
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

48 | P a g e

www.ijarai.thesai.org

Realising Dynamism in MediaSense

Publish/Subscribe Model for Logical-Clustering in

Crowdsourcing

Hasibur Rahman*, Rahim Rahmani, Theo Kanter

Department of Computer and Systems Sciences (DSV)

Stockholm University

Nod Buildning, SE-164 07 Kista, Sweden

Abstract—The upsurge of social networks, mobile devices,

Internet or Web-enabled services have enabled unprecedented

level of human participation in pervasive computing which is

coined as crowdsourcing. The pervasiveness of computing devices

leads to a fast varying computing where it is imperative to have a

model for catering the dynamic environment. The challenge of

efficiently distributing context information in logical-clustering

in crowdsourcing scenarios can be countered by the scalable

MediaSense PubSub model. MeidaSense is a proven scalable

PubSub model for static environment. However, the scalability of

MediaSense as PubSub model is further challenged by its

viability to adjust to the dynamic nature of crowdsourcing.

Crowdsourcing does not only involve fast varying pervasive

devices but also dynamic distributed and heterogeneous context

information. In light of this, the paper extends the current

MediaSense PubSub model which can handle dynamic logical-

clustering in crowdsourcing. The results suggest that the

extended MediaSense is viable for catering the dynamism nature

of crowdsourcing, moreover, it is possible to predict the near-

optimal subscription matching time and predict the time it takes

to update (insert or delete) context-IDs along with existing

published context-IDs. Furthermore, it is possible to foretell the

memory usage in MediaSense PubSub model.

Keywords—Internet; crowdsourcing; pervasive computing;

context information; dynamism; context-ID; logical-clustering;

Publish/Subscribe; MediaSense

I. INTRODUCTION

The penetration of pervasive devices is escalating and the
rate of proliferation is always on the rise. This pervasiveness of
computing devices has paved the way where any situation can
be sensed and analyzed anywhere for anything. This directly
corresponds to the distributed dissemination and acquisition of
context information from physical objects. This has become
possible by and large due to spontaneous human participation
from online community which is most popularly known as
crowdsourcing. This trend of crowdsourcing has been
facilitated by the deployment of pervasive devices along with
increasing popularity of Internet-enabled services and the trend
is expected to upsurge. For instance, billions of mobile devices
are already in use today and Ericsson predicts that 50-500
billion mobile devices will be in use by 2020 [1]. This coupled
with increased deployment of sensors in the Internet-of-Things

(IoT) will empower human to spontaneously participate in the
crowdsourcing. Social-networks are anticipated to contribute to
this cause as well, for example, a tweet feed can be considered
as sensor data [11]. This surge of social networks, mobile
devices, Internet or Web-enabled services have enabled
unprecedented level of human participation in crowdsourcing
which has been branded as “human-in-the-loop-sensing” or
citizen sensor networks [12, 13]. This phenomenon has
allowed us to encounter vast amount of real-time crowd-
sourced data from distributed context sources. Ericsson
envisions a world which is connected in real-time with people
using things around us to create new innovative ideas- which is
known as the Networked Society [1]. This Networked Society
can be viewed as another way of defining the crowdsourcing.
In a nut-shell, the followings are the properties and
requirements for crowdsourcing:

 People

 Pervasive devices

 Internet or Web-enabled services

 Surrounding things

 Context Information

Although crowdsourcing is gaining popularity very fast and
this, however, brings forth many challenges in the real-time
distributed systems communication. Sharing heterogeneous
context information obtained from distributed sources is one of
them [4, 5, 11]. Publish/Subscribe (PubSub) model has perhaps
emerged as most popular and efficient form of communication
system to sharing ubiquitous context information. PubSub is an
enabler for real-time context information sharing and providing
means of notification for distributed devices [4, 5, 6, 7, 11]. By
leveraging the PubSub in the crowdsourcing model can unravel
the challenge of sharing context information in real-time [18].

Research in pervasive computing has resulted in
MediaSense and was originally developed by the research
group called Immersive Networking as context sharing platform
in the Internet-of-Things domain based on peer-to-peer (p2p)
technologies [2, 3]. MediaSense can run on any platform that
runs JAVA. However, the promise and potential of

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

49 | P a g e

www.ijarai.thesai.org

MediaSense makes it a good candidate to utilize it beyond the
mentioned scope. It has the potential to be utilized in
crowdsourcing domain. MediaSense is an open source platform
which can be used for real-time and scalable seamless context
sharing [2, 3].

 In response to the challenge of sharing context
information in crowdsourcing, our previous paper presented
the scalable MediaSense platform as the PubSub model [18].
Results suggested that MediaSense platform is very fast,
efficient and capable of supporting large-scale system.
However, as crowdsourcing evolve around pervasive devices
and pervasive computing is always changing and this dynamic
nature of pervasive computing further challenges the scalability
of PubSub model. A PubSub model must cope with the fast
varying anytime, anywhere computing i.e. crowdsourcing. The
distributed objects with heterogeneous context sources demand
scalable computing when detecting changes and adjusting
accordingly. The changes could be anything such as network
connectivity, bandwidth, insertion and deletion of PubSub
items, etc. Moreover, since logical-clustering involves
physically distributed but logically synchronized sinks, hence it
is mandated that we investigate its stability in case of failure of
one of the sinks. The natural question arises what happens one
of the sinks is down? Will the system be stable? Can
MediaSense still be able to synchronize without failed sink(s)?
Therefore, this mandates that we further examine
MediaSense’s scalability in dynamic environment. The aim is
to enable real-time response to the fast varying nature of
crowdsourcing. The massive scale of context information in
crowdsourcing requires adjusting to the dynamic environment
along with efficient and scalable acquisition, dissemination,
and management. This paper particularly enlightens
MediaSense’s impact as PubSub model for dynamic
crowdsourcing environment.

