
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.10, 2014

Extended Paper from Science and Information Conference 2014

26 | P a g e

www.ijarai.thesai.org

FlexRFID: A Security and Service Control Policy-

Based Middleware for Context-Aware Pervasive

Computing
Healthcare Scenarios

*Mehdia Ajana El Khaddar1, Mhammed Chraibi2, Hamid Harroud3, Mohammed Boulmalf4, Mohammed Elkoutbi1,

Abdelilah Maach2

1: SIME Lab, ENSIAS, Rabat, Morocco

2: Ecole Mohammedia des Ingénieurs, Rabat, Morocco

3: Alakhawayn University in Ifrane (AUI), Ifrane, Morocco

4: International University of Rabat (UIR), Rabat, Morocco

Abstract— Ubiquitous computing targets the provision of

seamless services and applications by providing an environment

that involves a variety of devices having different capabilities.

The design of applications in these environments needs to

consider the heterogeneous devices, applications preferences, and

rapidly changing contexts. RFID and WSN technologies are

widely used in today’s ubiquitous computing. In Wireless Sensor

Networks, sensor nodes sense the physical environment and send

the sensed data to the sink by multi-hops. WSN are used in many

applications such as military and environment monitoring. In

Radio Frequency Identification, a unique ID is assigned to a

RFID tag which is associated with a real world object. RFID

applications cover many areas such as Supply Chain

Management (SCM), healthcare, library management, automatic

toll collection, etc. The integration of both technologies will bring

many advantages in the future of ubiquitous computing, through

the provision of real-world tracking and context information

about the objects. This will increase considerably the automation

of an information system. In order to process the large volume of

data captured by sensors and RFID readers in real time, a

middleware solution is needed. This middleware should be

designed in a way to allow the aggregation, filtering and

grouping of the data captured by the hardware devices before

sending them to the backend applications. In this paper we

demonstrate how our middleware solution called FlexRFID

handles large amount of RFID and sensor scan data, and

executes applications’ business rules in real time through its

policy-based Business Rules layer. The FlexRFID middleware

provides easy addition and removal of hardware devices that

capture data, as well as uses the business rules of the applications

to control all its services. We demonstrate how the middleware

controls some defined healthcare scenarios, and deals with the

access control security concern to sensitive healthcare data

through the use of policies. We propose hereafter the design of

FlexRFID middleware along with its evaluation results.

Keywords— RFID; Middleware; WSN; Ubiquitous; Pervasive

Computing; FlexRFID; Policy-Based; Security; Healthcare; access

control

I. INTRODUCTION

Pervasive computing aims at providing intuitive and
seamless support for the users through leveraging the distinct
functionalities of a number of devices, and developing various
backend applications that use data gathered from these devices.
Through wireless communication, the automation devices can
share data, and combine them for a more accurate inference of
their surroundings. This inference enables applications to
reason about the past, the present, and the future, and allows
them to behave according to the expectations of the user. This
is making pervasive applications very attractive to users on one
hand and close to nightmare for developers on the other hand.
This is due to the fact that pervasive applications need to deal
with device heterogeneity, unreliable wireless communication,
duplicate and continuous raw data readings, uncertainty in
sensor readings, and changing user requirements and
application domains. Therefore, the development of this kind
of applications is considered error prone, non-trivial and time
consuming, and needs definitely a rescue which is a
middleware for pervasive computing [25].

Healthcare services are becoming increasingly pervasive
where monitoring technologies are fast becoming integral to
the care process and important to realize a proficient healthcare
service. WSN and RFID can be considered two adjacent
technologies that help tracking healthcare items and patients,
and providing context information about them. Sensors
measure physiological state (inpatient monitoring), and also
allow remote care (outpatient monitoring, i.e. at the patient‘s
home rather than in hospital) [1]. RFID not only offers tracking
capability to locate patients in real time while they are moving
in a hospital, but also monitors access control to the different
medical departments, and provides efficient and accurate
access to medical data for doctors and other health
professionals [2]. Such technologies assist in the early
identification of health issues, and provide alerts in case of
emergencies.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.10, 2014

Extended Paper from Science and Information Conference 2014

27 | P a g e

www.ijarai.thesai.org

The healthcare environment is becoming data driven, in the
sense that care providers require information in order to deliver
care services. However, health information is sensitive and
must be protected [3]. Thus, it is necessary to consider the
context in which it is shared. The development of a
middleware, which hides the complexity of the underlying
network and eases application development, is central to
provide a ubiquitous secure healthcare.

