
(IJARAI) International Journal of Advanced Research in Artificial Intelligence, 

Vol. 3, No.12, 2014 

13 | P a g e  

www.ijarai.thesai.org 

Rough Approximations for Incomplete Information*

Jun-Fang LUO 

College of Mathematics 

Southwest Jiaotong University 

Chengdu, China 

Ke-Yun QIN 

College of Mathematics 

Southwest Jiaotong University 

Chengdu, China

 

 
Abstract—Rough set under incomplete information has been 

extensively studied. Based on valued tolerance relation for 

incomplete information system, several approaches were 

presented to dealing with the attribute reductions and rule 

extraction. We point out some drawbacks in the existing papers 

for valued tolerance relation based rough approximations and 

propose a new kind of rough approximation operators which is a 

generalization of Pawlak approximation operators for complete 

information system. Some basic properties of the approximation 

operators are investigated. 
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I. INTRODUCTION 

The rough set theory (RST), proposed by Pawlak[7], is an 
effective tool for data analysis. It can be used in information 
system to describe the dependencies among attributes and 
evaluate the significance of attributes and derive decision rules. 
In an information system, each object in the universe is 
associated with some information that is characterized by a set 
of attributes. Objects characterized by the same information are 
indiscernible with the available information about them. Based 
on the indiscernibility relation, classical rough set theory has 
been used successfully in attribute reduction of information 
and decision systems. 

In many practical situations, it may happen that the precise 
values of some of the attributes in an information system are 
not known, i.e. are missing or known partially. Such a system 
is called an incomplete information system. In order to deal 
with incomplete information systems, classical rough sets have 
been extended to several general models by using other binary 
relations or covers on the universe[1,8-10,14,16]. Based on 
these extended rough set models, the researchers have put 
forward several meaningful indiscernibility relations in 
incomplete information system to characterize the similarity of 
objects. For instance, Slowinski[11] proposed two different 
approaches to replace unknown value of attribute by specific 
subsets of values. Grzymala et al[2,3] performed computational 
studies on the medical data, where unknown values of 
attributes were replaced using probabilistic techniques. 
Kryszkiewicz introduced a kind of indiscernibility relation, 
called tolerance relation, to handle incomplete information 
tables[5,6]. Stefanowski[12] introduced two generalizations of 
the rough sets theory to handle the missing value. The first 
generalization introduces the use of a non symmetric similarity 
relation in order to formalize the idea of absent value 
semantics. The second proposal is based on the use of valued 
tolerance relations. A logical analysis and the computational 

experiments show that for the valued tolerance approach it is 
possible to obtain more informative approximations and 
decision rules than using the approach based on the simple 
tolerance relation. The tolerance relation has also been 
generalized to constrained similarity relation and constrained 
dissymmetrical similarity relation[4,13,15]. This paper is 
devoted to the discussion of valued tolerance relation based 
rough approximation operators. We pointed out that the lower 
(upper) approximability presented in [12] is not the 
generalization of Pawlak approximations. A new kind of lower 
(upper) approximability is proposed. Some basic properties are 
analyzed. 

II. SIMILARITY RELATION FOR INCOMPLETE INFORMATION 

TABLE 

Rough sets have been introduced by Pawlak[7] as an 
approach for analyzing vague information. Following Pawlak, 

an information table is a pair ( , )IT U A , whereU is a set of 

objects, A is a set of attributes such that a A  , : aa U V , aV

is a domain of a and a
a A

V V


  . Each subset of attributes B A

defines an indiscernibility relation ( )IND B as: 

( ) {( , ) ; ( ( ) ( ))}IND B x y U U a B a x a y               (1) 

Clearly, ( )IND B is an equivalence relation. Let U B be the 

family of all the equivalence classes of the equivalence relation
( )IND B . For each X U , the lower and upper approximation 

of X are defined by [7]: 

( ) { ;[ ] }RB X x U x X   , 

( ) { ;[ ] }RB X x U x X    . 

