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Abstract—We propose an off-line analysis method in order to 

discriminate between motor imagery tasks manipulated in a 

brain computer interface system. A measure of large-scale 

synchronization based on phase locking value is established. The 

results indicate that it can take advantage of the phase synchrony 

between scalp-recorded EEG activity in the supplementary 

motor area and in sezorimotor area, computing the differences 

between the active and the relaxation states. Phase locking value 

features are more discriminative in β rhythm than in µ rhythm. 

The proposed method is simple, computationally efficient and 

proves good results on EEG Motor Movement/Imagery Dataset 

available from PhysioNet research resource for physiologic 

signals. 
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I. INTRODUCTION 

Brain computer interface (BCI) is a computerized system 
that acquires brain signals generated during various mental 
tasks, extracts and classifies suitable features, translates into 
appropriate control signals and sends them to an external 
device. BCI represents a real help for people with motor 
disabilities. 

Various methods for monitoring brain activity 
(electroencephalogram - EEG, magnetoencephalogram - MEG, 
positron emission tomography - PET, functional magnetic 
resonance imaging - fMRI, single photon emission computed 
tomography - SPECT) can represent, by itself, the base of a 
brain computer interface. Taking into account the low volume 
and the low cost of the equipment, the simple preparation for 
registration, the possibility of portability, the real-time analysis, 
EEG is a method with certain advantages against all the others. 
So, it is frequently used for implementation of the BCIs. 

The EEG is a non-invasive method for recording the 
electrical activity of the brain, using surface electrodes placed 
on the scalp. 

According to the type of mental activities, the BCI 
classification is as follows: 

 BCI based on evoked responses such as P300 potential, 
visual evoked potential;  

 Operant conditioning BCI such as BCI that uses 
changes in cerebral rhythms, BCI using slow cortical 
potentials, BCI using other areas of the cortex 
specialized for different mental activities [1]. 

This research is focused on the paradigm of using as BCI 
discriminating tasks changes in cerebral rhythms, when a 
subject move or think of movement of left/right hand. 

When a mental activity is produced, such as preparation, 
execution or imagination of hand movement, changes in the 
corresponding signal power of µ (8-12 Hz) and β rhythms (12-
30 Hz) occur. These changes are known as event related 
desynchronization (ERD) and event related synchronization 
(ERS) of these rhythms. It was found that imagining, 
preparation or planning of movement develops the same kind 
of brain activity, ERD or ERS, in the same brain regions. 
When a subject intends to move or imagines to move the right 
or left hand, there is a short period of µ or β rhythm ERD in the 
opposite hemisphere of the brain. After the action period, a µ 
or β ERS occurs also in the opposite hemisphere of the part of 
the body imagined moving [2]. 

The main signal processing methods used in a motor 
imagery task paradigm are: power spectral density, parametric 
analysis based on autoregressive method, correlation, short 
Fourier transform, continuous and discrete wavelet transform 
[3]. Although the methods that exploit the connectivity 
between different regions of the brain are not so frequently 
used, there are some interesting papers dealing with the study 
of rhythms associated to motor imagery in BCI by means of 
phase information of the EEG signal [4], [5], [6]. 

We focus our attention on such a method linked with the 
synchronization between EEG signals from different area of 
the brain. Our aims are: 

 to establish an algorithm suitable to decide with a high 
rate of success if the proposed EEG phase feature 
(recorded by few channels placed on the both side of 
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the scalp) occurs when the subject has moved his left 
hand or when he/she moved his/her right hand; 

 to see what is the rhythm that produce the better feature 
selection in order to discriminate between the above 
mentioned movement tasks. 

We perform an off-line analysis in order to measure the 
large-scale synchronization by means of the phase locking 
value (PLV). Contrary to power, we expect synchrony in µ or β 
rhythms to be greater in the contralateral hemisphere (with 
respect to the target direction). 

II. METHOD 

There are several methods of measuring the 
synchronization between two signals  ( )  and  ( ) . Among 
these methods there are worth to be mentioned phase cross-
coherence analysis, mutual information, Shannon entropy, 
synchronization likelihood and phase locking value. 

PLV is a measure of synchronization in the time domain 
and it is applied for analysis of EEG signals recorded during 
performing a motor imagery task. 

PLV characterizes the stability of the phase difference 
between instantaneous phases   ( )  and   ( )  of signals 

 ( )   respectively  ( ) using the formula [4]: 

        |〈    ( )〉|           (1) 

where   ( )    ( )    ( ) and ⟨ ⟩ is average operator. 

