics and considered its
applications to control theory. In [26], [27], [28], we applied
discrete mechanics to control problems for the cart-pendulum
system, and confirmed the application potentiality to control
theory. Moreover, in [29], [30], [31], [32], we have considered
a gait generation problem for the compass-type biped robot and
confirmed that the proposed method can generate stable gaits
on flats and slopes. However, the method cannot be applied to
gait generation problems on more complex grounds.

Therefore, this paper aims at gait generation for the
compass-type biped robot on periodically unlevel grounds
which are more complex than flats and slopes from the
standpoint of discrete mechanics. This paper is organized as
follows. In Section II, a brief summary on discrete mechanics
is presented. Next, in section III, we derive the continuous
and discrete compass-type biped robots by using continuous
and discrete mechanics, respectively. In Section IV, we then
formulate a gait generation problem for the discrete compass-
type biped robot and propose a solving method of it by
the sequential quadratic programming to calculate a discrete
control input. In addition, we also introduce a transformation
method from a discrete control input into a continuous zero-
order hold input based on discrete Lagrange-d’Alembert prin-
ciple. Finally, we show some numerical simulations on gait
generation on a periodically unlevel ground for the continuous
compass-type biped robot in order to confirm the effectiveness
of our method in Section V.

II. D ISCRETE MECHANICS

In this section, some basic concepts in discrete mechanics
are summarized. See [20], [21], [22], [23] for more details on
discrete mechanics.

Let Q be ann-dimensional configuration manifold andq ∈
Rn be a generalized coordinate ofQ. We also refer toTqQ as
the tangent space ofQ at a pointq ∈ Q and q̇ ∈ TqQ denotes
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a generalizedvelocity. Moreover, we consider a time-invariant
Lagrangian asLc(q, q̇) : TQ → R. We first explain about the
discretization method. The time variablet ∈ R is discretized
as t = kh (k = 0, 1, 2, · · · ) by using a sampling interval
h > 0. We denoteqk as a point ofQ at the time stepk, that
is, a curve onQ in the continuous setting is represented as a
sequence of pointsqd := {qk}Nk=1 in the discrete setting. The
transformation method of discrete mechanics is carried out by
the replacement:

q ≈ (1− α)qk + αqk+1, q̇ ≈ qk+1 − qk
h

, (1)

whereq is expressed as a internally dividing point ofqk and
qk+1 with an internal division ratioα (0 < α < 1) We then
definea discrete Lagrangian:

Ld
α(qk, qk+1) := hL

(
(1− α)qk + αqk+1,

qk+1 − qk
h

)
, (2)

anda discrete action sum:

Sd
α(q0, q1, · · · , qN ) =

N−1∑
k=0

Ld
α(qk, qk+1). (3)

We next summarize the discrete equations of motion.
Consider a variation of points onQ as δqk ∈ TqkQ (k =
0, 1, · · · , N) with the fixed conditionδq0 = δqN = 0. In
analogy with the continuous setting, we define a variation of
the discrete action sum (3) as

δSd
α(q0, q1, · · · , qN ) =

N−1∑
k=0

δLd
α(qk, qk+1) (4)

as shown in Fig. 1. The discrete Hamilton’s principle states
that only a motion which makes the discrete action sum (3)
stationary is realized. Calculating (4), we have

δSd
α =

N−1∑
k=1

{D1L
d
α(qk, qk+1)δqk+D2L

d
α(qk−1, qk)}δqk, (5)

where D1 and D2 denotes the partial differential operators
with respect to the first and second arguments, respectively.
Consequently, from the discrete Hamilton’s principle and (5),
we obtainthe discrete Euler-Lagrange equations:

D1L
d
α(qk, qk+1) +D2L

d
α(qk−1, qk) = 0,

k = 1, · · · , N − 1
(6)

with the initial and terminal equations:

D2L
c(q0, q̇0) +D1L

d
α(q0, q1) = 0

−D2L
c(qN , q̇N ) +D2L

d
α(qN−1, qN ) = 0.

