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Abstract—The upsurge of social networks, mobile devices, 

Internet or Web-enabled services have enabled unprecedented 

level of human participation in pervasive computing which is 

coined as crowdsourcing. The pervasiveness of computing devices 

leads to a fast varying computing where it is imperative to have a 

model for catering the dynamic environment. The challenge of 

efficiently distributing context information in logical-clustering 

in crowdsourcing scenarios can be countered by the scalable 

MediaSense PubSub model. MeidaSense is a proven scalable 

PubSub model for static environment. However, the scalability of 

MediaSense as PubSub model is further challenged by its 

viability to adjust to the dynamic nature of crowdsourcing. 

Crowdsourcing does not only involve fast varying pervasive 

devices but also dynamic distributed and heterogeneous context 

information. In light of this, the paper extends the current 

MediaSense PubSub model which can handle dynamic logical-

clustering in crowdsourcing. The results suggest that the 

extended MediaSense is viable for catering the dynamism nature 

of crowdsourcing, moreover, it is possible to predict the near-

optimal subscription matching time and predict the time it takes 

to update (insert or delete) context-IDs along with existing 

published context-IDs. Furthermore, it is possible to foretell the 

memory usage in MediaSense PubSub model.  

Keywords—Internet; crowdsourcing; pervasive computing; 

context information; dynamism; context-ID; logical-clustering; 

Publish/Subscribe; MediaSense 

I. INTRODUCTION 

The penetration of pervasive devices is escalating and the 
rate of proliferation is always on the rise. This pervasiveness of 
computing devices has paved the way where any situation can 
be sensed and analyzed anywhere for anything. This directly 
corresponds to the distributed dissemination and acquisition of 
context information from physical objects. This has become 
possible by and large due to spontaneous human participation 
from online community which is most popularly known as 
crowdsourcing. This trend of crowdsourcing has been 
facilitated by the deployment of pervasive devices along with 
increasing popularity of Internet-enabled services and the trend 
is expected to upsurge. For instance, billions of mobile devices 
are already in use today and Ericsson predicts that 50-500 
billion mobile devices will be in use by 2020 [1]. This coupled 
with increased deployment of sensors in the Internet-of-Things 

(IoT) will empower human to spontaneously participate in the 
crowdsourcing. Social-networks are anticipated to contribute to 
this cause as well, for example, a tweet feed can be considered 
as sensor data [11]. This surge of social networks, mobile 
devices, Internet or Web-enabled services have enabled 
unprecedented level of human participation in crowdsourcing 
which has been branded as “human-in-the-loop-sensing” or 
citizen sensor networks [12, 13]. This phenomenon has 
allowed us to encounter vast amount of real-time crowd-
sourced data from distributed context sources. Ericsson 
envisions a world which is connected in real-time with people 
using things around us to create new innovative ideas- which is 
known as the Networked Society [1]. This Networked Society 
can be viewed as another way of defining the crowdsourcing. 
In a nut-shell, the followings are the properties and 
requirements for crowdsourcing: 

 People 

 Pervasive devices 

 Internet or Web-enabled services 

 Surrounding things 

 Context Information 

Although crowdsourcing is gaining popularity very fast and 
this, however, brings forth many challenges in the real-time 
distributed systems communication. Sharing heterogeneous 
context information obtained from distributed sources is one of 
them [4, 5, 11]. Publish/Subscribe (PubSub) model has perhaps 
emerged as most popular and efficient form of communication 
system to sharing ubiquitous context information. PubSub is an 
enabler for real-time context information sharing and providing 
means of notification for distributed devices [4, 5, 6, 7, 11]. By 
leveraging the PubSub in the crowdsourcing model can unravel 
the challenge of sharing context information in real-time [18]. 

Research in pervasive computing has resulted in 
MediaSense and was originally developed by the research 
group called Immersive Networking as context sharing platform 
in the Internet-of-Things domain based on peer-to-peer (p2p) 
technologies [2, 3]. MediaSense can run on any platform that 
runs JAVA. However, the promise and potential of 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 3, No.11, 2014 

Extended Paper from Science and Information Conference 2014 

 

49 | P a g e  

www.ijarai.thesai.org 

MediaSense makes it a good candidate to utilize it beyond the 
mentioned scope. It has the potential to be utilized in 
crowdsourcing domain. MediaSense is an open source platform 
which can be used for real-time and scalable seamless context 
sharing [2, 3].  