The rough set is characterized by its lower and upper 
approximations. 

Let ( , )IT U A be an incomplete information table. 

Kryszkiewicz[5] introduced the notion of tolerance relation. 
The key point in this approach is to interpret an unknown value 
of the attribute as similar to all other possible values for this 
attribute. Such an interpretation corresponds to the idea that 
such values are just missing, but they do exist. The tolerance 
relation BT with respect to B A is defined as [5]: 

{( , ) ; ( ( ) ( ) ( ) ( ) )BT x y U U a B a x a y a x a y          (2) 

Clearly BT  is a reflexive and symmetric relation, but not 

necessarily transitive. We denote by ( )BT x  the tolerance class 
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of x , that is ( ) { ;( , ) }B BT x y U x y T   . The lower and upper 

approximations of X U are 

( ) { ; ( ) }B BT X x U T x X   , 

( ) { ; ( ) }B BT X x U T x X    . 

Stefanowski[12] introduced the absent values semantics for 
incomplete information tables. In this approach it is assumed 
that objects may be partially described not only because of our 
imperfect knowledge, but also because it is definitely 
impossible to describe them on all the attributes. The unknown 
values are not allowed to compare. Based on this point, the 

similarity relation BS is defined as: 

{( , ) ; ( ( ) ( ) ( ) )BS x y U U a B a x a y a x               (3) 

BS  is a reflexive and transitive relation, but not necessarily 

symmetric. Based on BS , the lower and upper approximations 

of X U are defined as: 

( ) { ; ( ) }B BS X x U S x X   , 

( ) { ; ( ) }B BS X x U S x X    . 

where 
( ) { ;( , ) }B BS x y U x y S  

. 

In order to characterize incomplete information more 
precisely, Stefanowski[12] introduced the notion of valued 
tolerance relation. Let a A  be an attribute and aV  the set of 

its known values. Given an object x U with ( )a x   , the 

probability that ( )a x e for any ae V is equal to
1

aV


. 

Moreover, if both values are unknown, then the probability that 

x  is similar to y  on the attribute is 
2

aV


.Thus, the probability 

( , )aR x y  for x is similar to y is defined by: 

1

2

1; ( ) ( )

0; ( ) ( ) ( ) ( )
( , )

;( ( ) ( ) ) ( ( ) ( ) )

; ( ) ( )

a

a a

a

a a a

a

a x a y V

a x V a y V a x a y
R x y

V a x a y V a x V a y

V a x a y





 


    


 
       

    

  (4) 

Let ( , ) ( , )B a

a B

R x y R x y


 . Based on ( , )BR x y , the B  lower 

and the B  upper approximability of X by set Z are defined as: 

( )( ) ( ( , ), )
BB z Z x z BX Z T T I R z x x                             (5) 

( )( ) ( ( , ), )
B

B

z Z x z BX Z T S T R z x x                            (6) 

where ( )B z is the tolerance class of element z , x is the 

membership degree of element x in the set X ( {0,1}x ), ,T S

and I are t-norm, t-conorm and fuzzy implication respectively. 

In this model, each subset of U may be a lower or upper 

approximation of X , but to a different degree which is denote 
as lower (upper) approximability. 

Theorem 1 Let ( , )IT U A be an incomplete information 

table. 

(1) If 1 2Z Z , then 1 2( ) ( )B BX Z X Z  , 1 2( ) ( )B BX Z X Z  . 

(2) If 1 2X X , then 1 2( ) ( )B BX Z X Z  , 1 2( ) ( )B BX Z X Z  . 

(3) If 1 2B B , then
1 2
( ) ( )B BX Z X Z  , 1 2( ) ( )B BX Z X Z  . 