The solution proposed in this paper is a middleware which
supports simultaneous communication of multiple applications
with the RFID and WSN hardware, and deals with the above
challenges through the use of policies. The middleware
provides all data processing capabilities like filtering, grouping
and duplicate removal. The paper is structured as follows,
Section II introduces related work. Section III introduces the
middleware architecture and focuses more on the policy-based
Business Rules Layer, presents the policies types and structure,
and shows how all the services provided by FlexRFID can be
managed by the use of application-defined policies. Section IV
defines and models policies for some healthcare scenarios,
followed by conclusions and future work in section V.

II. RELATED WORK

Most of the existing RFID middleware solutions are
commercial. These include ―BizTalk RFID‖ middleware from
Microsoft, and ―Java RFID System‖ from Sun, to name a few.
Other middleware solutions were developed from research e.g.
―WinRFID‖ by UCLA and ―Accada‖ by ETH Zurich. Sun Java
RFID System is a Java based commercial middleware that has
a dynamic service provisioning architecture that enables
scaling from small to large deployments with high data volume
[4]. The Biztalk RFID middleware solution from Microsoft
provides support for both standard and non-standard devices
through the plug-and-play architecture [5]. It has an event
processing engine that manages the RFID events by creating
business rules, through which it provides real time visibility of
the RFID data [5]. WinRFID [6] developed at the University of
California Los Angeles (UCLA), uses web services and
enables rapid RFID applications development. It has certain
unique features like hiding of communication details from the
end users, network management on a large scale, intelligent
data processing and routing, support for hardware and software
interoperability, provision for system integration and system
extendibility, etc. WinRFID exploits the .Net framework‗s
runtime plug-in feature to support the addition of new readers,
protocols, and data transformation rules with minimum
disruption of the existing infrastructure [6]. The Accada
middleware [7] developed by ETH Zurich uses EPCglobal
(Electronic Product Code) based specifications for the reader
protocols, the application level event specifications and the
EPCIS (EPC Information Services) capture and query interface
to handle RFID data flow across enterprises. It has three main
modules: the reader, the middleware, and the EPC information
services module. The Accada reader implementation uses
standard edition of SUN Java Virtual Machine [7].

For WSN, there exists many middleware approaches.
Among these approaches we find the virtual machine,
database, application driven, message-oriented, and modular

programming middleware [8]. For each of the WSN
middleware approaches, some WSN middleware solutions
have already been proposed. Hereafter we name some WSN
middleware solutions: Impala [8, 9], Mate [10, 8], Middleware
Linking Applications and Networks (MiLAN) [8], Sensor
Information and Networking Architecture (SINA) [8], Mires
[8], etc.

A publish/subscribe middleware providing event based data
control mechanisms for healthcare has been proposed in [11].
The main objective of this event based healthcare middleware
is to give caregivers fine-grained control over the
circumstances for health data transmission. It provides two
categories of interaction control rules; subscription rules and
event transformation rules. These rules allow the
administrative domain to set the circumstances in which it is
appropriate to transmit particular information.

A middleware architecture using the MVC pattern is
proposed in [12]. The proposed middleware architecture for
pervasive computing supports the architectural quality
attributes of adaptability, availability, security, and
modifiability. All these requirements are ensured using the
MVC design pattern as discussed in [12].

Fusion from ORACLE is a Service Oriented Architecture
(SOA) middleware for healthcare integration, connecting
administrative and clinical processes. Through the use of
Fusion Middleware, Oracle helps organizations to reliably
exchange information while adhering to important industry
standards and initiatives. This enables organizations to lower
operating costs and accelerate time-to-market by delivering a
consistent user interface, security architecture, management
console, and monitoring environment. The Fusion middleware
is designed to correlate clinical data, link applications, and
comply with the myriad challenges of this highly regulated,
data-intensive industry. Smoothing data interchange helps
streamline every phase of the healthcare lifecycle from
initiation, eligibility, and enrollment to service delivery,
program analysis, and reporting [13].

There exist many other pervasive computing middleware
solutions e.g. SeSCO, OneWorld, and AoC to name a few [22].
Though the existing middleware solutions are useful, they
themselves have varied features and contribute partially, to
context, data, or service management related application
developments. Most of them are oriented toward mobile
applications and do not provide abstraction for many types of
applications. There is no single middleware solution that can
address a majority of pervasive computing application
development issues, due to the diverse underlying challenges.
Also, there is a huge scope for research in the area of RFID and
WSN middleware and applications, and many solutions were
developed to cope with the technology –related challenges.