  In response to the challenge of sharing context 
information in crowdsourcing, our previous paper presented 
the scalable MediaSense platform as the PubSub model [18]. 
Results suggested that MediaSense platform is very fast, 
efficient and capable of supporting large-scale system. 
However, as crowdsourcing evolve around pervasive devices 
and pervasive computing is always changing and this dynamic 
nature of pervasive computing further challenges the scalability 
of PubSub model. A PubSub model must cope with the fast 
varying anytime, anywhere computing i.e. crowdsourcing. The 
distributed objects with heterogeneous context sources demand 
scalable computing when detecting changes and adjusting 
accordingly. The changes could be anything such as network 
connectivity, bandwidth, insertion and deletion of PubSub 
items, etc. Moreover, since logical-clustering involves 
physically distributed but logically synchronized sinks, hence it 
is mandated that we investigate its stability in case of failure of 
one of the sinks. The natural question arises what happens one 
of the sinks is down? Will the system be stable? Can 
MediaSense still be able to synchronize without failed sink(s)?  
Therefore, this mandates that we further examine 
MediaSense’s scalability in dynamic environment. The aim is 
to enable real-time response to the fast varying nature of 
crowdsourcing. The massive scale of context information in 
crowdsourcing requires adjusting to the dynamic environment 
along with efficient and scalable acquisition, dissemination, 
and management. This paper particularly enlightens 
MediaSense’s impact as PubSub model for dynamic 
crowdsourcing environment.  

The rest of the paper is organized as follows: section II 
shows the related work, section III outlines the motivation of 
the work, section IV draws the approach while section V 
demonstrates the evaluation of the work, finally section VI 
concludes the paper and briefly hints at the future work. 

II. RELATED WORK 

Related work in the aforementioned scenario focused on 
feasibility of using Publish/Subscribe model for mobile 
systems [4] where they focused on scalability and mobility 
issues; for mobile crowdsensing which focused on real-time 
data delivery and saving energy [5]. And others have proposed 
different methods to implement PubSub, for example, Le 
Subscribe proposed web based publish/subscribe system [6, 7], 
the Toronto Publish/Subscribe System (ToPSS) utilized 
DBMS-based matching algorithm [8] and PARDES 
implemented rule-based matching algorithm [9] for PubSub 
model. None of the above mentioned model alone offers the 
advantages that MediaSense offers as highlighted before. 

Franco in [10] portrayed that spontaneous human 
participation i.e. crowdsourcing is pivotal for future pervasive 
computing. The human engagement in distributed 
collaboration would enrich the urban networks which will 
implement the idea of sensing, actuating and computing 

anything anywhere and anytime. Human participation in real-
time crowdsourcing is further highlighted in [12, 13]. 
Demirbas et al. in [11] also illustrated crowd-sourced sensing 
and they showed Twitter as an example of achieving this. 
Ericsson [1] predicts that in future people will be connected 
along with things and will produce innovative ideas through 
the Networked Society. All these researches show that 
heterogeneous context will be generated from distributed 
sources in real-time.  In light of this, one of our previous papers 
proposed the idea of logical-clustering based on context 
similarity [14] and we further demonstrated its performance in 
[15]. The definition of context by Dey AK (2001, [17]) is 
widely accepted, based on this our definition of context is: 
“Sensor’s flow packets that describe the current situation of the 
sensor”. Although our initial proposal concentrated generally 
on wireless sensor networks scenario and flow-sensors, 
however, our approach has the ingredients to suit the 
crowdsourcing platform as well. Similar context is the basis for 
logical-clustering. Context similarity is calculated based on 
similar flow of context of flow- sensors [14, 15]. Our proposal 
implies that heterogeneous context generated from distributed 
sources would be logically clustered based on context-
similarity. The main goal of our research was to provide a 
mean for managing huge context information in a proficient 
manner. The challenge of sharing clustering identification has 
been addressed in our previous paper [18] by employing a 
PubSub model in MediaSense. This opens up the floodgate for 
sharing the clustering identification. This PubSub would act 
like a driving wheel for logical-clustering concept.  

Zaslavsky in [19] portrayed that key to efficient pervasive 
computing i.e. crowdsourcing is to adjust applications’ 
behavior and functionality. This underpins the need for 
applications’ capability to cope with the dynamic 
environments. An application cannot be called scalable if it 
fails to address the aforementioned scenario. This was further 
discussed in [20] that it is inconvenient if pervasive system is 
static i.e. if not dynamic.  