Proof: (1) By ( ) ( ( , ), ) [0,1]
Bx z BT I R z x x   and 1 2Z Z , we 

have 

2( )BX Z
2 ( ) ( ( , ), )

Bz Z x z BT T I R z x x   

1 2 1( ) ( )( ( , ), ) ( ( , ), )
B Bz Z x z B z Z Z x z BT T I R z x x T T I R z x x       

1 ( ) 1( ( , ), ) ( )
Bz Z x z B BT T I R z x x X Z    

So we have 1 2( ) ( )B BX Z X Z 
. 1 2( ) ( )B BX Z X Z 

can be 
proved similarly. 

(2) Let 1x be the membership degree of element in the set 

1X and 2x be the membership degree of element in the set 2X (

1 2, {0,1}x x  ). So 11 ( )( ) ( ( , ), )
BB z Z x z BX Z T T I R z x x   and 

22 ( )( ) ( ( , ), )
BB z Z x z BX Z T T I R z x x   . By 1 2X X , it follows that 

1 2( ( , ), ) ( ( , ), )B BI R z x x I R z x x . Consequently we have 1 ( )BX Z  

2 ( )BX Z . 1 2( ) ( )B BX Z X Z   can be proved similarly. 

(3) By 1 2B B  we have 
1 2( ) ( )B Bz z   and 

1
( , )BR z x   

2
( , )BR z x . Thus 

1 11
( )( ) ( ( , ), )

BB z Z x z BX Z T T I R z x x    

1 12 1 2
( ) ( ) ( )( ( ( , ), ), ( ( , ), ))

B B Bz Z x z B x z z BT T T I R z x x T I R z x x     

12
( ) ( ( , ), )

Bz Z x z BT T I R z x x   

 
2 22

( ) ( ( , ), ) ( )
Bz Z x z B BT T I R z x x X Z   . 

2

22
( )( ) ( ( , ), )

B

B

z Z x z BX Z T S T R z x x    

21
( ) ( ( , ), )

Bz Z x z BT S T R z x x   

2

11
( ) ( ( , ), ) ( )

B

B

z Z x z BT S T R z x x X Z   . 

III. ROUGH APPROXIMATIONS BASED ON VALUED 

TOLERANCE RELATION 

Let ( , )IT U A be an incomplete information table. 

Intuitively, ( , )BR x y is the similarity degree of x and y with 

respect to attribute set B . Clearly, ( , ) [0,1]BR x y  . If 

( , )DT U A is complete, then ( , )BR x y will degenerate to 

indiscernibility relation ( )IND B . We note that the lower (upper) 

approximability will decrease with the increase of elements in 
Z . This does not coincide with the basic idea of Pawlak’s 
rough set. In Pawlak rough set model, whether a set is lower 
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(upper) approximation is definite. It does not happen that, the 
smaller the set, the more possible it is lower (upper) 
approximation. Actually, (5) and (6) are based on the 
observation that, in classical rough set, 

( ( ) )B BZ X z Z z X     , 

( ( ) )B

BZ X z Z z X      , 

where BX and BX are lower and upper approximations of 

X respectively. It is worth noticing that this is a necessary 
condition but not sufficient. Actually, we have 

Theorem 2 Let ( , )IT U A be an incomplete information 

table, B A . 

(1) BZ X  if and only if ( ( ) ) ~Bz Z z X z Z       

( ( ) ~ )B z X   . 

(2) BZ X  if and only if ( ( ) ) ~Bz Z z X z Z        

( ( ) ~ )B z X  . 

Proof: (1) Let BZ X . For each z Z , we have 

( )B z X   by Bz X . Furthermore, for each ~z Z , we have 

( )B z X   by Bz X . Thus ( ) ~B z X   . Conversely, for 

each z Z , by ( )B z X   we have Bz X  and hence BZ X . 

Furthermore, for each Bz X  we have ( )B z X   and hence 

( ) ~B z X   . It follows that ~z Z  and thus z Z . 

Consequently, BX Z . 

(2) can be proved similarly. 

Based on this theorem, we propose the following definition. 