As compared to the related work described herewith,
FlexRFID middleware has many distinguishing aspects. It
provides the applications with a device neutral interface to
communicate simultaneously with many different hardware
devices, creating an intelligent network of RFIDs, sensors, and
any other type of automation devices. The policy-based
Business Rules Layer allows FlexRFID middleware to enforce

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.10, 2014

Extended Paper from Science and Information Conference 2014

28 | P a g e

www.ijarai.thesai.org

all data processing capabilities by applying the backend
applications defined rules. This enforces security by restricting
access to data only to the applications or users that satisfy
certain conditions stated in the policies. Also the modular
layer of the middleware allows seamless integration of
different types of enterprise applications, which makes it a
general middleware not related only to one application domain.
We present hereafter the middleware architecture, and show
how business rules are modeled and applied by the middleware
using some healthcare scenarios.

III. PROPOSED POLICY BASED MIDDLEWARE AND ITS

SUBSYSTEMS

A. FlexRFID Middleware Overview

The FlexRFID middleware as described in [14] is a multi-
layered middleware consisting of Device Abstraction Layer
(DAL) which abstracts the interaction with the physical
network devices, Business Event and Data Processing Layer
(BEDPL) which provides data services such as dissemination,
aggregation, transformation, and duplicate removal, Business
Rules Layer (BRL) which is a policy-based management
engine that defines the rules that control resources and services
of the FlexRFID middleware, and Application Abstraction
Layer (AAL) which provides a high level of software
abstraction that allows communication among the enterprise
applications and the FlexRFID middleware. FlexRFID was
integrated in many domains: library management [14],
inventory control with Opentaps software [15, 16], and
healthcare [17].

The BRL is a policy-based management engine that defines
the rules that grant or deny access to resources and services of
the FlexRFID middleware, and enforces different types of
policies for filtering, aggregation, duplicate removal, privacy,
and different other services. This is achieved by determining
the policies to apply when an application requests the use of a
service in the BEDPL. Hereafter, we give more details about
the BRL, policies architecture, and examples of policies
representation.

B. Policy-Based Business Rules Management Layer

1) Policy Types and Structure
Software policies have been widely used to provide

security for WSN as in SecSNMP [18]. Policies are operating
rules used to maintain order, security, consistency, or other
ways of successfully achieving a task. In our middleware
architecture we are using the types and structure of policies
defined for the system in [19]. There are basically two types of
software policies. Authorization policies are rules that are
usually enforced in access control systems. In the case of the
FlexRFID middleware, authorization policies would be rules
defined by the application to enforce or deny access to certain
data if a certain set of conditions is fulfilled. Obligation
policies refer to actions to be enforced when a set of predefined
conditions is fulfilled or a change in the context happens. For
FlexRFID middleware, an obligation policy would be to trigger
the duplicate removal service for an application only 5 minutes
of data reads. The policy specification language, based on
which we have decided to model our policies is Ponder, and we

have chosen XML to represent policies due to its ease of
editing and use.

As presented in [19], the policy has nine main attributes.
The policy ID is a unique identifier of the policy and helps in
the search operation. The type of policies refers to whether we
deal with an authorization or obligation policy. The subject of
the policy is the entity that enforces the action of the policy,
and the target is the entity on which the policy‘s action is
enforced. Usually the action of the policy is a call for a method
that belongs to the target. The priority attribute of the policy is
used to solve the problem of conflicting policies. The audit tag
of the policy allows the system to keep track of the triggered
policies and their context, and the active tag specifies if a
policy is active or not. One of the most important attributes of
the policy is the set of conditions which refers to conditions
under which the policy is triggered. These are expressed using
first order logic and comparison operators. Context information
that is included in the policies is part of the condition set. For
example this context information could refer to time, location,
type of application, and role of users.

Fig. 1 below shows an example policy for blood glucose
management, with the attributes mentioned above. In this
example, policy with ID 1 is an obligation policy that triggers
an alarm for a specific group of physicians taking care of a
diabetic patient facing a hypoglycemia state. When the blood
glucose (Blood_Glucose) and heart rate (ECG_Value) values
are communicated by the sensors, they are checked to see
whether they satisfy the set of conditions mentioned in the
policy.

Fig. 1. Sample policy structure for hypoglycemia management

The policy in Fig. 1 states that If the condition set is met,
the Trigger_HypoGlycemiaAlarm() method of the doctors‘
application is called to inform them about this emergency case.

2) Policy-Based BRL Architecture
In general a policy management system is composed of

three main entities; the PDP (Policy Decision Point), the PEP
(Policy Enforcement Point), and the PIB (Policy Information
Base). The PDP is responsible for taking the decision whether
to allow or deny an action based on the request details and the

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.10, 2014

Extended Paper from Science and Information Conference 2014

29 | P a g e

www.ijarai.thesai.org

policies available in the PIB. The PIB refers to the database
containing all the system policies. Once the action is processed
and selected by the PDP, it sends a message to the PEP which
is responsible for enforcing the action on the target. In our
system we kept the same components and added some others

that ease management of policies and adapt the policy
management system to the middleware.