(7)

It turns out that (6) is represented as difference equations which
contains three pointsqk−1, qk, qk+1, and we needq0, q1 as
initial conditions when we simulate (6).

q0

q1

qk qk+1

qN−1

qN

δqk

δqk+1

Q

Figure 1: Discrete Hamilton’s principle

Then, we consider a method to add external forces to
the discrete Euler-Lagrange equations. By an analogy of
continuous mechanics, we denote discrete external forces by
F d
α : Q×Q → T ∗(Q×Q), and discretize continuous Lagrange-

d’Alembert’s principle as

δ

N−1∑
k=0

Ld
α(qk, qk+1) +

N−1∑
k=0

F d
α(qk, qk+1) · (δqk, δqk+1) = 0,

(8)
where we defineright/left discrete external forces: F d+

α , F d−
α :

Q×Q → T ∗Q as

F d+
α (qk, qk+1)δqk = F d

α(qk, qk+1) · (δqk, 0),
F d−
α (qk, qk+1)δqk+1 = F d

α(qk, qk+1) · (0, δqk+1),
(9)

respectively. By right/left discrete external forces, a continuous
external forceF c : TQ → T ∗Q can be discretized as

F d+
α (qk, qk+1)=(1−α)hF c

(
(1−α)qk+αqk+1,

qk+1−qk
h

)
,

F d−
α (qk, qk+1)=αhF c

(
(1−α)qk + αqk+1,

qk+1−qk
h

)
.

(10)

Therefore, bycalculating variations for (8), we obtainthe dis-
crete Euler-Lagrange equations with discrete external forces:

D1L
d(qk, qk+1) +D2L

d(qk−1, qk)

+ F d+
α (qk, qk+1) + F d−(qk−1, qk) = 0,

k = 1, · · · , N − 1,

(11)

with the initial and terminal equations:

D2L
c(q0, q̇0) +D1L

d
α(q0, q1) + F d+

α (q0, q1)= 0

−D2L
c(qN , q̇N ) +D2L

d
α(qN−1, qN ) + F d−

α (qN−1, qN )= 0.
(12)

III. C ONTINUOUS AND DISCRETE COMPASS-TYPE BIPED
ROBOTS

A. Setting of compass-type biped robot

In this subsection, we first give a problem setting of the
compass-type biped robot. In this paper, we consider a simple
compass-type biped robot which consists of two rigid bars (Leg
1 and 2) and a joint without rotational friction (Waist) as shown
in Fig. 2. In Fig. 2, Leg 1 is calledthe supporting legwhich
connects to ground and Leg 2 is calledthe swing legwhich is
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ungrounded. Moreover, for the sake of simplicity, we give the
following assumptions; (i) the supporting leg does not slip at
the contact point with the ground, (ii) the swing leg hits the
ground with completely inelastic collision, (iii) the compass-
type biped robot is supported by two legs for just a moment,
(iv) the length of the swing leg gets smaller by infinitely small
when the swing leg and the supporting leg pass each other.

Leg 1 Leg 2

Figure 2: Compass-type biped robot

Let θ and ϕ be the angles of Leg 1 and 2, respectively.
We also use the notations:m: the mass of the legs,M : the
mass of the waist,I: the inertia moment of the legs,a: the
length between the waist and the center of gravity,b: the length
between the center of gravity and the toe of the leg,l(= a+b):
the length between the waist and the toe of the leg.

In the walking process of the compass-type biped robot,
there exist two modes:the swing phaseand the impact phase.
In the swing phase the swing leg is ungrounded, and in the
impact phase the toe of the swing leg hit the ground. As shown
in Fig. 3, it is noted that the swing phase and the impact phase
occur alternately and the swing leg and the supporting leg
switch positions with each other with respect to each collision.
We denote the order of the swing phase and the impact phase
by i = 1, 2, · · · , L and i = 1, 2, · · · , L − 1, respectively. In
addition, we assume that Leg 1 is the swing leg and Leg 2
is the supporting leg in odd-numbered swing phases, and Leg
1 is the supporting leg and Leg 2 is the swing leg in even-
numbered swing phases.

B. Continuous compass-type biped robot (CCBR)

In this subsection, we derive a model ofcontinuous
compass-type biped robot (CCBR)via usual continuous me-
chanics. We denote the angles of Leg 1 and 2 in thei-th swing
phase byθ(i), ϕ(i), respectively. In addition,̇θ(i), ϕ̇(i) denote
their angular velocities.