Usually, the averaging is done on trials, but when there is only 
one trial or little trials, it is performed over time (number of 
samples for discrete signals). In this case, PLV has the 
following expression: 
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where N is the number of EEG samples of the trial. 

When the phase difference is constant, PLV is equal to 1. If 
the phase difference is distributed randomly in the interval [0, 
2π], the phase difference follows a normal distribution, so PLV 
is equal to 0. 

In order to calculate the PLV, it is necessary to know the 
instantaneous phases   ( )  and   ( ) . Instantaneous phases 

can be obtained using wavelet transform or computing analytic 
signal using Hilbert transform. It is proved that there are not 
important differences between methods and may be considered 
equivalent for study of EEG signals [7]. We have chosen to use 
the Hilbert transform. 

The Hilbert transform was defined starting from causal 
signals, that there is a relationship between the real and 
imaginary parts of Fourier transform of the signals. The Hilbert 
transform of a signal s(t) is given by the equation [4]: 
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where p.v. is the Cauchy principal value. The analytical 
signal is expressed as: 

    ( )   ( )    ̃( )           (4) 

Instantaneous phase is calculated using the formula: 

    ( )        (
 ̃( )

 ( )
)                        (5) 

It is known that there are two kind of synchrony in the 
brain: local-scale and large-range synchrony [8]. When dealing 
with adjacent channels in the same sensorimotor region of the 
brain it is said that local-scale synchrony may exist and when 
channels from widely regions are involved in computing 
synchrony it is said that large-scale synchrony may occur. As 
there are results proving best classification rates when using 
large-range synchronization [9], in this study we focus our 
attention only on this instance. 

III. RESULTS 

We used EEG Motor Movement/Imagery Dataset recorded 
using BCI2000 platform [10] available through Physionet [11]. 
We downloaded BCI2000 from www.bci2000.org. The 
database contains EEG recordings from 109 persons who 
performed various motor/imagery tasks. EEG recording was 
performed using 64 electrodes placed on the scalp according to 
the 10-20 extended international system (Fig. 1). 

 

Fig. 1. Extended 10-20 international system of EEG electrodes placements 

Every subject performed 14 experimental tasks: 2 runs of 1 
minute for the relaxation state (one with closed eyes and one 
with eye open) and 3 runs of 2 minutes for each of the 
following tasks: 

 Opening and closing the left/right fist when a target 
appears on the left/right side of the screen followed by 
relaxation. 

 Imagining opening and closing the left/right fist when a 
target appears on the left/right side of the screen 
followed by relaxation. 

 Opening and closing of both fists (if the target appears 
in the top of the screen) or of both feet (if the target 
appears on the lower side of the screen). 

 Imagining opening and closing of both fists (if the 
target appears in the top of the screen) or of  both feet 
(if the target appears on the lower side of the screen). 
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We used only the appropriate sets of moving and imagining 
movement of opening and closing the left/right fist. 

The EEG recorded signals of movement and imagining of 
movement were grouped into three data sets: for moving 
denoted by 3, 7, 11 runs and for the imaginary denoted by 4, 8, 
12 runs. EEG signals were sampled at a frequency of 160 Hz. 
We downloaded the EEG signals as mat files. 

For each recorder there is a file with annotations of the 
moments when target appear in the left or the right side of the 
screen (indicating movement/imagining movement of right fist, 
left fist) and the periods of relaxation that occurs after each 
motor activity. Movement/imagining movement and relaxation 
are coded as follows:  T0 relaxation period, T1 real 
movement/imaginary left fist, T2 real movement/imaginary 
right fist. 

In what follows, we present the algorithm that is 
implemented both for real movement and for image movement 
of the fist. In each of these two circumstances, the study is 
focused on 8-12 Hz band of µ rhythm, then on 12-30 Hz of β 
rhythm. At the end, a comparison between results is 
accomplished. 

In the pre-processing stage, in each of the three runs of one 
state, the EEG signals segmentation simultaneous to the 
left/right motor task or relaxation periods is performed. We 
used the annotations to split each run into data segments which 
contained the portions of the experimental run consisting of 
T1, T2 and T0 segments. Each segment is of 2s interval, 
beginning with the 0.5 s after the moment when a T1/T2 or a 
T0 (after T1/T2) appears in the annotation file. At this step of 
the script, four 3 dimension arrays (number of trials by number 
of samples by number of channels) are returned: one for left 
movement, one for right movement and two arrays for 
relaxation (one following the left movement and one following 
the right movement period). We get 7 or 8 trials for each 
movement task and 7 or 8 trails for the relaxation periods. 
There are 320 samples and 64 channels. No artifact rejection 
method is performed. Then, a detrending method is applied. 