Fig. 2 shows the architecture of the FlexRFID middleware
adapted to put more emphasis on the components of the policy-
based BRL, and explain interaction between them.

Device Abstraction Layer

Policy_Based Business Rules Layer

Policy Engine

Context & Events Manager

Application Abstraction Layer

Policy Enforcement Point

Policy Decision Point Policy Manager

Policy Conflict Manager
Policy Repository

Repositories

Context Action Log Events

Domain
Specific

Repository
1

…… Domain
Specific

Repository
n

Raw Data

Authorize Action

Application 1 Application 2 Application 3 Application n……………………...

Enforce Action

Diverse Type of Automatic Identification Devices

Policy_Based FlexRFID Middleware

Business Event & Data Processing Layer

Policy Enforcement Point

Data Writing
Data

Dissemination
Data

Aggregation

Data
Transformation

Data Filtering
Duplicate
Removal

Data
Replacement

System Action

Event Notification

Send Request

Fig. 2. Policy-based Business Rules Layer (BRL) architecture of the

FlexRFID middleware

The BRL contains three main components: the Policy
Engine, the Context and Events Manager, and the Repositories.
The policy engine is responsible for policy management of the
middleware and has four main components namely the PDP,
the policy manager, the policy conflict manager, and the policy
repository. The policy manager accesses the policy repository
to read the policies and organize them for use by the two other
components; the PDP and the policy conflict manager. The
policy manager is also responsible for updating the policy
repository by adding new policies when needed by the
applications or when new applications subscribe to the
middleware. The policy conflict manager sorts the list of
policies given by the PDP in increasing order of priority, and
triggers the policy with the highest priority for a specific event.
The PDP is responsible for evaluating the policies and deciding
whether a policy action is to be triggered or not. The PDP is
either triggered by an incoming request or event that is external
to the system for example new sensor data, or by an internal
event that is a notification from the context manager of a
change in the environment‘s context. The policy repository
contains all the obligation and authorization policies of the
system.

There are four main repositories in the BRL. The context
repository contains all context information that is of use to our

system such as time, and location and is used by the context
manager. The actions log repository contains a log for every
policy that has been triggered. The log helps providing with
accountability such as the requester identification, information
about the type of the policy; whether it is an obligation or an
authorization policy, the subject and the target. The events
repository contains all the events encountered by the
middleware for example the read of a new RFID tag, or new
sensor data detection, a change in the object location, etc. The
domain specific repositories contain data related to a certain
application domain. In the case of healthcare the domain
specific repository would be the Electronic Health Record
(EHR).

The PEP stands both at the AAL and BEDPL of the
middleware because it is the one responsible for performing
actions that are specified in the system and applications
policies. At registration phase with the middleware, the
application loads its set of policies to the middleware so that
both PEPs can enforce actions specified in the policies when
the condition set is met.

The sequence diagram in Fig. 3 shows how the different
components of the policy based BRL interact with each other
and with the remaining middleware components when new
data is detected. Once the automatic identification device
detects the data, they are sent to the service PEP at the level of
the BEDPL. The PEP in its turn sends the event to the PDP.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.10, 2014

Extended Paper from Science and Information Conference 2014

30 | P a g e

www.ijarai.thesai.org

Auto-ID
Device

Target
Application

BEDPL PEP
Context &

Event
Manager

Policy
Conflict

manager
PEP

Policy
Manager

DAL

1:DetectRawData()
Notification

2:SendRawData()

PDP

3: SendEvent()

4: RequestSystem
Policies()

5: SendSystem
Policies()

6: SolveConflict()

7: SendSortedPolicies()

8: RequestContextInformation()

9: SendContextInformation()

10: GrantAction()

11:EnforceAction()

12: SendProcessedData()
13: RequestApp

Policies()

14: SendApp
Policies()

15: SolveConflict()

16: SendSortedPolicies()

17: RequestContextInformation()

18: SendContextInformation()

19: AuthorizeAction()

20: EnforceAction()

Fig. 3. Policy-based data processing flow in FlexRFID middleware

The PDP requests system policies in charge of controlling
the BEDPL services from the policy manager, and requests
solving conflict from the policy conflict manager in case of
conflicting policies. PDP also requests the context information
from the context manager if available. After resolving conflict
and acquiring context information the PDP grants the action to
the service PEP which in turn enforces the target service at the
level of BEDPL. The BEDPL sends these processed data to the
PDP for application of further policies related to the backend
application business rules. The PDP checks again the
application policies, solves conflict, and requests context
information if needed. Once the policies are applied it
authorizes the action for the PEP at the application level, and
the PEP enforces the action on the target application. As can be
seen from the sequence diagram in Fig. 3 policies are divided
logically into two types: system policies related to the
middleware services, and application related policies which
refer to any additional rules that need to be applied to data after
the first processing by the BEDPL.