The rest of the paper is organized as follows: section II
shows the related work, section III outlines the motivation of
the work, section IV draws the approach while section V
demonstrates the evaluation of the work, finally section VI
concludes the paper and briefly hints at the future work.

II. RELATED WORK

Related work in the aforementioned scenario focused on
feasibility of using Publish/Subscribe model for mobile
systems [4] where they focused on scalability and mobility
issues; for mobile crowdsensing which focused on real-time
data delivery and saving energy [5]. And others have proposed
different methods to implement PubSub, for example, Le
Subscribe proposed web based publish/subscribe system [6, 7],
the Toronto Publish/Subscribe System (ToPSS) utilized
DBMS-based matching algorithm [8] and PARDES
implemented rule-based matching algorithm [9] for PubSub
model. None of the above mentioned model alone offers the
advantages that MediaSense offers as highlighted before.

Franco in [10] portrayed that spontaneous human
participation i.e. crowdsourcing is pivotal for future pervasive
computing. The human engagement in distributed
collaboration would enrich the urban networks which will
implement the idea of sensing, actuating and computing

anything anywhere and anytime. Human participation in real-
time crowdsourcing is further highlighted in [12, 13].
Demirbas et al. in [11] also illustrated crowd-sourced sensing
and they showed Twitter as an example of achieving this.
Ericsson [1] predicts that in future people will be connected
along with things and will produce innovative ideas through
the Networked Society. All these researches show that
heterogeneous context will be generated from distributed
sources in real-time. In light of this, one of our previous papers
proposed the idea of logical-clustering based on context
similarity [14] and we further demonstrated its performance in
[15]. The definition of context by Dey AK (2001, [17]) is
widely accepted, based on this our definition of context is:
“Sensor’s flow packets that describe the current situation of the
sensor”. Although our initial proposal concentrated generally
on wireless sensor networks scenario and flow-sensors,
however, our approach has the ingredients to suit the
crowdsourcing platform as well. Similar context is the basis for
logical-clustering. Context similarity is calculated based on
similar flow of context of flow- sensors [14, 15]. Our proposal
implies that heterogeneous context generated from distributed
sources would be logically clustered based on context-
similarity. The main goal of our research was to provide a
mean for managing huge context information in a proficient
manner. The challenge of sharing clustering identification has
been addressed in our previous paper [18] by employing a
PubSub model in MediaSense. This opens up the floodgate for
sharing the clustering identification. This PubSub would act
like a driving wheel for logical-clustering concept.

Zaslavsky in [19] portrayed that key to efficient pervasive
computing i.e. crowdsourcing is to adjust applications’
behavior and functionality. This underpins the need for
applications’ capability to cope with the dynamic
environments. An application cannot be called scalable if it
fails to address the aforementioned scenario. This was further
discussed in [20] that it is inconvenient if pervasive system is
static i.e. if not dynamic.

III. MOTIVATION

The unprecedented power and promise of pervasive devices
capitalized by human will lead the future pervasive
environment. Huge amount of heterogeneous data i.e. context
information generated from crowdsourcing necessitates proper
management; and logical-clustering of context is one of the
techniques to manage context information proficiently and
share resources remotely thus enabling heterogeneous
interoperability [14]. This approach can even be applied to the
Networked Society concept where similar ideas from
connected people can be categorized into a cluster meaning
that clustering will be done based on similar context i.e. ideas.
However, solution to the PubSub of context-IDs was missing
in the existing proposal. Therefore, the primary motivation of
this work is to address the PubSub issue of the proposed
logical-clustering concept. In logical-clustering, each cluster is
identified as context-ID and published on the Internet so that
other interested entities can subscribe to the context-ID. The
idea of logical-sink was utilized to control the enormous
number of entities in a small-scale network. Logical-sink
implies that sinks will be physically distributed but logically

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

50 | P a g e

www.ijarai.thesai.org

synchronized. PubSub is the enabler for accomplishing logical-
sink. In our previous paper [18], we adopted MediaSense as
PubSub enabler in logical-clustering. This approach solved the
PubSub issue for both fronts i.e. for dissemination (publishing)
of context-IDs in the Internet and for logical-sink
synchronization. Fig. 1 (elaborated further in next section)
shows the incorporation of MediaSense into the logical-
clustering concept. Diversity and heterogeneity are not only
related to the context information but also to the environment
itself. Our previous paper dealt with the static scenario where
only regular publish/subscribe items have been addressed. The
paper did not take into consideration of dynamic situation
where it might require to alter or update the context-IDs along
with regular publish/subscribe. This motivated us to investigate
further the MediaSense credibility whether it can match the
demand of crowdsourcing dynamism. In addition, it has been
observed that MediaSense initially takes some time to match a
subscription compared with other distributed system such as
PARDES system, therefore, another goal of this paper is to
identify the reason behind this delay and propose a potential
solution to the problem. With the ever increasing smartdevices
and increasing popularity of intelligent systems, it is desirable
to have a model which can predict the outcome in some
capacity. And this paper will also explore if it is possible to
predict the PubSub messages per second and the memory
consumption for which the MediaSense was evaluated in the
previous paper. Finally, it is unknown what happens when one
of the physical sinks down and logical-sink synchronization,
stability will further be evaluated.