III. MOTIVATION 

The unprecedented power and promise of pervasive devices 
capitalized by human will lead the future pervasive 
environment. Huge amount of heterogeneous data i.e. context 
information generated from crowdsourcing necessitates proper 
management; and logical-clustering of context is one of the 
techniques to manage context information proficiently and 
share resources remotely thus enabling heterogeneous 
interoperability [14]. This approach can even be applied to the 
Networked Society concept where similar ideas from 
connected people can be categorized into a cluster meaning 
that clustering will be done based on similar context i.e. ideas. 
However, solution to the PubSub of context-IDs was missing 
in the existing proposal. Therefore, the primary motivation of 
this work is to address the PubSub issue of the proposed 
logical-clustering concept. In logical-clustering, each cluster is 
identified as context-ID and published on the Internet so that 
other interested entities can subscribe to the context-ID. The 
idea of logical-sink was utilized to control the enormous 
number of entities in a small-scale network. Logical-sink 
implies that sinks will be physically distributed but logically 
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synchronized. PubSub is the enabler for accomplishing logical-
sink. In our previous paper [18], we adopted MediaSense as 
PubSub enabler in logical-clustering. This approach solved the 
PubSub issue for both fronts i.e. for dissemination (publishing) 
of context-IDs in the Internet and for logical-sink 
synchronization. Fig. 1 (elaborated further in next section) 
shows the incorporation of MediaSense into the logical-
clustering concept. Diversity and heterogeneity are not only 
related to the context information but also to the environment 
itself. Our previous paper dealt with the static scenario where 
only regular publish/subscribe items have been addressed. The 
paper did not take into consideration of dynamic situation 
where it might require to alter or update the context-IDs along 
with regular publish/subscribe. This motivated us to investigate 
further the MediaSense credibility whether it can match the 
demand of crowdsourcing dynamism. In addition, it has been 
observed that MediaSense initially takes some time to match a 
subscription compared with other distributed system such as 
PARDES system, therefore, another goal of this paper is to 
identify the reason behind this delay and propose a potential 
solution to the problem. With the ever increasing smartdevices 
and increasing popularity of intelligent systems, it is desirable 
to have a model which can predict the outcome in some 
capacity. And this paper will also explore if it is possible to 
predict the PubSub messages per second and the memory 
consumption for which the MediaSense was evaluated in the 
previous paper. Finally, it is unknown what happens when one 
of the physical sinks down and logical-sink synchronization, 
stability will further be evaluated.  

IV. APPROACH 

Firstly, this section briefly discusses how MediaSense 
works and follows by modifications made to the current  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. MediaSense as PubSub model in logical-clustering 

 

 

 

 

 

Fig. 2. MediaSense registering and resolving UCI 

 

Fig. 3. Our approach to utilize MediaSense 

MediaSense implementation to adjust to the approach i.e. 
using MediaSense as PubSub model is highlighted.  

A. MediaSense 

MediaSense uses a p2p infrastructure and implemented in 
JAVA. Distributed Context eXchange Protocol (DCXP) is used 
to disseminate information between all the entities that are 
using the platform. MediaSense can offer real-time context 
sharing, and context entity is referred to as Universal Context 
Identifier (UCI) in MediaSense. An entity requires to resolving 
this UCI in order to fetch context information, but before an 
entity can fetch context information the entity that holds the 
context information needs to be registered. Fig. 2 gives an idea 
of how this mechanism works. Entity A registers a UCI in 
MediaSense using the Registrator class and entity B resolves 
the UCI by using the Resolver class to fetch context 
information associated with the resolved UCI. An entity can 
register more than one UCI. However, the only drawback with 
MediaSense is that an entity needs to know the UCI prior to 
resolving.  

B. MediaSense as PubSub in logical-clustering 

The contribution of this paper begins with adoption of 
MediaSense into logical-clustering concept. This sub-section 
describes the approach and modifications made to the 
MediaSense platform to fit into the proposal. Currently, an 
entity registers the host ID and hash key along with the UCIs. 
Host ID and hash key remain unchanged for a particular entity. 
The idea is that a logical-sink registers itself as UCI and the 
context-IDs associated with the logical-sink as UCI’s data. 
Other logical-sink resided remotely resolves the UCI and 
fetches the context-IDs. This is shown in fig. 3. Logical-sink 
collects data i.e. context information from distributed sources 
e.g. sensors, mobile devices and other physical objects that 
produce context information, and is responsible for creating the 
context-IDs based on the context similarity (see fig. 1). 
Logical-sink needs to be synchronized as well i.e. changes in a 
physical sink should be synchronized with other physical 
sink(s). This synchronization could be achieved by the 
MediaSense PubSub model too. Fig. 4 illustrates this. In this 
later case, a physical sink would be registered as UCI and 
changes inside the sink would be shared with other physical 
sinks over MediaSense. Therefore, our approach would be 
evaluated for both these purposes.  
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However, the current MediaSense implementation does not 
support the registration of context information along with the 
UCI at the same time. Rather it collects context information 
and this is sent over MediaSense as a message. This method 
would incur delay in our approach as there might be millions of 
context-IDs to be published and subscribed. Hence, the 
MediaSense platform has been modified in a manner that the 
context information can be registered at the same time as UCI. 
Therefore, whenever a logical-sink is registered, its context 
information is also registered in parallel. This will further 
enable faster and real-time synchronization of context 
information. And, changes in the logical-sink can be updated 
using the MediaSense Updater class. Fig. 5 & 6 show the 
algorithms for UCI and context information registration and 
resolve. Algorithm for registration first begins with initializing 
MediaSense platform and starting the MediaSense bootstrap. 
MediaSense bootstrap needs to be initiated only once inside a 
network. As we assume that MediaSense entities are already up 
and running, so time to set MediaSense up is not included in 
the evaluation. The algorithm next checks if the UCI is 
registered. UCI is updated with new and old context 
information- if UCI is already registered. Otherwise, UCI is 
registered along with its context information. The registered 
UCI can be deleted and a logical-sink in essence can register 
multiple UCIs at the same time. This gives us flexibility; for 
example, an entity acting as both physical sink (part of logical-
sink) and logical-sink (while communicating other logical-
sinks) can communicate with other entities using different 
UCIs. The registered UCIs are saved on the MediaSense 
platform which means the context information is never lost, as 
long as the UCI is not deleted, when an entity dies or fails. This 
guarantees no central point of failure.  