IV. HEALTHCARE SCENARIOS

Healthcare is a highly collaborative environment which
requires information sharing to provide care. Different services
take part of the care process; a patient gets admitted to a
hospital, doctors prescribe treatment for their assigned patients,
prescriptions are sent to pharmacy, and specific information is
sent to accountants for the billing purpose.

With the provision of sensor and automatic identification
technologies, we are more talking about homecare and remote
care outside of traditional care institutions. This reduces the
need for human intervention, alerts of particular incidents, and
provides detailed representations of patient state in real-time.
The patient becomes empowered and feels more independent
while receiving more information to assist him/her in self-care
[20].

Remote care environments are dynamic and each instance
of them is created on demand to cater for specific aspects of
patient care. The instance is customized to a particular situation
in terms of management policies and entities involved. Remote
care requires entities that deliver services depending on their
role in the care process, and requiring notification of events as
they occur. Events include either actions performed such as a
patient taking a drug, data notification such as a sensor
monitoring a vital sign, and state changes such as a detection of
an emergency case.

In a healthcare application, the FlexRFID middleware
should support the real-time dissemination of events to the
interested entities, while providing support for heterogeneous
devices capturing data and means to control information
processing and disclosure. This involves loading the policies
into the middleware by the different healthcare entities or
applications in order to define the situations for data release.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.10, 2014

Extended Paper from Science and Information Conference 2014

31 | P a g e

www.ijarai.thesai.org

Example of policies in healthcare may include the
following:

Subscription for particular events: this policy is used in
case a user may request particular information for delivery as it
occurs. For example a policy might allow a doctor to receive
treatment events only for patients that he treats.

Data access control and event restriction: this policy
defines the conditions under which certain data or events are
not delivered for a subscribed application. For example a
policy might prevent a nurse from receiving a patient‘s HIV
treatment data, while allowing this for his caring doctor.
Another policy might allow a physician to modify any medical
record for which he or she is designated as primary physician.
Also a policy can state that access to a medical record is
allowed for five times only and each access expires after one
minute.

Data and event transformation: this policy involves
modifying the event type or attributes to better satisfy the
requirements of the subscribed entity or its current context. It is
a context-aware policy that accounts for emergency cases. For
example if a doctor has no relationship with a patient, their
subscription can be deactivated. Another example is to
transform glucose reading to an alert if it is too high for two
successive days.

Hereafter we describe the application of our policy-based
data control middleware to two healthcare scenarios.

A. Drug prescription control scenario

A nurse may prescribe some controlled drugs in certain
circumstances to a patient. This prescription must be validated
by the primary treating doctor, who must access to all details
about the patient care and history. The prescription must flow
to the pharmacy without any details of the patient and the
reason for prescription. An auditor must monitor the supply of
the controlled drug and must not receive patient specifics. This
emphasizes role based access control to patient data. Fig. 4 and
Fig. 5 below show policies used for the above scenario to
control drug prescription.

Fig. 4. Data access control policy to patient‘s data by the primary doctor

Fig. 5. Data access control policy to patient‘s data by the pharmacist

B. Location tracking and emergency management scenario

Location sensors or RFID tags are commonly used in
remote care to detect the location of patient. Tracking location
is important in detecting emergencies especially for elderly
care [21] (are patients in bed? Did they fall on the floor?), and
in quickly dispatching the ambulance to the target location.
Patients generally care about privacy and want their exact
location to be obscured. A policy might specify that location
information should not be transmitted unless it is an emergency
situation, and for some defined entities in the care process for
example for doctors and close relatives only.

Referring to the hypoglycemia policy modeled in Fig. 1,
diabetes self-management can be easily deployed using
policies. Sensors can be used to take the diabetic patient
measurements like blood glucose, blood pressure, amount of
meals, amount of exercise, and location. The measurements
taken by the sensors can be sent to the middleware, aggregated,
checked for the specified thresholds set by the doctors in the
diabetes management application policies, and sent to the
specialized doctor in real-time so that he/she can send advice to
the patient. If the blood glucose and pressure are noticed to be
too high over a certain period of time (a day for example), the
doctor may advice the patient to go for a workout, or to take an
additional insulin injection to lower the blood glucose. In case
of hypoglycemia the doctor should advice the patient to stay in
bed and eat more in order to increase his/her blood glucose. In
this case if the blood glucose readings are too low and the
RFID tag attached to the patient sends location change
information, the middleware should trigger an alarm to the
doctor so that he sends a dedicated medical team to take care of
the situation, because the patient may fall down while moving
in a hypoglycemic state.