IV. APPROACH

Firstly, this section briefly discusses how MediaSense
works and follows by modifications made to the current

Fig. 1. MediaSense as PubSub model in logical-clustering

Fig. 2. MediaSense registering and resolving UCI

Fig. 3. Our approach to utilize MediaSense

MediaSense implementation to adjust to the approach i.e.
using MediaSense as PubSub model is highlighted.

A. MediaSense

MediaSense uses a p2p infrastructure and implemented in
JAVA. Distributed Context eXchange Protocol (DCXP) is used
to disseminate information between all the entities that are
using the platform. MediaSense can offer real-time context
sharing, and context entity is referred to as Universal Context
Identifier (UCI) in MediaSense. An entity requires to resolving
this UCI in order to fetch context information, but before an
entity can fetch context information the entity that holds the
context information needs to be registered. Fig. 2 gives an idea
of how this mechanism works. Entity A registers a UCI in
MediaSense using the Registrator class and entity B resolves
the UCI by using the Resolver class to fetch context
information associated with the resolved UCI. An entity can
register more than one UCI. However, the only drawback with
MediaSense is that an entity needs to know the UCI prior to
resolving.

B. MediaSense as PubSub in logical-clustering

The contribution of this paper begins with adoption of
MediaSense into logical-clustering concept. This sub-section
describes the approach and modifications made to the
MediaSense platform to fit into the proposal. Currently, an
entity registers the host ID and hash key along with the UCIs.
Host ID and hash key remain unchanged for a particular entity.
The idea is that a logical-sink registers itself as UCI and the
context-IDs associated with the logical-sink as UCI’s data.
Other logical-sink resided remotely resolves the UCI and
fetches the context-IDs. This is shown in fig. 3. Logical-sink
collects data i.e. context information from distributed sources
e.g. sensors, mobile devices and other physical objects that
produce context information, and is responsible for creating the
context-IDs based on the context similarity (see fig. 1).
Logical-sink needs to be synchronized as well i.e. changes in a
physical sink should be synchronized with other physical
sink(s). This synchronization could be achieved by the
MediaSense PubSub model too. Fig. 4 illustrates this. In this
later case, a physical sink would be registered as UCI and
changes inside the sink would be shared with other physical
sinks over MediaSense. Therefore, our approach would be
evaluated for both these purposes.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

51 | P a g e

www.ijarai.thesai.org

However, the current MediaSense implementation does not
support the registration of context information along with the
UCI at the same time. Rather it collects context information
and this is sent over MediaSense as a message. This method
would incur delay in our approach as there might be millions of
context-IDs to be published and subscribed. Hence, the
MediaSense platform has been modified in a manner that the
context information can be registered at the same time as UCI.
Therefore, whenever a logical-sink is registered, its context
information is also registered in parallel. This will further
enable faster and real-time synchronization of context
information. And, changes in the logical-sink can be updated
using the MediaSense Updater class. Fig. 5 & 6 show the
algorithms for UCI and context information registration and
resolve. Algorithm for registration first begins with initializing
MediaSense platform and starting the MediaSense bootstrap.
MediaSense bootstrap needs to be initiated only once inside a
network. As we assume that MediaSense entities are already up
and running, so time to set MediaSense up is not included in
the evaluation. The algorithm next checks if the UCI is
registered. UCI is updated with new and old context
information- if UCI is already registered. Otherwise, UCI is
registered along with its context information. The registered
UCI can be deleted and a logical-sink in essence can register
multiple UCIs at the same time. This gives us flexibility; for
example, an entity acting as both physical sink (part of logical-
sink) and logical-sink (while communicating other logical-
sinks) can communicate with other entities using different
UCIs. The registered UCIs are saved on the MediaSense
platform which means the context information is never lost, as
long as the UCI is not deleted, when an entity dies or fails. This
guarantees no central point of failure.

Fig. 6 shows the algorithm for resolving UCI. The
algorithm first resolves the context information from the UCI if
it exists. The algorithm then fetches context-IDs until the list is
empty. The context-ID that is to be subscribed is then checked
against the fetched context-IDs and a notification message can
be sent to the subscription requestor when match is found. If
the UCI is being requested to be resolved is nonexistent then a
message notifies that UCI does not exist.

Fig. 4. MediaSense as PubSub for logical-sink synchronization

Fig. 5. Algorithm for UCI and context information registration

Fig. 6. Algorithm for UCI and context information resolve

V. EVALUATION

This section first begins with highlighting the need for
modification and then exhibits the evaluation of MediaSense as
a PubSub model.