Fig. 6 shows the algorithm for resolving UCI. The 
algorithm first resolves the context information from the UCI if 
it exists. The algorithm then fetches context-IDs until the list is 
empty. The context-ID that is to be subscribed is then checked 
against the fetched context-IDs and a notification message can 
be sent to the subscription requestor when match is found. If 
the UCI is being requested to be resolved is nonexistent then a 
message notifies that UCI does not exist. 

 

 

 
 
 

 

Fig. 4. MediaSense as PubSub for logical-sink synchronization 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Algorithm for UCI and context information registration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Algorithm for UCI and context information resolve 

V. EVALUATION 

This section first begins with highlighting the need for 
modification and then exhibits the evaluation of MediaSense as 
a PubSub model.  

  

Algorithm UCIResolve 

 

Initialize MediaSense platform 

// measurement starts from here 

if UCI exists 

 Invoke Resolver class 

 Initialize resolve and resolve UCI 

invoking MediaSensePlatform’s resolveUCI method 

 Resolve context information 

while context-ID list is not empty 

get context-ID 

if list contains context-ID 

subscription matched 

end if 

 end while 

else if 

 UCI does not exist 

end if 

 

end UCIResolve 

 

 

 

Algorithm UCIRegistration 

 

Initialize MediaSense platform 

Run the MediaSense bootstrap 

// measurement starts from here 

if UCI is not registered 

 Invoke Registrator class 

Initialize registration and add UCI 

invoking MediaSensePlatform’s registerUCI method 

Add context information 

else if 

Invoke Update class 

Initialize Updating and update UCI 

invoking MediaSensePlatform’s update method 

Update context information 

end if 

 

end UCIRegistration 
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The evaluation can be divided into three parts: (i) PubSub 
for the context-IDs sharing in logical-clustering for which each 
published context-ID is matched for subscription, and (ii) 
PubSub for logical-sink synchronization for which all the 
changes are published to the other physical-sinks, and (iii) 
dynamic behavior of MediaSense.  

TABLE I.  REQUIRED TIME FOR PUBLISHING 

# of published 

context-IDs 

Current 

MediaSense 

Modified 

MediaSense 
% improvement 

1000 7.34 ms 4.17 ms 76 

10000 8.93 ms 5.37 ms 66 

100000 10.74 ms 6.23 ms 72 

200000 11.65 ms 6.69 ms 74 

 

 

 

 

 
 

 

 

 

 

Fig. 7. Publishing time difference in MediaSense (current vs. modified) 

A. Current vs. Modified MediaSense 

In current MediaSense, if we want to share context-IDs 
then each context-ID would need to be registered as UCI. This 
will sustain delay. Table II summarizes the time required to 
publish items i.e. context-IDs on current and modified 
MediaSense platform. It can be clearly seen that current 
MediaSense takes longer time compared to the modified 
MediaSense- if we publish context-IDs as UCIs. Hence, it is 
efficient to register context-IDs as context information and sink 
as UCI. This way we can achieve nearly 74 % improvement. 
Fig. 7 further illustrates this.  

B. MediaSense for logical-clustering 

The PubSub model that we proposed initially for logical-
clustering could send maximum 1000 messages/sec for PubSub 
events. However, we have achieved better result with 
MediaSense. It can support as high as 3537 messages/sec. This 
result has been obtained by running the PubSub for 1 second 
and result is the average for multiple simulations. This gives an 
increase of 254 % which outperforms our former idea. It 
clearly shows that MediaSense can be an efficient PubSub 
model. The rest of this sub-section will demonstrate 
performance of MediaSense for various scenarios and under 
assumption that all the MediaSense entities are already up and 
running. In order to evaluate its performance we have used 

three PCs with one PC acting as host sink and remaining two 
as recipient sinks. All three PCs have similar RAM size but the 
recipient sinks have different processors. The results have been 
obtained by simulating multiple times and the average results 
have been presented. Subscription matching time is shown in 
logarithmic scale and in milliseconds (ms).  

Fig. 8 shows MediaSense’s performance for different 
number of published context-IDs. This result is obtained for 
both published and subscribed duration. Context-IDs have been 
generated randomly using UUID in JAVA. For this particular 
scenario, each of the published context-ID is matched for 
subscription on the recipient sinks. It can be seen that both 
sinks give almost similar results. No significant fluctuation in 
terms of performance. MediaSense provides PubSub messages 
per second of around 2911, 1789, and 931 for context-IDs size 
of 10K, 50K, and 100K respectively. Although it is apparent 
that the performance reduces with the increase size of context-
ID, but PubSub lowers only by one-third while the magnitude 
of the context-ID increased by ten-fold. This is due to the fact 
that time for resolving UCI increases when we want to publish 
and subscribe larger size. Moreover, subscription matching 
always vitiates when published item increases as can be seen 
from previous examples of PubSub [6, 7, 8, 9]. This can be 
understood from the fact that with the increased size of 
published item, the matching takes longer time. 