The examples above highlight key features of policy based
management in the middleware. Information is released
depending on the context and situation only to the interested
and eligible entities. An event can be interesting to many
entities but its visibility is controlled by the policies defined
beforehand. This ensures security and privacy concerns.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.10, 2014

Extended Paper from Science and Information Conference 2014

32 | P a g e

www.ijarai.thesai.org

V. FLEXRFID MIDDLEWARE EVALUATION

A. Device Evaluation

Device evaluation corresponds to the portability metric of
ISO/IEC 9126 standard [23] in terms of multiple devices
support. This metric evaluates the heterogeneity, and
scalability of the middleware as the number of devices
increase. We mean by scalability here the durability of stable
status of the middleware when certain conditions are met, in
this case when the number of devices increases.

FlexRFID middleware provides the RFID applications an
interface to RFID hardware and other sensors and automatic
identification devices, called ―Device Abstraction Layer
(DAL)‖. Generally the hardware devices are accessed by a set
of APIs provided by the device manufacturer, which are
specific to each device. In our implementation of the DAL we
used wrappers for the manufacturer provided reader APIs, in
order to make the reader accessible through FlexRFID. These
wrappers call the reader specific API to implement the desired
functionality.

The FlexRFID middleware was tested with Intermec Fixed
IF61 reader which was available in our lab. This reader‗s DLL
was loaded to the FlexRFID. After set up of each connection to
the IF61 reader, a handle on it is used to support all further
communication with this reader. Further devices‘ DLLs must
be identified and added to the FlexRFID, in order for the
middleware to support communication with them.

B. Application Evaluation

Application evaluation corresponds also to the portability
metric of ISO/IEC 9126 standard in terms of heterogeneous
system and application support. It evaluates the level of
abstraction of the middleware in terms of providing standard
APIs to communicate with multiple backend applications, and
also scalability of the middleware as the number of connected
applications, the number of policies loaded by the applications,
and the number of requests from the applications increases.

FlexRFID provides through the Application Abstraction
Layer (AAL) a generic class that should be implemented by all
applications that want to connect to the middleware. This class
provides functions to access the general operations done by all
RFID applications such as reading / writing data, duplicate
removal, first level filtering, etc. Domain specific data
treatment such as data transformation to some complex
business events is either expressed through policies so that the
middleware applies the application rules on data before
dissemination, or done at the level of the application itself.

FlexRFID was tested with a smart library application
prototype [24], integration with OpenTaps for inventory
control [16], and we have identified scenarios for healthcare
domain integration that we need to simulate in a healthcare
application prototype [17].

C. Security and Privacy Evaluation

The security and privacy evaluation is meant to assess the
security and privacy of the pervasive middleware, and how it
protects the applications‘ sensitive data when needed through
the use of policies. This is achieved by generating a scenario in

which access to data is restricted to specific parties, and testing
how the middleware deals with this access control policy.

The policy example that we have used in our scenario is
shown in Fig. 6 below. This policy maps a business rule from a
hospital that says that only doctors who have ID starting with
―54‖ and who have correctly authenticated (ID + Password
authentication) can access the ―DrugsRoom‖. The policy
restricts access to that specific room to a certain category of
hospital employees. The policy enforces the restriction by
allowing use of context information such as the role of the
employee (Role Based Access Control), and the state of the
hospital (Normal state or emergency state). In our test we have
generated tags which lead to the creation of requests. The
requests contained different specificities which did not match
the conditions of the policy responsible for the management of
the door leading to the ―DrugsRoom‖. Therefore, none of the
requests led to the opening of the door. It is to specify that we
have conducted our tests on a local host where no external
threats exist.

Fig. 6. Healthcare scenario for access control policy.

D. Context Evaluation

The context evaluation assigns metrics to the contexts
available in the environment in which the FlexRFID
middleware is tested. The context can be time, location, user
activities, objects movements, etc. The context evaluation can
take place by generating different scenarios by the user and
checking the application for context-awareness, for example
whether it adapts to changes in context seamlessly. Location
tracking and emergency management in healthcare can be a
great scenario for showing the middleware‘s adaptability to
context.

Location sensors or RFID tags are commonly used in
remote care to detect the location of patient and measure vital
signs like blood pressure, temperature, blood glucose, etc.
Using policies, in an emergency case, Information is released
depending on the context and situation, and only to the
interested and eligible entities. An event can be interesting to
many entities but its visibility is controlled by the policies
defined beforehand. This ensures as well the security and
privacy concerns.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.10, 2014

Extended Paper from Science and Information Conference 2014

33 | P a g e

www.ijarai.thesai.org

E. Performance Evaluation

Response time is among the most important performance
parameters. It is the amount of time beginning upon sending
some request to the middleware that performs required
operations over the massive data gathered from the devices, to
receive response from the middleware and disseminate the
processed data to the interested applications. Response time
measures the delay of query results.