Algorithm UCIResolve

Initialize MediaSense platform

// measurement starts from here

if UCI exists

 Invoke Resolver class

 Initialize resolve and resolve UCI

invoking MediaSensePlatform’s resolveUCI method

 Resolve context information

while context-ID list is not empty

get context-ID

if list contains context-ID

subscription matched

end if

 end while

else if

 UCI does not exist

end if

end UCIResolve

Algorithm UCIRegistration

Initialize MediaSense platform

Run the MediaSense bootstrap

// measurement starts from here

if UCI is not registered

 Invoke Registrator class

Initialize registration and add UCI

invoking MediaSensePlatform’s registerUCI method

Add context information

else if

Invoke Update class

Initialize Updating and update UCI

invoking MediaSensePlatform’s update method

Update context information

end if

end UCIRegistration

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

52 | P a g e

www.ijarai.thesai.org

The evaluation can be divided into three parts: (i) PubSub
for the context-IDs sharing in logical-clustering for which each
published context-ID is matched for subscription, and (ii)
PubSub for logical-sink synchronization for which all the
changes are published to the other physical-sinks, and (iii)
dynamic behavior of MediaSense.

TABLE I. REQUIRED TIME FOR PUBLISHING

of published

context-IDs

Current

MediaSense

Modified

MediaSense
% improvement

1000 7.34 ms 4.17 ms 76

10000 8.93 ms 5.37 ms 66

100000 10.74 ms 6.23 ms 72

200000 11.65 ms 6.69 ms 74

Fig. 7. Publishing time difference in MediaSense (current vs. modified)

A. Current vs. Modified MediaSense

In current MediaSense, if we want to share context-IDs
then each context-ID would need to be registered as UCI. This
will sustain delay. Table II summarizes the time required to
publish items i.e. context-IDs on current and modified
MediaSense platform. It can be clearly seen that current
MediaSense takes longer time compared to the modified
MediaSense- if we publish context-IDs as UCIs. Hence, it is
efficient to register context-IDs as context information and sink
as UCI. This way we can achieve nearly 74 % improvement.
Fig. 7 further illustrates this.

B. MediaSense for logical-clustering

The PubSub model that we proposed initially for logical-
clustering could send maximum 1000 messages/sec for PubSub
events. However, we have achieved better result with
MediaSense. It can support as high as 3537 messages/sec. This
result has been obtained by running the PubSub for 1 second
and result is the average for multiple simulations. This gives an
increase of 254 % which outperforms our former idea. It
clearly shows that MediaSense can be an efficient PubSub
model. The rest of this sub-section will demonstrate
performance of MediaSense for various scenarios and under
assumption that all the MediaSense entities are already up and
running. In order to evaluate its performance we have used

three PCs with one PC acting as host sink and remaining two
as recipient sinks. All three PCs have similar RAM size but the
recipient sinks have different processors. The results have been
obtained by simulating multiple times and the average results
have been presented. Subscription matching time is shown in
logarithmic scale and in milliseconds (ms).

Fig. 8 shows MediaSense’s performance for different
number of published context-IDs. This result is obtained for
both published and subscribed duration. Context-IDs have been
generated randomly using UUID in JAVA. For this particular
scenario, each of the published context-ID is matched for
subscription on the recipient sinks. It can be seen that both
sinks give almost similar results. No significant fluctuation in
terms of performance. MediaSense provides PubSub messages
per second of around 2911, 1789, and 931 for context-IDs size
of 10K, 50K, and 100K respectively. Although it is apparent
that the performance reduces with the increase size of context-
ID, but PubSub lowers only by one-third while the magnitude
of the context-ID increased by ten-fold. This is due to the fact
that time for resolving UCI increases when we want to publish
and subscribe larger size. Moreover, subscription matching
always vitiates when published item increases as can be seen
from previous examples of PubSub [6, 7, 8, 9]. This can be
understood from the fact that with the increased size of
published item, the matching takes longer time.

Fig. 9 shows the subscription matching for context-IDs in
MediaSense. Again almost identical performance for both
sinks. Subscription matching duration understandably increases
with the size of context-IDs. The result suggests that for
hundred-fold increase in the context-ID size, matching duration
increases only by 86 %.

 Fig. 10 shows subscription matching time for a single
context-ID. The ith context-ID is matched from i-size of the
context-ID. Surprisingly, sinks have slightly different result for
this scenario. The difference largely can be seen at the
beginning (for 100K) and for 1 million. The one-millionth
context-ID took 8.76 ms to match with the published context-
IDs. While most of the PubSub systems are centralized and do
not scale well in the distributed computing, the PARDES large-
scale PubSub system in [9] is a distributed PubSub system
which showed that one publication can be matched in 4.25 ms
for 200K subscriptions, although for our approach we are
matching subscription against published items and result
illustrates that it takes 7.71 ms to match 200,000th item for
200,000 published items in real-time. This increase perhaps
due to time required to resolve UCI with large context-IDs (see
further fig. 14).