Definition 1 Let ( , )IT U A be an incomplete information 

table, B A .The B  lower approximability ( )BX Z  and the 

B  upper approximability ( )BX Z of X by set Z are defined 

as: 

( ) ( ( ), ( ))B B BX Z T X Z X Z   , 

( ) ( ( ), ( ))B B BX Z T X Z X Z   , 

Where 

( )( ) ( ( , ),1 )
BB z U Z x z BX Z T S T R z x x     , 

( )( ) ( ( , ),1 )
B

B

z U Z x z BX Z T T I R z x x     . 

Theorem 3 Let ( , )IT U A be an incomplete information 

table, and B A , ,X Z U . 

(1) ( ) (~ ) (~ )B

BX Z X Z  . 

(2) ( ) (~ ) (~ )B

BX Z X Z  . 

Theorem 4 Let ( , )IT U A be a complete information table 

and B A , ,X Z U . 

(1) BZ X if and only if ( ) 1BX Z  . 

(2) BZ X if and only if ( ) 1BX Z  . 

Proof: (1) For complete information table, ( , ) {0,1}BR z x  . 

Let BZ X . For each z Z , we have ( )B z X  , where 

( )B z  is the equivalence class containing z . For any 

( )Bx z , it follows that x X , and hence 1x  . Thus

( ( , ), ) 1BI R z x x   and hence ( )BX Z 
( )Bz Z x zT T   

( ( , ), ) 1BI R z x x  . 

For each z U Z  , it follows that Bz X  and thus 

( )B z X  . There exists ( )Bx z  such that x X . Thus

( , ) 1 1BR z x x   and ( ( , ),1 )) 1BT R z x x  . Consequently we 

have ( )( ) ( ( , ),1 ) 1
BB z U Z x z BX Z T S T R z x x      . So, ( ) 1BX Z 

as required. 

Conversely, assume that ( ) 1BX Z  . It follows that 

( ) ( ) 1B BX Z X Z   . For each z Z and ( )Bx z , we have 

1 ( ( , ), ) (1, )BI R z x x I x   and hence 1x  . That is x X and 

( )B z X  . Thus BZ X . On the other hand, for each 

z U Z  , by ( ) ( ( , ),1 ) 1
Bx z BS T R z x x    it follows that there 

exists ( )Bx z  such that ( ( , ),1 ) 1BT R z x x  . Thus 0x   and 

x X . So we have ( )B z X   and Bz X . Consequently 

BX Z  and BZ X  as required. 

(2) Let BZ X . For each z Z , we have ( )B z X   , 

where ( )B z is the equivalence class containing z . Hence 

there exists ( )Bx z  such that x X . Thus ( ( , ),1) 1BT R z x   

and  ( ) ( ( , ), ) 1
Bx z BS T R z x x  . So 

( )( )
B

B

z Z x zX Z T S    

( ( , ), ) 1BT R z x x  . For each z U Z  , it follows that Bz X  and 

thus ( )B z X   , i.e. ( )B z X  . So, for any ( )Bx z ,we 

have ~x X . Thus ( ( , ),1 ) 1BI R z x x   and hence ( )BX Z   

( ) ( ( , ),1 ) 1
Bz U Z x z BT T I R z x x     . 

So, ( ) 1BX Z   as required. 

Conversely, assume that ( ) 1BX Z  . It follows that 

( )( ) ( ( , ), ) 1
B

B

z Z x z BX Z T S T R z x x     and ( )B

z U ZX Z T    

( ) ( ( , ),1 ) 1
Bx z BT I R z x x   . For each z Z , there exists 

( )Bx z  such that ( ( , ), ) 1BT R z x x  . Thus 1x   and x X . So 

we have ( )B z X   .  Thus Bz X and BZ X . On the 

other hand, for each z Z and ( )Bx z , we have 

( ( , ),1 ) 1BI R z x x  . It follows that x X and ( )B z X   . 

So Bz X . Thus BX Z .Consequently BX Z . 