First, we consider a model of the CCBR in thei-th swing
phase where Leg 1 is the supporting leg and Leg 2 is the
swing leg. We assume that the torque at the waist can be
controlled, and denote it byv(i) ∈ R. The Lagrangian of
this systemLc is given by (13). Substituting the Lagrangian
(13) into the Euler-Lagrange equations and adding the control

input to the right-hand sides of them, we have the model of the
CCBR in thei-th swing phase as (14), (15). We then derive
a model of the CCBR in thei-th impact phase. It is assumed
that the swing leg hits the ground with completely inelastic
collision, andθ(i) = θ(i+1), ϕ(i) = ϕ(i+1) holds because of
an instantaneous impact. Hence, calculating the principle of
conservation of angular momentum for the CCBR, we obtain
the model of the CCBR in thei-th impact phase as (16), where
a−, a+ ∈ R2×2 are the coefficient matrices defined by (17)
and (18).

Swing Phase

Swing Phase Impact Phase

Swing Phase Impact Phase

Impact Phase

Swing Phase

Impact Phase

Impact Phase

Figure3 : Gait of compass-type biped robot

C. Discrete compass-type biped robot (DCBR)

Next, we derive a model ofdiscrete compass-type biped
robot (CCBR)by discrete mechanics in this subsection. We
here use the notations;h: the sampling time,k = 1, 2, · · · , N :
the time step,i = 1, · · · , L: the order of the swing phases,
α = 1/2: the internal division ratio in discrete mechanics,
θ
(i)
k , ϕ

(i)
k : the angles of Leg 1 and 2 at thek-th step in thei-th

swing phase.

In this paper, we use only the model of the DCBR in
the swing phases, and hence we will derive it. By using
the transformation law from a continuous Lagrangian into a
discrete Lagrangian (2), we obtain the discrete Lagrangian as
(19) from (13). Since the left and right discrete external forces
(9) satisfyF d+(qk, qk+1) = F d−(qk, qk+1) for α = 1/2, we
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Lc(θ(i), θ̇(i), ϕ(i), ϕ̇(i)) =
1

2
(I +ma2 +Ml2 +ml2)(θ̇(i))2 +

1

2
(I +mb2)(ϕ̇(i))2

−mbl cos (θ(i) − ϕ(i))θ̇(i)ϕ̇(i) − (ma+mg +Ml)g cosϕ(i) +mgb cosϕ(i) (13)

d

dt

(
∂Lc(θ(i), θ̇(i), ϕ(i), ϕ̇(i))

∂θ̇(i)

)
− ∂Lc(θ(i), θ̇(i), ϕ(i), ϕ̇(i))

∂θ(i)
= v(i) (14)

d

dt

(
∂Lc(θ(i), θ̇(i), ϕ(i), ϕ̇(i))

∂ϕ̇(i)

)
− ∂Lc(θ(i), θ̇(i), ϕ(i), ϕ̇(i))

∂ϕ(i)
= −v(i) (15)

a−(θ(i), ϕ(i))

[
θ̇(i)

ϕ̇(i)

]
= a+(θ(i), ϕ(i))

[
θ̇(i+1)

ϕ̇(i+1)

]
(16)

a− :=

[
−(2mal +Ml2) cos (θ(i) − ϕ(i)) +mbl − I mab− I

mab− I 0

]
, (17)

a+ :=

[
−mb2 +mbl cos (θ(i+1) − ϕ(i+1))− I −(2ma2 +Ml2) +mbl cos (θ(i+1) − ϕ(i+1))− I

−mb2 − I mbl cos (θ(i+1) − ϕ(i+1))

]
. (18)

Ld(θ
(i)
k , θ

(i)
k+1, ϕ

(i)
k , ϕ

(i)
k+1) =

1

2
(I +ma2 +Ml2 +ml2)

(
θ
(i)
k+1 − θ

(i)
k

h

)2

+
1

2
(I +mb2)

(
ϕ
(i)
k+1 − ϕ

(i)
k

h

)2

−mbl cos

(
θ
(i)
k + θ

(i)
k+1

2
−

ϕ
(i)
k + ϕ

(i)
k+1

2

)
θ
(i)
k+1 − θ

(i)
k

h

ϕ
(i)
k+1 − ϕ

(i)
k

h

−(ma+mg +Ml)g cos

(
ϕ
(i)
k + ϕ

(i)
k+1

2

)
+mgb cos

(
ϕ
(i)
k + ϕ

(i)
k+1

2

)
(19)