As one of our goal is to emphasis the effect of the 
frequency band upon the discrimination of the left/right motor 
tasks, a band-pass filter is applied in each trial. In order to 
avoid phase distortion, a liner phase FIR filter is used. 

After the pre-processing, the representative features are 
extracted. The Hilbert transform is performed for all the 
channels and the PLV is computed for all the possible pairs of 
EEG channels (in all states). 

From all the pairs of electrodes, we employ three electrodes 
from the supplementary motor area, FCz, Cz and CPz, and 
other six ones from the sensorimotor areas, FC3, C3, CP3 
(from left hemisphere), FC4, C4 and CP4 (from right 
hemisphere). Therefore, we extract nine PLVs for each 
hemisphere, that is FCz-FC3, FCz-C3, FCz-CP3, Cz-FC3, Cz-
C3, Cz-CP3, CPz-FC3, CPz-C3 and CPz-CP3 for left and FCz-
FC4, FCz-C4, FCz-CP4, Cz-FC4, Cz-C4, Cz-CP4, CPz-FC4, 
CPz-C4 and CPz-CP4 for right hemisphere (as it is illustrated 
in Fig. 2). 

For all these pairs, we compute the difference of PLVs 
between the active and relaxation periods as: 

                                  (6) 

where       is the average PLV over all the trials in the 
motor task and         is the average PLV over all the trials in 
the relaxation state. 

In order to discriminate between left or right motor activity, 
we compare between         of the corresponding pairs of 
electrodes from the left and right side and, according to the 
result of the comparison a vector of nine elements is built (one 
element for each comparison pairs). Each element of this 
vector may be 1 or 0 and is obtained in the following manner: 
if                              a value equal to 1 is put and, in 

the opposite case, a value equal to 0. Hereafter, a majority vote 
is applied for classification into the two groups of the 
moving/imaging left fist and the moving/imaging right fist. As 
it is expected the synchrony is greater in the contralateral 
hemisphere, the decision is as follows: if the number of 
elements equal to 1 in the vector is greater or equal to 5 (a half 
of vector length plus 1) it means that the subject 
moved/imagined left fist and, on the contrary, the subject 
moved/imagined right fist. 

 

Fig. 2. The electrode pairs selection in the case of the large-range 

synchronization 

In what follows, we denote by 100% success rate the case 
when, in the same run (3, 7 or 11 for movement and 4, 8 or 12 
for imagery), according to our criterion, the decision that the 
subject moved/imagined the left/right fist corresponds for the 
EEG pattern extracted for the periods the target appears on the 
left, respectively on the right side of the screen. For example a 
100% success rate is if in run 3, after the comparison of 
              and                , for the movement of the target 

to the left side of the screen we get 6 values of 1 and for the 
right movement of the target we get 4 values equal to 0. Then 
we conclude that the left fist was moved, respectively the right 
fist was moved. 

We worked with the mentioned database of 109 volunteers, 
but only for 103 of them the mentioned algorithm was 
performed because for the other 6 subjects there are too short 
or damaged records. These invalid subjects are: S043, S088, 
S089, S092, S100 and S104. 
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First of all, we focus on the implementation when the EEG 
signal is 8-12 Hz band-pass filtered. 

The number of subjects with 100% success rate versus the 
number of runs is represented by bars in Fig. 3. The chart is for 
the two types of experiments, real and imagery movement of 
fist. In both circumstances, there are some subjects that have 
100% success rate for all three runs (3, 7 and 11 for movement 
and 4, 8 and 12 for imagery), other subjects for two runs (any 
combinations of two runs  between 3, 7 or 11 for movement or 
between 4, 8 and 12 for imagery) and some subjects only for 
one run (any of 3, 7 or 11 for movement or any of 4, 8 or12 for 
imagery). There are persons for whom, in the same run, the 
correct decision is only for the left or for the right motor task, 
but not simultaneously for left and right. There a cases when, 
in the same run, there is 100% success rate neither for the left 
nor for the right. For both of the last two situations, in the 
figure, there is mentioned by “none” on the abscise. 