However, if we analyze fig. 11 it can be observed that the
increase rate for subscription matching is much higher in
PARDES compared to MediaSense. The matching rate
increases nominally for MediaSense. It increases by merely 7%
when context-IDs increase from 500K to 1 million and from 1
million to 2 million. As for PARDES, we see that it increases
by 54%, 89%, and 125% when subscriptions increase from
25K to 50K, 50K to 100K, and 100K to 200K respectively.
Since PARDES did not show its results beyond 200K and if we
take the minimum increase rate which is 54% and plot them,

74 %

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

53 | P a g e

www.ijarai.thesai.org

then we see that PARDES overtakes MediaSense from 500K
and beyond. MediaSense shows 99% improvement compared
to PARDES for 2 billion context-IDs matching. This result
signifies that our approach is easily suitable for large-scale
PubSub scenarios and scales very efficiently with nominal
increase in matching duration in a distributed large-scale
scenario. The scalability efficiency can further be seen from
table II and III. It is mentioned earlier that for all the PubSub
systems, PubSub messages/sec decreases with the increase in
published items. Le Subscribe system is a very efficient and
fast PubSub system as outlined in [6, 7], but our approach has
outperformed its counting algorithm as table II and III confirm.
MediaSense achieves as high as 2058% increase in
subscription matching and 1200% increase in PubSub
messages/sec. Although Le Subscribe has other algorithms
which performs better compared to its counting algorithm, but
the other algorithms eliminate a portion of subscriptions to
achieve this. This contradicts our approach and we do not
eliminate any context-ID (i.e. subscription), hence other
algorithms were not considered for comparison. And we have
shown that our approach performs better compared to other
approaches.

The above scenarios have been evaluated on the same
network and with same Internet speed. In order to verify
whether Internet speed plays a significant role in the
MediaSense performance, we have tested our approach in a
different network with one-third slower Internet speed. Fig. 12
illustrates this case. The result demonstrates that Internet does
play a role in determining the performance. Interestingly, the
fluctuation mostly varies between 5K and 20K. As for 50K and
100K, the fluctuation is insignificant. For example, for the size
of 10K, network-2 (with low speed) shows 31 % performance
reductions while for the 100K size, the decrease is merely 3 %.
This indicates that although with low Internet speed
MediaSense demonstrates slight performance reduction,
however, the decrease rate is marginal.

Fig. 8. MediaSense PubSub messages per second

Fig. 9. MediaSense subscription matching

Fig. 10. MediaSense subscription matching for ith item

Fig. 11. Subscription macthing time comparisons

86 %

99%

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

54 | P a g e

www.ijarai.thesai.org

Fig. 12. MediaSense PubSub messages per second in different Internet speed

TABLE II. SUBSCRIPTION MATCHING

of

context-

IDs

Le Subscribe

(Counting)

MediaSense % improvement

500 K 85 ms 14.76 ms 476

1 million 350 ms 16.22 ms 2058

TABLE III. PUBSUB MESSAGES/SEC

of

context-IDs

Le Subscribe

(Counting)
MediaSense

%

improvement

15 K 621 3151 407

1 million 7 91 1200

C. MediaSense for logical-sink

As for logical-sink i.e. synchronization of physical sinks,
matching for published items is not required. In order to
synchronize each physical sink, only the changes need to be
retrieved in other sinks. And, depending on the nature of
changes and need, each physical sink would decide whether to
save the changes in a file or as UCI on the MediaSense. And,
since no matching operation required in this case, MediaSense
can provide as high as 9032 event changes per second. This is a
further improvement by factor of nearly 3 compared to PubSub
messages per second. This overwhelming number makes
MediaSense a very competent and efficient tool for PubSub
model in crowdsourcing- especially for the purpose of logical-
clustering.

D. MediaSense memory usage

Memory usage plays an important part in the PubSub
model evaluation as highlighted by earlier researches [7, 8, 9].
MediaSense is very efficient in terms of memory usage as well.
Fig. 13 confirms this. Memory usage grows linearly. 37 MB of
memory is required in order to store 1 million context-IDs.
ToPSS PubSub prototype in [8] and Le Subscribe prototype
(the counting algorithm was described in [6] and its memory
usage was shown in [7]) required very large memory sizes, for
example, ToPSS occupied minimum of 4400 KB memory to
store 1000 subscriptions, and in our approach it is possible to

store 1000 subscription with 39 KB of memory. This gives an
11216 % improvement in terms of memory usage for this
particular scenario. However, this is not always the case as
illustrated in table IV. The table further shows the comparison
between these three PubSub models. MediaSense and Le
Subscribe grow linearly. Table IV also reflects this where
MediaSense’s % improvement compared to ToPSS varies and
the comparison is stable with Le Subscribe in terms of memory
requirements. MediaSense betters Le Subscribe and ToPSS
respectively by 163% and minimum by 451%.

TABLE IV. MEMORY USAGE

of

context-

IDs

MediaSense
ToPSS

(Kdb)

Le

Subscribe

(Counting)

%

improveme-

nt

1000 0.038 MB 4.3 MB
-

11216 / -

1 million 37.1 MB 381.46 MB 97.66 MB 928 / 163

2 million 74.38 MB 762.94 MB 195.31 MB 926 / 163

5 million 185.97 MB 1024 MB 488.28 MB 451 / 163

Fig. 13. MediaSense memory usage

E. UCI resolved delay analysis

We have seen in fig. 10 & 11 that context-ID matching
takes bit long time initially and we further assumed that this
could be due to the time that sink takes to resolves UCI. We
have seen from fig. 10 & 11 that subscription matching grows
linearly but initially takes some time. If the time required to
resolve UCI can be ignored then this could result in faster
subscription matching which is desirable in real-time
computing. The following figures (fig. 14 & 15) further discuss
the issue. First, fig. 14 shows the comparison for subscription
matching between UCI resolved and without UCI resolved.
The result in this particular figure has been simulated for
context-ID matching for every published context-ID. The result
is out of the blue for us, we did not expect this result. Our
assumption was that without UCI resolved would result in
faster context-ID subscription matching. However, MediaSense
demonstrated almost identical performance for both scenarios.