Fig. 9 shows the subscription matching for context-IDs in 
MediaSense. Again almost identical performance for both 
sinks. Subscription matching duration understandably increases 
with the size of context-IDs. The result suggests that for 
hundred-fold increase in the context-ID size, matching duration 
increases only by 86 %.  

  Fig. 10 shows subscription matching time for a single 
context-ID. The ith context-ID is matched from i-size of the 
context-ID. Surprisingly, sinks have slightly different result for 
this scenario. The difference largely can be seen at the 
beginning (for 100K) and for 1 million. The one-millionth 
context-ID took 8.76 ms to match with the published context-
IDs. While most of the PubSub systems are centralized and do 
not scale well in the distributed computing, the PARDES large-
scale PubSub system in [9] is a distributed PubSub system 
which showed that one publication can be matched in 4.25 ms 
for 200K subscriptions, although for our approach we are 
matching subscription against published items and result 
illustrates that it takes 7.71 ms to match 200,000th item for 
200,000 published items in real-time. This increase perhaps 
due to time required to resolve UCI with large context-IDs (see 
further fig. 14).  

However, if we analyze fig. 11 it can be observed that the 
increase rate for subscription matching is much higher in 
PARDES compared to MediaSense. The matching rate 
increases nominally for MediaSense. It increases by merely 7% 
when context-IDs increase from 500K to 1 million and from 1 
million to 2 million. As for PARDES, we see that it increases 
by 54%, 89%, and 125% when subscriptions increase from 
25K to 50K, 50K to 100K, and 100K to 200K respectively. 
Since PARDES did not show its results beyond 200K and if we 
take the minimum increase rate which is 54% and plot them, 

 

74 % 
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then we see that PARDES overtakes MediaSense from 500K 
and beyond. MediaSense shows 99% improvement compared 
to PARDES for 2 billion context-IDs matching. This result 
signifies that our approach is easily suitable for large-scale 
PubSub scenarios and scales very efficiently with nominal 
increase in matching duration in a distributed large-scale 
scenario. The scalability efficiency can further be seen from 
table II and III. It is mentioned earlier that for all the PubSub 
systems, PubSub messages/sec decreases with the increase in 
published items. Le Subscribe system is a very efficient and 
fast PubSub system as outlined in [6, 7], but our approach has 
outperformed its counting algorithm as table II and III confirm. 
MediaSense achieves as high as 2058% increase in 
subscription matching and 1200% increase in PubSub 
messages/sec. Although Le Subscribe has other algorithms 
which performs better compared to its counting algorithm, but 
the other algorithms eliminate a portion of subscriptions to 
achieve this. This contradicts our approach and we do not 
eliminate any context-ID (i.e. subscription), hence other 
algorithms were not considered for comparison. And we have 
shown that our approach performs better compared to other 
approaches.   

The above scenarios have been evaluated on the same 
network and with same Internet speed. In order to verify 
whether Internet speed plays a significant role in the 
MediaSense performance, we have tested our approach in a 
different network with one-third slower Internet speed. Fig. 12 
illustrates this case. The result demonstrates that Internet does 
play a role in determining the performance. Interestingly, the 
fluctuation mostly varies between 5K and 20K. As for 50K and 
100K, the fluctuation is insignificant. For example, for the size 
of 10K, network-2 (with low speed) shows 31 % performance 
reductions while for the 100K size, the decrease is merely 3 %. 
This indicates that although with low Internet speed 
MediaSense demonstrates slight performance reduction, 
however, the decrease rate is marginal.   

 

 

 

 

 

 

 

 

 

 

Fig. 8. MediaSense PubSub messages per second 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 9. MediaSense subscription matching 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 10. MediaSense subscription matching for ith item 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11. Subscription macthing time comparisons  
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Fig. 12. MediaSense PubSub messages per second in different Internet speed 

TABLE II.  SUBSCRIPTION MATCHING 

# of 

context-

IDs  

 

Le Subscribe 

(Counting) 

MediaSense % improvement 

500 K 85 ms 14.76 ms 476 

1 million 350 ms 16.22 ms 2058 

TABLE III.  PUBSUB MESSAGES/SEC 

# of 

context-IDs  

Le Subscribe 

(Counting) 
MediaSense 

% 

improvement 

15 K 621 3151 407 

1 million 7 91 1200 

C. MediaSense for logical-sink 

As for logical-sink i.e. synchronization of physical sinks, 
matching for published items is not required. In order to 
synchronize each physical sink, only the changes need to be 
retrieved in other sinks. And, depending on the nature of 
changes and need, each physical sink would decide whether to 
save the changes in a file or as UCI on the MediaSense.  And, 
since no matching operation required in this case, MediaSense 
can provide as high as 9032 event changes per second. This is a 
further improvement by factor of nearly 3 compared to PubSub 
messages per second. This overwhelming number makes 
MediaSense a very competent and efficient tool for PubSub 
model in crowdsourcing- especially for the purpose of logical-
clustering.  