D2L
d(θ

(i)
k−1, θ

(i)
k , ϕ

(i)
k−1, ϕ

(i)
k )−D1L

d(θ
(i)
k , θ

(i)
k+1, ϕ

(i)
k , ϕ

(i)
k+1) + u

(i)
k−1 + u

(i)
k = 0 (k = 2, · · · , N) (21)

D4L
d(θ

(i)
k−1, θ

(i)
k , ϕ

(i)
k−1, ϕ

(i)
k )−D3L

d(θ
(i)
k , θ

(i)
k+1, ϕ

(i)
k , ϕ

(i)
k+1)− u

(i)
k−1 − u

(i)
k = 0 (k = 2, · · · , N) (22)

D2L
c(θ

(i)
1 , θ̇

(i)
1 , ϕ

(i)
1 , ϕ̇

(i)
1 ) +D1L

d(θ
(i)
1 , θ

(i)
2 , ϕ

(i)
1 , ϕ

(i)
2 ) + u

(i)
1 = 0 (k = 2, · · · , N) (23)

D4L
c(θ

(i)
1 , θ̇

(i)
1 , ϕ

(i)
1 , ϕ̇

(i)
1 ) +D3L

d(θ
(i)
1 , θ

(i)
2 , ϕ

(i)
1 , ϕ

(i)
2 )− u

(i)
1 = 0 (k = 2, · · · , N) (24)

−D2L
c(θ

(i)
N , θ̇

(i)
N , ϕ

(i)
N , ϕ̇

(i)
N ) +D1L

d(θ
(i)
N−1, θ

(i)
N , ϕ

(i)
N−1, ϕ

(i)
N ) + u

(i)
N−1 = 0 (25)

−D4L
c(θ

(i)
N , θ̇

(i)
N , ϕ

(i)
N , ϕ̇

(i)
N ) +D3L

d(θ
(i)
N−1, θ

(i)
N , ϕ

(i)
N−1, ϕ

(i)
N )− u

(i)
N−1 = 0 (26)

a−(θ
(i)
N , ϕ

(i)
N )

[
θ̇
(i)
N

ϕ̇
(i)
N

]
= a+(θ

(i)
N , ϕ

(i)
N )

[
θ̇
(i+1)
1

ϕ̇
(i+1)
1

]
, (27)

set adiscrete control input that consists of only the left discrete
external forceF d− as

u
(i)
k := F d−(qk, qk+1), k = 1, · · · , N − 1. (20)

Then, substituting (19) into the discrete Euler-Lagrange equa-
tions (11), (12) and using the discrete control input (20), we
have the model of the DCBR in thei-th swing phase as (21)–
(26).

For the impact phases, we use the model of the CCBR
(16), and we rewrite it with the terminal variables of thei-the
swing phaseθ(i)N ϕ

(i)
N , θ̇

(i)
N ϕ̇

(i)
N and the initial variables of the

(i + 1)-the swing phaseθ(i+1)
1 ϕ

(i+1)
1 , θ̇

(i+1)
1 ϕ̇

(i+1)
1 as (27).

This representation (27) will be utilized in the next section.

IV. GAIT GENERATION METHOD ON PERIODICALLY
UNLEVEL GROUNDS

A. Setting of periodically unlevel grounds

First, this subsection formulates the problem setting of
grounds on which the compass-type biped robot walks. As
shown in Fig. 4, set thex and z axes to the horizontal and
vertical directions, respectively, andP0 denotes the origin of
thexz-plane. We also setL points:P1, P2, · · · , PL in thexz-
plane, and representPi as Pi = (ri, ρi) by using the polar

coordinate with reference toPi−1 as illustrated in Fig. 5. Note
that ri > 0, −π/2 < ρi < π/2 are assumed. The sequence of
pointsP1, P2, · · · , PL are reference grounding points for the
compass-type biped robot as shown in Fig. 6.