For example, MediaSense demonstrated only 23%
increased subscription matching time for UCI resolved

451%

163%

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

55 | P a g e

www.ijarai.thesai.org

compared to without UCI resolved for 5K published context-
IDs. Moreover, this subscription matching time reduces to
almost 0% if the published context-ID is increased to 100K.
This could be understood from the fact that as we are matching
for each published context-ID and time for subscription is
matching is short (measured in ms) as well as for UCI
resolving. Therefore, with the increase of published context-
ID, the resulting subscription matching is independent of time
required for UCI resolving. Nonetheless, if we now examine
fig. 15 we can see the significance of discarding required time
for UCI resolving.

Fig. 15 shows the subscription matching required for ith
context-ID from i-size of the context-ID. Fig. 11 also showed
the result for this scenario. Fig. 15 clearly shows the difference.
Since pervasive computing is a dynamic environment and more
often than not it is desirable to match a context-ID as fast as
possible with minimal delay. This motivated us to look into a
solution for finding a faster approach for context-ID matching.

Fig. 14. Subscription matching with and without resolved UCI

Fig. 15. ith Subscription matching with and without resolved UCI

Fig. 15 exhibits this. The figure shows the subscription
matching from 100K to 2 million. Both results i.e. for both
with and without UCI resolved qualitatively reveals similar
performance.

However, without UCI resolved clearly outperforms other
approach. The improvement percentage is significant. It betters
the UCI resolving by 338% and 114% respectively for 100K
and 2 million context-IDs. However, it leads to another
research question if we ignore the UCI resolving then how do
other sinks resolve the context-IDs? This could be done by
employing adaptability and awareness in MediaSense which is
part of our future work.

F. Dynamic MediaSense PubSub

The previous evaluations have been explored for static
scenario which means it did not consider the dynamic
environment. This sub-section will examine if MediaSense can
fulfill the demand of crowdsourcing dynamism. The current
MediaSense allows a UCI to be updated and deleted, however,
since the MediaSense had been modified to fit into logical-
clustering concept, therefore, the MediaSense has been further
extended to adapt to crowdsourcing dynamism. The extended
MediaSense now can be used to insert and delete any context-
ID anytime. The remainder of this sub-section examines the
MediaSense platform’s performance for context-IDs insertion
and deletion scenarios.

Fig. 16. Average time for context-ID insertion (I)

Fig. 17. Average time for context-ID insertion (II)

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

56 | P a g e

www.ijarai.thesai.org

Fig. 18. Average time for context-ID deletion

Fig. 16 shows the context-ID insertion scenario for an
already resolved UCI. As expected, the time for insertion
increases with the increased number of context-ID. When the
number of context-ID is increased from 1K to, average time for
context-ID insertion is increased by 40%. The increase is not
substantial compared to increase in number which is a 9900%
upsurge. More importantly and perhaps significantly, this
context-ID insertion follows a specific pattern for most cases.

For example: when the number of context-ID is increased
from 5K to 10K the average time for insertion increases by 6%.
The same goes true for 10K to 20K increases and for 50K to
100K. Therefore, we can conclude that a 100% increase in
context-ID insertion would employ about 5% increases in time
(see table V). This phenomenon could be very significant given
that in dynamic real-time crowdsourcing it is always of great
advantageous to predict the outcome beforehand. Therefore,
with this pattern we can always predict the time required for
context-ID insertions. Fig. 16 has been evaluated with very
small stored context-ID, and in fig. 17 we further investigate if
already stored context-ID for a UCI has any impact on average
context-ID insertion. Thus we increase the number of stored
context-ID in a UCI from 1 to 100K and the average time for
context-ID insertion varies merely by around 3% and varies by
just 7% when number of stored context-ID in a UCI increased
from 1 to 100K. These numbers are very minimal compared to
the increase in stored context-ID and does not offer a
bottleneck for context-ID insertion.

Fig. 18 shows the context-ID deletion. This result is very
surprising for us and it was totally unexpected. Our assumption
was that average time for deletion of context-ID would grow
with the increase of number of context-ID. Surprisingly, the
average time decreases when number of context-ID to be
deleted increases. However, if we closely investigate and look
at the fig. 18 then we find out the time decrease is very
minimal. The decrease is almost negligible when context-ID to
be deleted increased from 1K to 50K (only 4%) and the rate is
just 22% when context-ID to be deleted increased from 1K to
100K. This assures that MediaSense does not consume too
much time to delete context-IDs.

This result is indeed beneficial for dynamic crowdsourcing
as we want to acquire outcome faster in real-time.

TABLE V. INSERTION TIME % INCREASE

of context-

IDs increase
1K to

5K

10K to

20K

20K to

50K

50K to

100K

1K to

100K

% increase in

average time

for insertion

15 6

4

5 40

G. Prediction in MediaSense evaluation

In the above results, it has been observed in many scenarios
that the results tend to follow a specific pattern. For example, it
has been revealed by fig. 11, 14 & 15 that subscription
matching grows linearly and so does the memory growth as
observed by fig. 13 and table IV.