D. MediaSense memory usage 

Memory usage plays an important part in the PubSub 
model evaluation as highlighted by earlier researches [7, 8, 9].  
MediaSense is very efficient in terms of memory usage as well. 
Fig. 13 confirms this. Memory usage grows linearly. 37 MB of 
memory is required in order to store 1 million context-IDs. 
ToPSS PubSub prototype in [8] and Le Subscribe prototype 
(the counting algorithm was described in [6] and its memory 
usage was shown in [7]) required very large memory sizes, for 
example, ToPSS occupied minimum of 4400 KB memory to 
store 1000 subscriptions, and in our approach it is possible to 

store 1000 subscription with 39 KB of memory. This gives an 
11216 % improvement in terms of memory usage for this 
particular scenario. However, this is not always the case as 
illustrated in table IV. The table further shows the comparison 
between these three PubSub models. MediaSense and Le 
Subscribe grow linearly. Table IV also reflects this where 
MediaSense’s % improvement compared to ToPSS varies and 
the comparison is stable with Le Subscribe in terms of memory 
requirements. MediaSense betters Le Subscribe and ToPSS 
respectively by 163% and minimum by 451%.  

TABLE IV.  MEMORY USAGE 

# of 

context-

IDs  

MediaSense 
ToPSS 

(Kdb) 

Le 

Subscribe 

(Counting) 

% 

improveme-

nt 

1000 0.038 MB 4.3 MB 
- 

11216 / - 

1 million 37.1 MB 381.46 MB 97.66 MB 928 / 163 

2 million 74.38 MB 762.94 MB 195.31 MB 926 / 163 

5 million 185.97 MB 1024 MB 488.28 MB 451 / 163 

 

 

Fig. 13. MediaSense memory usage 

E. UCI resolved delay analysis 

We have seen in fig. 10 & 11 that context-ID matching 
takes bit long time initially and we further assumed that this 
could be due to the time that sink takes to resolves UCI. We 
have seen from fig. 10 & 11 that subscription matching grows 
linearly but initially takes some time. If the time required to 
resolve UCI can be ignored then this could result in faster 
subscription matching which is desirable in real-time 
computing. The following figures (fig. 14 & 15) further discuss 
the issue. First, fig. 14 shows the comparison for subscription 
matching between UCI resolved and without UCI resolved. 
The result in this particular figure has been simulated for 
context-ID matching for every published context-ID. The result 
is out of the blue for us, we did not expect this result. Our 
assumption was that without UCI resolved would result in 
faster context-ID subscription matching. However, MediaSense 
demonstrated almost identical performance for both scenarios.  

For example, MediaSense demonstrated only 23% 
increased subscription matching time for UCI resolved 

 

 

451% 

163% 
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compared to without UCI resolved for 5K published context-
IDs. Moreover, this subscription matching time reduces to 
almost 0% if the published context-ID is increased to 100K. 
This could be understood from the fact that as we are matching 
for each published context-ID and time for subscription is 
matching is short (measured in ms) as well as for UCI 
resolving. Therefore, with the increase of published context-
ID, the resulting subscription matching is independent of time 
required for UCI resolving. Nonetheless, if we now examine 
fig. 15 we can see the significance of discarding required time 
for UCI resolving.  

Fig. 15 shows the subscription matching required for ith 
context-ID from i-size of the context-ID. Fig. 11 also showed 
the result for this scenario. Fig. 15 clearly shows the difference. 
Since pervasive computing is a dynamic environment and more 
often than not it is desirable to match a context-ID as fast as 
possible with minimal delay. This motivated us to look into a 
solution for finding a faster approach for context-ID matching. 

 

Fig. 14. Subscription matching with and without resolved UCI 

 

Fig. 15. ith Subscription matching with and without resolved UCI 

Fig. 15 exhibits this. The figure shows the subscription 
matching from 100K to 2 million. Both results i.e. for both 
with and without UCI resolved qualitatively reveals similar 
performance.  

However, without UCI resolved clearly outperforms other 
approach. The improvement percentage is significant. It betters 
the UCI resolving by 338% and 114% respectively for 100K 
and 2 million context-IDs. However, it leads to another 
research question if we ignore the UCI resolving then how do 
other sinks resolve the context-IDs? This could be done by 
employing adaptability and awareness in MediaSense which is 
part of our future work. 