Figure4 : Reference grounding points inxz-plane

Figure5 : ri andρi

(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 2, No.9, 2013 

46 | P a g e  

www.ijarai.thesai.org 



Figure6 : Desired gait of compass-type biped robot

This problem setting can treat various walking surfaces, for
example, flats [30]:ρi = 0 (i = 1, · · · , L), downward slopes
[32]: ρi = ρ− < 0 (i = 1, · · · , L), and upward slopes in [32]:
ρi = ρ+ > 0 (i = 1, · · · , L). In this paper, we consider gait
generation on periodically unlevel grounds as depicted in Fig.
7 with the parameter:

ρi =

{
ρ, i = 1, 3, 5, · · · , L− 1,
−ρ, i = 2, 4, 6, · · · , L, (28)

whereρ > 0 and L is an odd number. Since a periodically
unlevel ground contains both downward and upward slopes,
this type of gait generation problems is expected to be more
difficult to solve in comparison with the downward and upward
slopes cases [32]. Based on the setting above, we consider the
following problem on the gait generation for the CCBR.

P2

P3 PL

PL−1

PL−2

ρ
r

x

z

P0

P1

Figure7 : Setting of Periodically Unlevel Grounds

Problem 1: For the continuous compass-type biped robot
(CCBR) (14)–(16), find a control inputv(i) (i = 1, · · · , L)
such that the swing leg of the CCBR lands at the reference
grounding pointsPi (i = 1, · · · , L) on a periodically unlevel
ground of (28) with a stable and natural gait.

In order to solve Problem 1 above, we shall consider a
method based on discrete mechanics. The method consists of
two steps: (i) calculation of a discrete control input by solving a
finite dimensional constrained nonlinear optimization problem
(Subsection IV-B), (ii) transformation a discrete control input
into a zero-order hold input by discrete Lagrange-d’Alembert
principle (Subsection IV-C).

B. Gait generation problem for the DCBR

As the first step, we consider a problem on generation of a
discrete gait for the DCBR in stead of the CCBR. The discrete
gait generation problem for the DCBR is stated as follows.

Problem 2: For the discrete compass-type biped robot (DCBR)
(21)–(26), find a sequence of the control inputu

(i)
k (i =

1, · · · , L, k = 1, · · · , N − 1) such that the swing leg of
the DCBR lands at the reference grounding pointsPi (i =
1, · · · , L) with a stable and natural discrete gait.

Our main purpose is that we obtain the mathematical
formulation of Problem 2 as an optimal control problem. In
order to do this, we focus attention on a periodical motions of
the DCBR. It must be noted that the DCBR walks on upward
and downward slopes alternately, and hence we consider one
upward slope and one downward slope as a set (see Fig. 8).
If the initial angular velocities of the swing leg at thei-th and
(i + 2)-th swing phases are pretty much the same, a stable
gait of the DCBR can be generated as shown in Fig. 8. So,
we introduce a cost function of a square of difference between
initial angular velocities in thei-th and(i+2)-th swing phases:

J = (ϕ̇
(i+2)
1 − ϕ̇

(i)
1 )2 + (θ̇

(i+2)
1 − θ̇

(i)
1 )2. (29)

However, the cost function (29) contains the angular velocities
in the (i + 2)-th swing phase. To avoid this, we eliminate
ϕ̇
(i+2)
1 , (θ̇

(i+2)
1 by using the(i+ 1)-th impact phase model1:

a
(i+1)
− (ϕ

(i+1)
N , θ

(i+1)
N )

[
ϕ̇
(i+1)
N

θ̇
(i+1)
N

]

= a
(i+1)
+ (ϕ

(i+1)
N , θ

(i+1)
N )

[
ϕ̇
(i+2)
1

θ̇
(i+2)
1

]
.

(30)

Solving (30) for ϕ̇(i+2)
1 and θ̇

(i+2)
1 , and substituting this into

the cost function (29), we have

J = (a
(i+1)
11 ϕ̇

(i+1)
N + a

(i+1)
12 θ̇

(i+1)
N − ϕ̇

(i)
1 )2

+ (a
(i+1)
21 ϕ̇

(i+1)
N + a

(i+1)
22 θ̇

(i+1)
N − θ̇

(i)
1 )2

(31)

where

(a
(i+1)
+ )−1a

(i+1)
− =:

[
a
(i+1)
11 a

(i+1)
12

a
(i+1)
21 a

(i+1)
22

]
.