We are interested in two different performance testing
cases. First, we have the case where the system is dedicated to
one client application. This means that all the policies in the
system belong to the same application. Our measure is the time
necessary for a request to receive a response depending on the
number of policies specified by the client. In the second test,
we have decided to have a fixed total number of policies.
However, the policies would belong to different client
applications. Since we are using one request to test for
performance, we wanted to see how the total number of
policies affects the system performance. We are in the process
of testing these two test cases and getting the performance
results.

VI. CONCLUSION AND FUTURE WORK

Policy based FlexRFID middleware was developed to cater
to the need of many applications that need to take advantage of
the ubiquitous computing technologies in order to automate
some data processing. We have outlined the need for using this
middleware solution for remote healthcare and the flexibility it
offers for handling different scenarios thanks to its policy
based Business Rules Layer.

We have implemented a working prototype of the
middleware including the policy engine and context
management system. The next step is to choose one of the
defined scenarios, generate the corresponding events, load the
defined policies in the middleware, and see how it handles the
data related services, access control to data, and ensures
patients‘ privacy. A further testing of the middleware will
include performance and response time testing for the test
cases defined above. For example we can see how the
middleware behaves when the number of policies loaded by a
specific application increases, or when the services need to
gather data from many devices for processing, etc.

The current version of the FlexRFID middleware offers
only basic support for security through the use of access
control policies because the project intentionally focused on
the described concepts and policies definition. More work on
the security features is needed in the future for e.g. security at
the level of tags or sensor nodes, application authentication,
reader/tag authentication implementation, etc. Ongoing work
will also consider the autonomy evaluation which deals with
the following parameters: self-configuration, resource
management, failure tolerance, high availability, and decision
making. The FlexRFID will also be integrated in the cloud,
provide a foundation for enabling applications to flexibly use
services provided in the cloud, and automatically adapt the
usage of cloud-based services depending on application
policies and context considerations. As the technology matures

in the future, FlexRFID may integrate other types of devices,
and handle new services and applications.

REFERENCES

[1] M. Amimian, and H. R. Naji, ―A hospital health care monitoring system
using wireless sensor networks,‖ J Health Med Inform, Vol. 4, No. 2,
2013. Available: http://www.omicsonline.org/a-hospital-healthcare-
monitoring-system-using-wireless-sensor-networks-2157-
7420.1000121.pdf

[2] W. Yao, C. H. Chu, and Z. Li, ―The use of RFID in healthcare: Benefits
and barriers,‖ IEEE International Conference on RFID-Technology and
Applications (RFID-TA), Guangzhou, China, June 17-19, 2010.

[3] M. Alam, M. Hafner, M. Memon, and P. Hung, ―Modeling and
enforcing advanced access control policies in healthcare systems with
sectet,‖ Workshop on Model-Based Trustworthy Health Information
System (MOTHIS), 2007.

[4] Sun Microsystems, ―Sun Java™ system RFID software 3.0 developer‗s
guide,‖ February 2006, [Online], Available:
http://download.java.net/general/sun-
rfid/Release30/Docs/Developers_Guide_819-4686.pdf

[5] Microsoft, ―BizTalk server 2006 developer productivity study,‖ January
2007, [Online], Available: ww.microsoft.com/biztalk/en/us/rd.aspx

[6] B. S. Prabhu, X. Su, H. Ramamurthy, C. Chu, and R. Gadh, ―WinRFID
– A middleware for the enablement of Radio Frequency Identification
(RFID) based applications,‖ Wireless Internet for the Mobile Enterprise
Consortium (WINMEC), Los Angeles, December 2005. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi
=10.1.1.91.8928

[7] C. Floerkemeier, C. Roduner, and M. Lampe, ―RFID application
development with the Accada middleware platform‖, IEEE Systems
Journal, Special Issue on RFID Technology, Vol. 1, No. 2, December
2007. Available: http://www.vs.inf.ethz.ch/publ/papers/floerkem-rfidap-
2007.pdf

[8] J. Radhika, and S. Malarvizhi, ―Middleware approaches for wireless
sensor networks: an overview,‖ International Journal of Computer
Science Issues (IJCSI), 2012, Vol. 9, N° 3, pp: 224-229.