F. Dynamic MediaSense PubSub 

The previous evaluations have been explored for static 
scenario which means it did not consider the dynamic 
environment. This sub-section will examine if MediaSense can 
fulfill the demand of crowdsourcing dynamism. The current 
MediaSense allows a UCI to be updated and deleted, however, 
since the MediaSense had been modified to fit into logical-
clustering concept, therefore, the MediaSense has been further 
extended to adapt to crowdsourcing dynamism. The extended 
MediaSense now can be used to insert and delete any context-
ID anytime. The remainder of this sub-section examines the 
MediaSense platform’s performance for context-IDs insertion 
and deletion scenarios.  

 

Fig. 16. Average time for context-ID insertion (I) 

 

Fig. 17. Average time for context-ID insertion (II) 



(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 3, No.11, 2014 

Extended Paper from Science and Information Conference 2014 

 

56 | P a g e  

www.ijarai.thesai.org 

 

Fig. 18. Average time for context-ID deletion 

Fig. 16 shows the context-ID insertion scenario for an 
already resolved UCI. As expected, the time for insertion 
increases with the increased number of context-ID. When the 
number of context-ID is increased from 1K to, average time for 
context-ID insertion is increased by 40%. The increase is not 
substantial compared to increase in number which is a 9900% 
upsurge. More importantly and perhaps significantly, this 
context-ID insertion follows a specific pattern for most cases.  

For example: when the number of context-ID is increased 
from 5K to 10K the average time for insertion increases by 6%. 
The same goes true for 10K to 20K increases and for 50K to 
100K. Therefore, we can conclude that a 100% increase in 
context-ID insertion would employ about 5% increases in time 
(see table V). This phenomenon could be very significant given 
that in dynamic real-time crowdsourcing it is always of great 
advantageous to predict the outcome beforehand. Therefore, 
with this pattern we can always predict the time required for 
context-ID insertions. Fig. 16 has been evaluated with very 
small stored context-ID, and in fig. 17 we further investigate if 
already stored context-ID for a UCI has any impact on average 
context-ID insertion. Thus we increase the number of stored 
context-ID in a UCI from 1 to 100K and the average time for 
context-ID insertion varies merely by around 3% and varies by 
just 7% when number of stored context-ID in a UCI increased 
from 1 to 100K. These numbers are very minimal compared to 
the increase in stored context-ID and does not offer a 
bottleneck for context-ID insertion. 

Fig. 18 shows the context-ID deletion. This result is very 
surprising for us and it was totally unexpected. Our assumption 
was that average time for deletion of context-ID would grow 
with the increase of number of context-ID. Surprisingly, the 
average time decreases when number of context-ID to be 
deleted increases. However, if we closely investigate and look 
at the fig. 18 then we find out the time decrease is very 
minimal. The decrease is almost negligible when context-ID to 
be deleted increased from 1K to 50K (only 4%) and the rate is 
just 22% when context-ID to be deleted increased from 1K to 
100K. This assures that MediaSense does not consume too 
much time to delete context-IDs.  

This result is indeed beneficial for dynamic crowdsourcing 
as we want to acquire outcome faster in real-time.  

TABLE V.  INSERTION TIME % INCREASE 

# of context-

IDs increase 
1K to 

5K 

10K to 

20K 

 

20K to 

50K 

 

50K to 

100K 

1K to 

100K 

% increase in 

average time 

for insertion 

15 6 

 

4 

 

5 40 

G. Prediction in MediaSense evaluation 

In the above results, it has been observed in many scenarios 
that the results tend to follow a specific pattern. For example, it 
has been revealed by fig. 11, 14 & 15 that subscription 
matching grows linearly and so does the memory growth as 
observed by fig. 13 and table IV.  

Therefore, the objective of this sub-section is to examine 
and propose some formulas where it can be possible to predict 
the outcome of the result. Since the real-time crowdsourcing is 
dynamic and it is imperative that the system is able to pre-
determine the outcome. This intelligence in the MediaSense 
system would give us flexibility in terms of predicting such as 
time for subscription matching, memory occupation, etc. Table 
VI portrays the published time percentage increase when the 
number of context-IDs is increased. The observation indicates 
that published time increases between 4% – 6% for a 100% 
increase in the context-IDs size. And if we further analyze 
table VII we observe that this increase for published time 
follow a specific pattern. For example, for each 100% increase 
published time increases by about 5±1%. Even when we have 
400% increases then MediaSense demonstrates around 16% - 
18% increase. Hence, analyzing the above results the following 
formula for MediaSense published time increase can be 
written: 

     ((   )        )  ... … … (1) 

   Where P_Ti is the published time increase and P_If is the 
percentage increase factor (for example, for a 100% increase 
P_If would be 1 and for a 400% increase P_If would be 4). 
Although by using eq. 1, it might not be always possible to 
predict exact published time increase, however, we can at least 
predict nearest value. As for subscription matching table VIII 
indicates that it varies always. This is understandable from the 
fact that while subscribing for a context-ID, MediaSense 
battles with bandwidth while resolving UCI, and it might not 
provide any stable equation. Nevertheless, we can at least 
provide an equation which can provide us a near optimal value 
for subscription matching. The equation can be written as: 