We can see that the new cost function (31) does not contain
ϕ̇
(i+2)
1 θ̇

(i+2)
1 and is represented by only variables in thei-th

and(i+ 1)-th swing phases. Consequently, Problem 2 can be
formulated as (32)–(48). In the optimization control problem
(32)–(48), (32) is the cost function to be minimized, (33)–(38)
are thei-th swing phase model, (39)–(44) are the(i + 1)-th
swing phase model, and (46) is thei-th impact phase model.
Moreover, (46) and (47) indicates constraints that prevent a
reverse behavior of the swing leg and realize a natural gait.
(48) are given data on initial and desired angles of Leg 1 and
2, which can be obtained from data of the reference grounding
pointsPi (i = 1, · · · , N),

Pi+2Pi

Pi+1

φ̇
(i)
1

θ̇
(i)
1

φ
(i)
1

θ
(i)
1

Pi−1

θ
(i+2)
1θ

(i+1)
1

φ
(i+1)
1

φ̇
(i+1)
1

θ̇
(i+1)
1

θ̇
(i+2)
1

φ̇
(i+2)
1

φ
(i+2)
1

-th Stepi (i+ 1)-th Step

Leg 1 

Leg 2 

Figure8 : A gait on a periodically unlevel ground.

1SinceLeg 1 is the swing leg and Leg 2 is the supporting one in the(i+1)-
th swing phase, the(i+ 1)-th impact model can be obtained by exchanging
θ for ϕ in (27).
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min J = (a
(i+1)
11 ϕ̇

(i+1)
N + a

(i+1)
12 θ̇

(i+1)
N − ϕ̇

(i)
1 )2 + (a

(i+1)
21 ϕ̇

(i+1)
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(i+1)
22 θ̇

(i+1)
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(i)
1 )2 (32)

s.t. D2L
d(θ

(i)
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(i)
k , ϕ

(i)
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(i)
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d(θ
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(i)
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(i)
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a
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− (θ

(i)
N , ϕ

(i)
N )

[
θ̇
(i)
N
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N
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+ (θ
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N , ϕ
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(i)
1 < ϕ

(i)
2 < · · · < ϕ
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N−1 < ϕ

(i)
N (46)

θ
(i+1)
1 < θ

(i+1)
2 < · · · < θ
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N−1 < θ
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(i)
1 , ϕ

(i)
1 , θ
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N , θ
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1 , ϕ
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1 , θ

(i+1)
N , ϕ
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It turns out that the optimization control problem (32)–
(48) is represented as a finite dimensional constrained
nonlinear optimization problem with respect to the(6N + 6)

variables: θ
(i)
1 , · · · , θ(i)N , θ

(i+1)
1 , · · · , θ(i+1)

N , ϕ
(i)
1 , · · · , ϕ(i)

N ,
ϕ
(i+1)
1 , · · · , ϕ(i+1)

N , ui
1, · · · , ui

N−1, ui+1
1 , · · · , ui+1

N−1,

θ̇
(i)
1 , ϕ̇

(i)
1 , θ̇

(i)
N , ϕ̇

(i)
N , θ̇(i+1)

1 , ϕ̇
(i+1)
1 , θ̇

(i+1)
N , ϕ̇

(i+1)
N . Therefore,

we can solve it bythe sequential quadratic programming
[23], [33], and obtain a sequence of discrete control input
u
(i)
1 , · · · , u(i)

N−1, u(i+1)
1 , · · · , u(i+1)

N−1 .

C. Transformation to continuous-time zero-order hold input

The previous subsection presents a synthesis method of
a discrete control to generate a discrete gait of the DCBR by
solving a finite dimensional constrained nonlinear optimization
problem. However, since the control input is discrete-time, it
cannot be utilized for the CCBR. Therefore, we here consider
transformation of a discrete control input into a continuous
one.

There exist infinite methods to generate a continuous
control input from a given discrete one, and a continuous
control input generated from a given discrete input has to be
consistent with laws of physics. Hence, in this paper, we deal
with a zero-order hold input in the form:

v(i)(t) = v
(i)
k , (i− 1)kh ≤ t < (i− 1)(k + 1)h, (49)

which is one of the simplest continuous inputs. We need
to derive a relationship between a discrete inputu

(i)
k (k =

1, 2, · · · , N − 1) and a zero-order hold input (49). By using
discrete Lagrange-d’Alembert’s principle which is explained
in Section II, we can have the following theorem.

