
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.3, 2014

7 | P a g e
www.ijarai.thesai.org

Proposal of Tabu Search Algorithm Based on Cuckoo

Search

Ahmed T. Sadiq Al-Obaidi

Department of Computer Sciences

University of Technology

Baghdad, Iraq

Ahmed Badre Al-Deen Majeed

Quality Assurance Department

University of Baghdad

Baghdad, Iraq

Abstract—This paper presents a new version of Tabu Search

(TS) based on Cuckoo Search (CS) called (Tabu-Cuckoo Search

TCS) to reduce the effect of the TS problems. The proposed

algorithm provides a more diversity to candidate solutions of TS.

Two case studies have been solved using the proposed algorithm,

4-Color Map and Traveling Salesman Problem. The proposed

algorithm gives a good result compare with the original, the

iteration numbers are less and the local minimum or non-optimal

solutions are less.

Keywords—Tabu Search; Cuckoo Search; Heuristic Search;

Neighborhood Search; Optimization; 4-Color Map; TSP

I. INTRODUCTION

A huge collection of optimization techniques have been
suggested by a crowd of researchers of different fields; an
infinity of refinements have made these techniques work on
specific types of applications. All these procedures based on
some common ideas and are furthermore characterized by a
few additional specific features. Among the optimization
procedures, the iterative techniques play an important role; for
most optimization problems no procedure is known in general
to get directly an “optimal” solution [1].

The general steps of an iterative procedure consists in
constructing from a current solution i to the next solution j and
in checking whether one should stop there or perform another
step. Neighborhood search methods are iterative procedures in
which a neighborhood N(i) is defined for each feasible
solution i, and the next solution j is searched among the
solutions in N(i) [2,3,4].

The origin of the Tabu Search (TS) went back to the 1970s
and the modern form of TS was derived independently by
Glover and Hansen [4,5]. The hybrids of the TS have
improved the quality of solutions in numerous areas such as
scheduling, transportation, telecommunication, resource
allocation, investment planning. The success of the TS method
for solving optimization problems was due to its flexible
memory structures which allowed the search to escape the trap
of local optima and permitted to search the forbidden regions
and explored regions thoroughly [2].

Cuckoo search was inspired by the obligate brood
parasitism of some cuckoo species by laying their eggs in the
nests of other host birds (of other species). Some host birds
can engage direct conflict with the intruding cuckoos. For
example, if a host bird discovers the eggs are not their own, it

will either throw these alien eggs away or simply abandon its
nest and build a new nest elsewhere [7].

The objective of this paper is to improve the tabu search
using the nature-inspired algorithm which cuckoo search. The
outline of this paper is as follows. Section 2 describes the
concepts of Tabu Search method with two basic algorithms.
Section 3 includes the concepts of Cuckoo Search. Section 4
deals with proposal of Tabu-Cuckoo Search (TCS) algorithm.
Section 4 presents 2 case studies which are solved by TCS and
TS with experimental results of each one. Section 5 includes
the conclusions of this paper.

II. TABU SEARCH

Tabu Search (TS) is a meta-heuristic search which is
designed to cross the boundaries of feasibility and search
beyond the space of local optimality. The use of flexible
memory based structures is the center strategy of the TS
method [7]. While most exploration methods keep in memory
essentially the value f(i*) of the best solution i* visited so far,
TS will also keep information on the itinerary through the last
solution visited. Such information will be used to guide the
move from i to next solution j to be chosen in N(i). The role f
the memory will be to restrict the choice of some subset of
N(i) by forbidding for instance moves to some neighbor
solutions [8]. It would therefore be more appropriate to
include TS in a class of procedures called dynamic
neighborhood search techniques [7].

Formally let us consider an optimization problem in the
following way : given a set S of feasible solutions and a

function f : S , find some solution i* in S such that f(i*) is
acceptable with respect to some criterion (or criteria).
Generally a criterion of acceptability for a solution i* would

be to have f(i*)  f(i) for every i in S. In such situation TS
would be an exact minimization algorithm provided the
exploration process would guarantee that after a finite number
of steps such an i* would be reached [5,7].