As we can notice from Fig. 3, there are not significant 
differences between the real movement and the imagery task. 
Besides, the number of 100% success rate for all the three runs 
is low, only 11/9 subjects from e total of 103 being able to 
correct discriminate in all runs for real movement, imagery 
movement, respectively. For the most of the subjects, the best 
result is only for two runs and one run. The worst situation, 
meaning that for none of the runs could be obtained 100% 
success rate, is for 23/21 subjects (real movement/imagery 
movement). 

The 12- 30 Hz in another band at which we suspect phase 
locking to occur. So, we perform the same steps as in the 
previous case and chart from Fig. 4 shows the number of 
subjects with 100% success rate versus the number of runs. 

 

Fig. 3. Number of subjects with 100% success rate versus number of runs 

(EEG signal is 8-12 Hz band-pass filtered) 

 
Fig. 4. Number of subjects with 100% success rate versus number of runs 

(EEG signal is 12-30 Hz band-pass filtered) 

Comparing to Fig. 3, it is obvious that the greatest 
difference occurs for “three runs” in the case of real movement 
task, when the number of subjects who attend 100% success 
rate is three times higher (33 versus 11 subjects). A possible 
reason is that the phase locking for β rhythm is more frequent 
than for µ rhythm. Concerning the imagery movement task, 
there is no significant difference between the subjects’ number 
who attend 100% success rate for three runs in the case of the 
two different filter bands. We also observe that in the case of 
12-30 Hz the number of subjects for two runs is greater than 
the number for one run. The number of subjects who attend 
100% success rate for none of the runs is quite the same. It is 
possible that some of the volunteers are not able to perform the 
task or in the handled EEG patterns there are no discrepancies 
between relaxation and motor task. 

It would be interesting if we compute the percentage of the 
left/right correct discrimination task reported to all the runs for 
all the subjects in the case of real movement and in imagery 
task. In Table 1 is depicted these results. 

TABLE I.  THE RATE OF CORRECT DISCRIMINATION TASK FOR ALL THE 

SUBJECTS 
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In the case we filtered on 8-12 Hz (corresponding to μ 
rhythm), when the subjects moved the fist, the results for the 
two kind of tasks, left or right movement, are quite the same, 
taking fair values, about 64%. When the subjects imagined the 
movement, only for the right, the value is higher, about 70%. 
Better results are when the filter was on 12-30 Hz 
(corresponding to β rhythm), attaining 82.5% when right fist 
was moved. 

When we compute the rate of classification in a global 
manner, that is considering all the matches between the 
position of the target (movement/imagery of the fist in that 
direction) and the decision of our classification method by the 
majority vote, we get better results for β rhythm, than for μ 
rhythm both for movement (78.95% versus 63.73%) and for 
imagery tasks (71.55% versus 65.55%). 

In order to compare our method with the others, it is correct 
to use the same database. To our concern, the already reported 
researches used only the amplitude change in EEG signals for 
feature selection. So, in [12], despite different investigated 
methods (per patient/per group, normalized by frequency 
band/not normalized by frequency band, independent 
component analysis ICA/non-ICA), the reported classification 
accuracies do not overpass 70%, laying in 53.67%-69% 
interval. Taking into account these results and the fact that 
there were performed more difficult methods, our approach 
seems to be with certain advantages. 

IV. CONCLUSIONS 

In the framework of BCI motor imagery paradigm, because 
phase is supposed to include most important information about 
the neural activity, in order to discriminate between left and 
right motor task, we have proposed a phase locking value 
based method. 

The results suggest that this method can exploit, on one 
hand, the phase synchrony between scalp-recorded EEG 
activity in the supplementary motor area and in sezorimotor 
area and, on the other hand, the differences between the active 
and the relaxation states. 

PLV features were more discriminative when computed 
from 12-30 Hz filtered EEG signals. 

The algorithm is very simple and computationally efficient 
using only some suitable EEG channels. 

Considering the fact that no trials are excluded due to 
artifacts, it is a promising method for further developments of 
BCI systems. 

V. DISCUSSION AND FUTURE WORK 

In this paper we considered the average over all the trails 
for the PLVs for computing         and, even if is time 

consuming, we have to test the method on each trial for every 
of the 103 subjects. 

In order to be a valuable tool for BCI, we have to develop 
an appropriate method to discriminate in real time between the 
left and the right imagery movement. 

As we used a large database, it was possible to report 
relevant results. There is a drawback using this database 
because we do not know details concerning the subjects or the 
experiment (e.g. the timing between runs) etc. So, we have to 
test the proposed method on our own EEG recordings in order 
to be able to explain results and establish connections to the 
variants that could influence them. 
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