     (    )         … … …    (2) 

    is the subscription matching increase. Eqn. 2 is true 
only when each published context-ID is matched, but as for ith 
context-ID subscription macthing from i-size of the context-ID, 
the subscription matching increases by about 10% in most 
cases as indicated by table IX. 
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TABLE VI.  PUBLISHED TIME % INCREASE (I) 

# of 

context-IDs 

increase 

 

1K 

to 

2K 

 

5K 

to 

10K 

 

10K 

to 

20K 

 

20K 

to 

30K 

 

25K 

to 

50K 

 

50K 

to 

100K 

 

100K 

to 

200K 

% increase 

in 

published 

time 

6 6 

 

 

5 

 

 

4 

 

 

4 

 

 

4 6 

TABLE VII.  PUBLISHED TIME % INCREASE (II) 

# of context-

IDs increase 
 

1K to 

5K 

 

2K to 

10K 

 

10K 

to 

50K 

 

25K to 

100K 

% increase in 

published time 
18 17 16 

 

 

12 

TABLE VIII.  SUBSCRIPTION MATCHING % INCREASE (I) 

# of context-

IDs increase 
 

1K 

to 

5K 

 

2K 

to 

5K 

 

5K 

to 

10K 

 

10K 

to 

25K 

 

25K 

to 

50K 

 

50K to 

100K 

% increase 

in 

subscription 

matching 

15 20 18 

 

 

19 

 

 

15 

 

 

14 

 

TABLE IX.  SUBSCRIPTION MATCHING % INCREASE (II) 

# of context-IDs 

increase 
 

100K to 

200K 

 

250K to 

500K 

 

500K to 1 

m 

 

1 m 

to 2 

m 

% increase in 

subscription 

matching 

10 9 9 

 

 

11 
 

It is also possible to predict the memory usage in 
MediaSense. This can be seen from the fig. 13 and table IV. 
The memory usage grows linearly and minimally. MediaSense 
memory usage corresponds to the following equation: 

                  (KB)  where NC_id ≥ 5000 … … … (3) 

 Where, Mu is the memory usage and NC_id is the total number 
of context-ID to be published.  

 As mentioned earlier that one of the objectives of this 
paper is to examine if MediaSense remains stable when one of 
the physical sinks down, according to our finding it does 
remain stable (the results are not shown here due to page 
limitation). 

From the above results, it is clear MediaSense can adjust to 
the dynamic nature of crowdsourcing environment and fulfill 
the mentioned demand without any performance degradation. 
Moreover, it is also possible to predict the outcome of 
MediaSense PubSub result which makes MediaSense more 
attractive as a PubSub model. 

VI. CONCLUSION 

The growing popularity of crowdsourcing in pervasive 
computing gives rise to many challenges. Sharing context 
information in real-time is one of them for example in logical-
clustering scenario. The challenge of sharing context 
information is unraveled by employing MediaSense as PubSub 
model. MediaSense demonstrated very efficient performance 
for the PubSub purpose and it performs better than existing 
PubSub models and requires only 9.59 ms to match two-
millionth published context-ID, furthermore the memory 
requirement is very low. However, the results are analyzed 
only for static environment. The contribution of this extended 
paper begins with extending MediaSense to counter the 
dynamic nature of logical-clustering for crowdsourcing. The 
paper first proposes a solution for reducing the delay to 
subscription matching. The solution works very well for ith 
item subscription matching, however, when each published 
item is subscribed then the solution does not offer any 
improvement. Nevertheless, for the ith item case the new 
solution improves by 114% for two-millionth published 
context-ID which could be hugely significant in dynamic 
crowdsourcing. However, this solution brings forth a new 
research question: if we ignore the UCI resolving then how do 
other sinks resolve the context-IDs? This could be countered 
by employing adaptability and awareness in MediaSense which 
is part of our future work. 

As for updating published context-IDs i.e. inserting or 
deleting context-IDs from an existing UCI. The result shows 
average time for insertion is just 5% for 100% increase in 
context-IDs. The deletion of context-ID demonstrated a 
surprising behavior, while deletion time was expected to rise 
with the escalation of context-ID but the result indicated the 
opposite.  In addition, based on the acquired results few 
formulas have been presented to predict the outcome for 
publish and subscribe context-IDs time and for memory usage. 
The formulas could be very significant in dynamic logical-
clustering since it would help to regulate the outcome 
beforehand.  

Although MediaSense did live up to its expectation as 
scalable PubSub model for both static and dynamic 
environments but its viability can be further examined. For 
example:  adaptability and awareness in MediaSense; to have 
prior knowledge of UCI before resolving; and how it will 
perform on devices with limited computational capabilities. 
Crowdsourcing heavily involves mobile devices; therefore 
MediaSense’s performance on mobile devices will also be 
explored. Thus the mobility, energy (e.g. on android devices) 
issues of MediaSense along with performance in devices with 
limited computational capabilities (such as on raspberry pi) can 
be examined.  
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