[9] K. Sohraby, D. Minoli, and T. Znati, ―Middleware for wireless sensor
networks‖, Wireless Sensor Networks Technology, Protocols, and
Applications, John Wiley & Sons, 2007. Available :
http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_D
ISPLAY_bookid=4513&VerticalID=0

[10] S. Hadim, and N. Mohamed, ―Middleware for wireless sensor networks:
a survey,‖ IEEE International Conference on Communication System
Software and Middleware (COMSWARE), New Delhi, India, January 8-
12, 2006.

[11] J. Singh, and J. Bacon, ―Event-based data dissemination control in
healthcare,‖ Electronic Healthcare, 2009, vol. 0001, pp: 167—174.

[12] J. E. Bardram, and H. B. Christensen, ―Middleware for pervasive
healthcare - a white paper,‖ Aarhus Denmark, 2001. Available:
http://www.pervasivecomputing.dk/publications/files/wmmc2001.PDF

[13] ORACLE, ―Oracle SOA Suite for Healthcare Integration,‖ October
2013, [Online], Available:
http://www.oracle.com/us/products/middleware/soa/soa-suite-for-
healthcare-wp-2046692.pdf

[14] M. E. Ajana, M. Boulmalf, H. Harroud, and M. Elkoutbi (2011). RFID
Middleware Design and Architecture, Designing and Deploying RFID
Applications, Dr. Cristina Turcu (Ed.), ISBN: 978-953-307-265-4,
InTech, DOI: 10.5772/16917. Available:
http://www.intechopen.com/books/designing-and-deploying-rfid-
applications/rfid-middleware-design-and-architecture

[15] M. E. Ajana, H. Harroud, M. Boulmalf, and H. Hamam, "A policy based
event management middleware for implementing RFID applications," in
Proceedings of the fifth IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob),
Marrakech, Morocco, October 2009.

[16] M. E. Ajana, H. Harroud, M. Boulmalf, and M. El Koutbi, "FlexRFID
middleware in the supply chain: Strategic values and challenges,"

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.10, 2014

Extended Paper from Science and Information Conference 2014

34 | P a g e

www.ijarai.thesai.org

Contemporary Challenges and Solutions for Mobile and Multimedia
Technologies. IGI Global, 2013. doi:10.4018/978-1-4666-2163-3.ch010.

[17] M. E. Ajana, H. Harroud, M. Boulmalf, M. Elkoutbi, A. Habbani,
―Emerging wireless technologies in e-health trends, challenges, and
framework design issues,‖ Proceedings of International Conference on
Multimedia Computing and Systems, International Conference on
Multimedia Computing and Systems (ICMCS), Tangiers, Morocco,
October 10-12, 2012.

[18] Q. Wang and T. Zhang, ―Sec-SNMP: Policy-based security management
for sensor networks‖, in Proceedings of the International Conference on
Security and Cryptography (SECRYPT), 2008, pp. 222-226.

[19] M. Chraibi, H. Harroud, and A. Karmouch, ―Personalized security in
mobile environments using software policies,‖ Proceedings of the 9th
International Conference on Advances in Mobile Computing and
Multimedia (MoMM), Hue City, Vietnam, December 5-7, 2011.

[20] M. Ahlsen, S. Asanin, P. Kool, P. Rosengren, and J. Thestrup, ―Service-
oriented middleware architecture for mobile personal health
monitoring,‖ Proceedings of the 2nd International ICST Conference on
Wireless Mobile Communication and Healthcare (MOBIHEALTH
2011), Kos, Greece, October 5-7, 2011.

[21] Y. Y. Ou, P. Y. Shih, Y. H. Chin, T. W. Kuan, J. F. Wang, and S. H.
Shih, ―Framework of ubiquitous healthcare system based on cloud
computing for elderly living,‖ Proceedings of International Conference
on Signal and Information Processing Association Annual Summit and
Conference (APSIPA), Kaohsiung, Asia-Pacific, October 29 -
November 1, 2013.

[22] V. Raychoudhurya, et al., ―Middleware for pervasive computing: a
survey,‖ Pervasive and Mobile Computing, 2013, Vol. 9, No. 2, pp.
177–200.

[23] C. Park, et al., ―RFID middleware evaluation toolkit based on a virtual
reader emulator‖, in proceedings of the 1st International Conference on
Emerging Databases, Busan, Korea, August 2009.

[24] M. E. Ajana, et al., ―FlexRFID: A flexible middleware for RFID
applications development,‖ in proceedings of the 6th International
Wireless and Optical Networks Communications (WOCN) Conference,
Cairo, Egypt, April 2009.

[25] G. Schiele, et al., ―Pervasive computing middleware‖, Handbook of
Ambient Intelligence and Smart Environments (AISE), Springer, US,
2010, pp. 201-227.