Therefore, the objective of this sub-section is to examine
and propose some formulas where it can be possible to predict
the outcome of the result. Since the real-time crowdsourcing is
dynamic and it is imperative that the system is able to pre-
determine the outcome. This intelligence in the MediaSense
system would give us flexibility in terms of predicting such as
time for subscription matching, memory occupation, etc. Table
VI portrays the published time percentage increase when the
number of context-IDs is increased. The observation indicates
that published time increases between 4% – 6% for a 100%
increase in the context-IDs size. And if we further analyze
table VII we observe that this increase for published time
follow a specific pattern. For example, for each 100% increase
published time increases by about 5±1%. Even when we have
400% increases then MediaSense demonstrates around 16% -
18% increase. Hence, analyzing the above results the following
formula for MediaSense published time increase can be
written:

 (()) ... … … (1)

 Where P_Ti is the published time increase and P_If is the
percentage increase factor (for example, for a 100% increase
P_If would be 1 and for a 400% increase P_If would be 4).
Although by using eq. 1, it might not be always possible to
predict exact published time increase, however, we can at least
predict nearest value. As for subscription matching table VIII
indicates that it varies always. This is understandable from the
fact that while subscribing for a context-ID, MediaSense
battles with bandwidth while resolving UCI, and it might not
provide any stable equation. Nevertheless, we can at least
provide an equation which can provide us a near optimal value
for subscription matching. The equation can be written as:

 () … … … (2)

 is the subscription matching increase. Eqn. 2 is true
only when each published context-ID is matched, but as for ith
context-ID subscription macthing from i-size of the context-ID,
the subscription matching increases by about 10% in most
cases as indicated by table IX.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

57 | P a g e

www.ijarai.thesai.org

TABLE VI. PUBLISHED TIME % INCREASE (I)

of

context-IDs

increase

1K

to

2K

5K

to

10K

10K

to

20K

20K

to

30K

25K

to

50K

50K

to

100K

100K

to

200K

% increase

in

published

time

6 6

5

4

4

4 6

TABLE VII. PUBLISHED TIME % INCREASE (II)

of context-

IDs increase

1K to

5K

2K to

10K

10K

to

50K

25K to

100K

% increase in

published time
18 17 16

12

TABLE VIII. SUBSCRIPTION MATCHING % INCREASE (I)

of context-

IDs increase

1K

to

5K

2K

to

5K

5K

to

10K

10K

to

25K

25K

to

50K

50K to

100K

% increase

in

subscription

matching

15 20 18

19

15

14

TABLE IX. SUBSCRIPTION MATCHING % INCREASE (II)

of context-IDs

increase

100K to

200K

250K to

500K

500K to 1

m

1 m

to 2

m

% increase in

subscription

matching

10 9 9

11

It is also possible to predict the memory usage in
MediaSense. This can be seen from the fig. 13 and table IV.
The memory usage grows linearly and minimally. MediaSense
memory usage corresponds to the following equation:

 (KB) where NC_id ≥ 5000 … … … (3)

 Where, Mu is the memory usage and NC_id is the total number
of context-ID to be published.

 As mentioned earlier that one of the objectives of this
paper is to examine if MediaSense remains stable when one of
the physical sinks down, according to our finding it does
remain stable (the results are not shown here due to page
limitation).

From the above results, it is clear MediaSense can adjust to
the dynamic nature of crowdsourcing environment and fulfill
the mentioned demand without any performance degradation.
Moreover, it is also possible to predict the outcome of
MediaSense PubSub result which makes MediaSense more
attractive as a PubSub model.

VI. CONCLUSION

The growing popularity of crowdsourcing in pervasive
computing gives rise to many challenges. Sharing context
information in real-time is one of them for example in logical-
clustering scenario. The challenge of sharing context
information is unraveled by employing MediaSense as PubSub
model. MediaSense demonstrated very efficient performance
for the PubSub purpose and it performs better than existing
PubSub models and requires only 9.59 ms to match two-
millionth published context-ID, furthermore the memory
requirement is very low. However, the results are analyzed
only for static environment. The contribution of this extended
paper begins with extending MediaSense to counter the
dynamic nature of logical-clustering for crowdsourcing. The
paper first proposes a solution for reducing the delay to
subscription matching. The solution works very well for ith
item subscription matching, however, when each published
item is subscribed then the solution does not offer any
improvement. Nevertheless, for the ith item case the new
solution improves by 114% for two-millionth published
context-ID which could be hugely significant in dynamic
crowdsourcing. However, this solution brings forth a new
research question: if we ignore the UCI resolving then how do
other sinks resolve the context-IDs? This could be countered
by employing adaptability and awareness in MediaSense which
is part of our future work.

As for updating published context-IDs i.e. inserting or
deleting context-IDs from an existing UCI. The result shows
average time for insertion is just 5% for 100% increase in
context-IDs. The deletion of context-ID demonstrated a
surprising behavior, while deletion time was expected to rise
with the escalation of context-ID but the result indicated the
opposite. In addition, based on the acquired results few
formulas have been presented to predict the outcome for
publish and subscribe context-IDs time and for memory usage.
The formulas could be very significant in dynamic logical-
clustering since it would help to regulate the outcome
beforehand.