This theorem shows that Definition 1 is a generalization of 
Pawlak approximation operators. In what follows, we take

( , )T x y xy , ( , )S x y x y xy    and ( , ) 1I x y x xy   . 

Theorem 5 Let ( , )IT U A be an incomplete information 

table, and B A , ,X Z U . 
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(1)
( ) (~ )

( ) (1 ( , ))
B

B B

z Z x z X

X Z R z x
  

   . 

(2)
( )

( ) (1 (1 ( , )))
B

B

B

z Z x z X

X Z R z x
  

    . 

(3)
( ) (~ )

( ) (1 (1 ( , )))
B

B B

z U Z x z X

X Z R z x
   

    . 

(4)
( )

( ) (1 ( , ))
B

B

B

z U Z x z X

X Z R z x
   

   . 

Proof: (2) For each z Z , and ( )Bx z , x X  implies 

( ( , ), ) ( , )B BT R z x x R z x  and x U X   implies ( ( , ), ) 0BT R z x x  . 

Thus 

( ) ( )

( )

( ( , ), ) ( , ) 1 (1 ( , ))
B B

B

x z B x z X B B

x z X

S T R z x x S R z x R z x  

 

    . 

Consequently, we have  

( )

( ) (1 (1 ( , )))
B

B

B

z Z x z X

X Z R z x
  

    . 

(1), (3) and (4) can be proved similarly. 

Corollary 1 Let ( , )IT U A be an incomplete information 

table, and B A , ,X Z U . 

(1) ( ) (~ ) (~ )B

BX Z X Z  . 

(2) ( ) (~ ) (~ )B

BX Z X Z  . 

Theorem 6 Let ( , )IT U A be an incomplete information 

table. 

(1)If 1 2Z Z , then 1 2( ) ( )B BX Z X Z  , 1 2( ) ( )B BX Z X Z  . 

(2)If 1 2X X , then 1 2( ) ( )B BX Z X Z  , 1 2( ) ( )B BX Z X Z  . 

(3)If 1 2B B , then
1 2
( ) ( )B BX Z X Z  , 1 2( ) ( )B BX Z X Z  . 

Proof: (1) By Theorem 1 and Corollary 1, 

1 1 2 2( ) (~ ) (~ ) (~ ) (~ ) ( )B B

B BX Z X Z X Z X Z       

1 1 2 2( ) (~ ) (~ ) (~ ) (~ ) ( )B B

B BX Z X Z X Z X Z       

(2),(3)can be proved similarly. 

Theorem 7 Let ( , )IT U A be an incomplete information 

table, and B A , X U . 

(1) 
( ) (~ )

( ) (1 ( , ))
B

B B

z X x z X

X X R z x
  

   . 

(2) 
~ ( )

( ) (1 ( , ))
B

B

B

z X x z X

X X R z x
  

   . 

Proof: (1) For each z U X  , we have ( ) (~ )Bz z X   

and 1 ( , ) 0BR z z  . Thus 
( ) (~ )

(1 ( , )) 0
B

B

x z X

R z x
 

   and hence 

( ) (~ )

( ) (1 (1 ( , ))) 1
B

B B

z U X x z X

X X R z x
   

     . 

Consequently we have 

( ) (~ )

( ) ( ) (1 ( , ))
B

B B B

z X x z X

X X X X R z x 
  

     

(2) can be proved similarly. 

Theorem 8 Let ( , )IT U A be an incomplete information 

table, and B A , 1 2 1 2, , ,X X Z Z U . 

(1) 1 2 1 2 1 1 2 2( ) ( ) ( ) ( )B B BX X Z Z X Z X Z      . 

(2) 1 2 1 2 1 1 2 2( ) ( ) ( ) ( )B B BX X Z Z X Z X Z      . 

(3) 1 2 1 2 1 1 2 2( ) ( ) ( ) ( )B B BX X Z Z X Z X Z      . 