Theorem 1: A zero-order hold input (49) that satisfies discrete
Lagrange-d’Alembert’s principle is given by

v
(i)
k =

2

h
u
(i)
k . (50)

(Proof) Duringthe time interval(i− 1)kh ≤ t < (i− 1)(k+
1)h, substituting (20) and (49) into the definition of the left
discrete external force in (9):

F d−(qk, qk+1) =
h

2
F c

(
(1− α)qk + αqk+1,

qk+1−qk
h

)
,

we obtain

u
(i)
k =

h

2
v
(i)
k .

Hence, wehave (50).

By using (50) in Theorem 1, we can easily calculate a
zero-order hold input fromu(i)

k , i = 1, · · · , N − 1 which are
obtained by solving a finite dimensional constrained nonlinear
optimization problem (32)–(48). In addition, it must be noted
that since we use discrete Lagrange-d’Alembert’s principle to
prove Theorem 1, a zero-order hold input with a gain (50) is
consistent with laws of physics.

V. NUMERICAL SIMULATIONS

A. Problem formulation

In this section, some numerical simulations on a gait
generation on a periodically unlevel ground for the CCBR
based on our new method proposed in the previous section,
and confirm the effectiveness of it. First, this subsection gives
the problem setting. we set parameters as follows; the physical
parameters of the CCBR:m = 2.0 [kg], M = 10.0 [kg], I =
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0.167[kgm2], a = 0.5[m], b = 0.5[m], l = 1.0[m], the param-
eters of discrete mechanics:α = 1/2, h = 0.005 [s], N = 80.
We consider two types of periodically unlevel grounds. The
one is set asr = 1.0 [m], ρ = 5 [deg], L = 8 (Simulation I),
and the other is set asr = 1.0 [m], ρ = 10 [deg], L = 8 (Sim-
ulation II). Intial conditions areθ(1)1 = −0.5321 [rad], ϕ

(1)
1 =

2.0273 [rad], θ̇
(1)
1 = 0.1830 [rad], ϕ̇

(1)
1 = 2.1820 [rad].

B. Simulation results

Next, numerical simulations are shown in order to check
the availability of our new approach. Figs. 9–11 show the
results of Simulation I. Fig. 9 illustrates the time series of
Leg 1 and 2 (θ and ϕ). Fig. 10 shows the plot of solution
trajectory in the phase space ofθ − ϕ. In Fig. 11, a snapshot
of the continuous gait is depicted. From these results, we can
confirm that a stable gait on periodically unlevel grounds for
the CCBR can be generated by the proposed approach.
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Figure9 : Time series ofθ andϕ
(Simulation I; red line:θ, blue line:ϕ)
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Figure10 : Solution trajectory onθ ϕ-space (Simulation I)

Figs. 12–14 illustrate the results of Simulation II. Fig. 12
depicts the time series of Leg 1 and 2 (θ andϕ). Fig. 13 shows

the plot of solution trajectory in the phase space ofθ − ϕ. In
Fig. 14, a snapshot of the continuous gait is illustrated. From
these results, we can also see that the proposed method can
generate a stable gait for the CCBR.
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Figure12 : Time series ofθ andϕ
(Simulation II; red line:θ, blue line:ϕ)
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Figure13 : Solution trajectory onθ ϕ-space (Simulation II)

VI. CONCLUSIONS

This paper has dealt with a gait generation problem for
the compass-type biped robot on periodically unlevel grounds.
We have formulated a discrete gait generation problem for the
DCBR as a finite dimensional constrained nonlinear optimiza-
tion problem. A transformation method from a discrete control
input into a zero-order hold input has been introduced from
the viewpoint of discrete Lagrange-d’Alembert principle. By
numerical simulations, we have verified generation of a stable
gait and the effectiveness of our new approach.

In association with this work, we will tackle the fol-
lowing problems: stable gait generation of the CCBR irreg-
ular grounds, experimental evaluation of the proposed con-
trol method, and applications of discrete mechanics to more
human-like robots.
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