Although MediaSense did live up to its expectation as
scalable PubSub model for both static and dynamic
environments but its viability can be further examined. For
example: adaptability and awareness in MediaSense; to have
prior knowledge of UCI before resolving; and how it will
perform on devices with limited computational capabilities.
Crowdsourcing heavily involves mobile devices; therefore
MediaSense’s performance on mobile devices will also be
explored. Thus the mobility, energy (e.g. on android devices)
issues of MediaSense along with performance in devices with
limited computational capabilities (such as on raspberry pi) can
be examined.

ACKNOWLEDGMENT

The work is partially supported by funding from the
European Union FP7 MobiS project. We would also like to
thank Mr. Jamie Walters and Mr. Johan Eliasson for their
feedback about extending MediaSense.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.11, 2014

Extended Paper from Science and Information Conference 2014

58 | P a g e

www.ijarai.thesai.org

REFERENCES

[1] [online] 5G Radio Access, Research and Vision:
http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf [Last
Accessed: 08-February-2014]

[2] T. Kanter, S. Forsström, V. Kardeby, J. Walters, U. Jennehag and P.
Österberg., “MediaSense – an Internet of Things Platform for Scalable
and Decentralized Context Sharing and Control,” In: ICDT 2012,, The
Seventh International Conference on Digital Telecommunications, pp.
27-32, April 2012.

[3] [online] MediaSense | The Internet of Things Platform,
http://www.mediasense.se/ [Last Accessed: 08-February-2014]

[4] G. Cugola and H. Jacobsen, “Using Publish/Subscribe Middleware for
Mobile Systems”, In ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 6, pp.25–33, October 2002.

[5] I. P. Zarko, A. Antonic and K. Pripužic, “Publish/subscribe middleware
for energy-efficient mobile crowdsensing". In Proceedings of the 2013
ACM conference on Pervasive and ubiquitous computing adjunct
publication (UbiComp '13 Adjunct). Zurich, pp. 1099-1110, September
2013.

[6] J. Pereira, F. Fabret, _F. Llirbat, and D. Shasha, “Efficient matching for
web-based publish/subscribe systems,” 7th International Conference,
CoopIS 2000, Eilat, Israel, September 6-8, 2000.

[7] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K A. Ross, and D.
Shasha, “Filtering algorithms and implementation for very fast
publish/subscribe systems”, In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data (SIGMOD '01), 2001

[8] Ashayer, G.; Leung, H.K.Y.; Jacobsen, H.-A., "Predicate matching and
subscription matching in Publish/Subscribe systems," Distributed
Computing Systems Workshops, 2002. Proceedings. 22nd International
Conference on , vol., no., pp.539,546, 2002

[9] E. Fidler. PADRES: A Distributed Content-Based Publish/Subscribe
System. PhD thesis, University of Toronto, 2006.

[10] F. Zambonelli, “Pervasive urban crowdsourcing: Visions and
Challenges”, 2011 IEEE (PERCOM Workshops), pp. 578-583, March
2011.

[11] M. Demirbas, M.A. Bayir, C.G. Akcora, Y.S. Yilmaz, H.
Ferhatosmanoglu, "Crowd-sourced sensing and collaboration using
twitter," World of Wireless Mobile and Multimedia Networks
(WoWMoM), 2010 IEEE International Symposium on a , vol., no., pp.1-
9, June 2010.

[12] M.K. Boulos, B. Resch, D.N. Crowley, J.G. Breslin, G. Sohn, R.
Burtner, W.A, Pike, E. Jezierski, K.Y.S Chuang, “Crowdsourcing,
citizen sensing and sensor web technologies for public and
environmental health surveillance and crisis management: trends, OGC
standards and application examples”. International journal of health
geographics, 10(1), 67, 2011.

[13] Sheth, A., "Citizen Sensing, Social Signals, and Enriching Human
Experience," Internet Computing, IEEE , vol.13, no.4, pp.87,92, July-
Aug. 2009.

[14] R. Rahmani, H. Rahman, and T. Kanter, “Context-Based Logical
Clustering of Flow-Sensors - Exploiting HyperFlow and Hierarchical
DHTs”, In Proceeding(s) of 4th International Conference on Next
Generation Information Technology, 2013 ICNIT, June 2013.

[15] R. Rahmani, H. Rahman, and T. Kanter, “On Performance of Logical-
Clustering of Flow-Sensors”, The International Journal of Computer
Science Issues (IJCSI), Vol. 10, Issue 5, No 2, September 2013.

[16] A. Tootoonchian, Y. Ganjali, “HyperFlow: A Distributed Control Plane
for OpenFlow”, Proceedings of the 2010 Internet Network, 2010.

[17] Dey AK (2001), “Understanding and using context. Personal and
Ubiquitous Computing", 5: 20–24.

[18] H. Rahman , R. Rahmani, and T. Kanter, “Enabling Scalable
Publish/Subscribe for Logical-Clustering in Crowdsourcing via
MediaSense”, IEEE Science and Information Conference 2014, August
27-29, 2014, London, UK

[19] A. Zaslavsky, “Adaptibility and Interfaces: Key to Efficient Pervasive
Computing”, NSF Workshop series on Context-AwareMobile Database
Management, Brown University, Providence, 24-25 January, 2002

[20] M. Miraoui, C. Tadj and C. b. Amar, “Dynamic Context-Aware Service
Adaptation in a Pervasive Computing System”, IEEE Third International
Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies, 2009

http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf
http://www.mediasense.se/