Proof: (1) Let 1 2z Z Z  , by 1 2( ) (~ ~ )B z X X     

1 2( ( ) ~ ) ( ( ) ~ )B Bz X z X     , 

1 2( ) ~ ( ) ~

(1 ( , )) (1 ( , ))
B B

B B

x z X x z X

R z x R z x
   

     

1 2 1 2( ) (~ ~ ) ( ) ~ ~

(1 ( , )) (1 ( , ))
B B

B B

x z X X x z X X

R z x R z x
     

      

1 2( ) (~ ~ )

(1 ( , ))
B

B

x z X X

R z x
  

  , 

It follows that 

1 1 2 2( ) ( )B BX Z X Z   

1 1 2 2( ) (~ ) ( ) (~ )

(1 ( , )) (1 ( , ))
B B

B B

z Z x z X z Z x z X

R z x R z x
     

        

1 2 1 1 2 2( ) (~ ) ( ) (~ )

(1 ( , )) (1 ( , ))
B B

B B

z Z Z x z X z Z Z x z X

R z x R z x
       

        

1 2 1 2( ) (~ ) ( ) (~ )

( (1 ( , )) (1 ( , )))
B B

B B

z Z Z x z X x z X

R z x R z x
     

       

1 2 1 2

1 2 1 2

( ) (~ ~ )

(1 ( , )) ( ) ( )
B

B B

z Z Z x z X X

R z x X X Z Z
    

       

(2) For each 1 2z Z Z  , by 

1 1 2 2( ) ( )B BX Z X Z   

1 1 2 2~ ( ) (~ ) ~ ( ) (~ )

(1 (1 ( , ))) (1 (1 ( , )))
B B

B B

z Z x z X z Z x z X

R z x R z x
     

          

1 1 2 2 1 2~ ( ) (~ ~ ) ~ ( ) (~ ~ )

(1 (1 ( , ))) (1 (1 ( , )))
B B

B B

z Z x z X X z Z x z X X

R z x R z x
       

          

1 2 1 2 1 2 1 2~ ~ ( ) (~ ~ ) ~ ~ ( ) (~ ~ )

(1 (1 ( , ))) (1 (1 ( , )))
B B

B B

z Z Z x z X X z Z Z x z X X

R z x R z x
         

          

1 2 1 2

1 2 1 2

~ ~ ( ) (~ ~ )

(1 (1 ( , ))) ( ) ( )
B

B B

z Z Z x z X X

R z x X X Z Z
    

        

(3) is straightforward from (1) and (2). 

Corollary 2 Let ( , )IT U A be an incomplete information 

table, and B A , 1 2 1 2, , ,X X Z Z U . 

(1) 1 2 1 2 1 1 2 2( ) ( ) ( ) ( )B B BX X Z Z X Z X Z      . 

(2) 1 2 1 2 1 1 2 2( ) ( ) ( ) ( )B B BX X Z Z X Z X Z      . 

(3) 1 2 1 2 1 1 2 2( ) ( ) ( ) ( )B B BX X Z Z X Z X Z      . 

Proof: (1) By Theorem 8 and Corollary 1, 

1 2 1 2 1 2 1 2( ) ( ) (~ ~ ) (~ ~ )B

BX X Z Z X X Z Z       
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1 1 2 2 1 1 2 2(~ ) (~ ) (~ ) (~ ) ( ) ( )B B

B BX Z X Z X Z X Z        

(2) and (3) can be proved similarly. 

IV. CONCLUSIONS 

Rough set under incomplete information has been 
extensively studied. For incomplete information system, 
researchers have put forward several similarity relations, such 
as tolerance relation, non-symmetric relation, valued tolerance 
relation etc. Based on valued tolerance relation, we proposed a 
new kind of rough approximation operators which is a 
generalization of Pawlak approximation operators for complete 
information system. Some basic properties of the 
approximation operators are investigated. Based on this work, 
we can further probe the rough set model under incomplete 
information and its application in knowledge discovery. 
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