In most contexts however no guarantee can be given that
such an i* will be obtained; therefore TS could simply be
viewed as an extremely general heuristic procedure. Since TS
will in fact include in its own operating rules some heuristic
techniques, it would be more appropriate to characterize TS as
a metaheuristic. Its role will often be to guide and to orient the
search of another (more local) search procedure [8].

As a first step towards the description of TS, the classical
descent method will be illustrated [1]:

http://en.wikipedia.org/wiki/Obligate_parasite
http://en.wikipedia.org/wiki/Obligate_parasite
http://en.wikipedia.org/wiki/Cuckoo

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.3, 2014

8 | P a g e
www.ijarai.thesai.org

Step 1: Choose an initial solution i in S.

Step 2: Generate a subset V* of solution in N(i).

Step 3: Find a best j in V* (i.e. such that f(i)  f(k) for any k in
V*) and set i to j.

Step 4: If f(j)  f(i) Then stop, Else go to Step 2.

In a straightforward descent method, we would generally
take V*=N(i). However this may often be too time-consuming:
an appropriate choice of V* may often be a substantial
improvement.

Except for some special cases of convexity, the use of
descent procedures is generally frustrating since the
researchers are likely to be trapped in a local minimum which
may be far (with respect to the value of f) from a global
minimum [1,2].

As soon as non-improving moves are possible, the risk
visiting again is a solution and more generally of cycling is
presented. This is the point where the use of memory is helpful
to forbid moves which might lead to recently visited solutions.
If such memory is introduced we may consider that the
structure of N(i) depend upon the itinerary and hence upon the
iteration k; so we may refer to N(i,k) instead of N(i). With
these modifications in mind we may attempt to formalize an
improvement of the descent algorithm in a way which will
bring it closer to the general TS procedure. It could be stated
as follows (i* is the best solution found so far and k the
iteration counter) [1,2]:

Step 1: Choose an initial solution i in S. Set i*=i and k=0.

Step 2: Set k=k+1 and generate a subset V* of solution in
N(i,k).

Step 3: Choose a best j in V* (with respect to f or to some

modified function f) and set i = j.
Step 4: If f(i) < f(i*) Then set i*=i.

Step 5: If a stopping condition is met Then stop, Else go to

Step 2.

Observe that the classical descent procedure is included

in this formulation (the stopping rule would simply be f(i) 
f(i*) and i* would always be the last solution).

In TS some immediate stopping conditions could be the

following [1, 2, 9]:

 N(i,k+1)=.

 k is larger than the maximum number of iterations

that allowed.

 the number of iterations since the last improvement
of i* is larger than a specified number.

 evidence can be given than an optimum solution

has been obtained.

 tabu list is full.

 no improved solutions.
While these stopping rules may have some influence on

the search procedure and on its results, it is important to
realize that the definition of N(i,k) at each iteration k and the
choice of V* are crucial [2].

The definition N(i,k) implies that some recently visited
solutions are removed from N(i); they are considered as tabu
solutions which should be avoided in the next iteration. Such

memory based on recent will partially prevent cycling. For
instance keeping at iteration k a list T (tabu list) of the last |T|
solutions visited will prevent cycles of size at most |T|. In such
case N(i,k)=N(i)-T will be taken. However this list T may be
extremely impractical in use; therefore the exploration process
in S in terms of moves from one solution to the next [1,2]. In
addition to, there are other versions of TS algorithms, but the
above is the classical.

III. CUCKOO SEARCH

CS is a heuristic search algorithm which has been
proposed recently by Yang and Deb [10]. The algorithm is
inspired by the reproduction strategy of cuckoos. At the most
basic level, cuckoos lay their eggs in the nests of other host
birds, which may be of different species. The host bird may
discover that the eggs are not its own and either destroy the
egg or abandon the nest all together. This has resulted in the
evolution of cuckoo eggs which mimic the eggs of local host
birds. To apply this as an optimization tool, Yang and Deb
used three ideal rules [10, 11]:

1) Each cuckoo lays one egg, which represents a set of

solution co-ordinates, at a time and dumps it in a random

nest;

2) A fraction of the nests containing the best eggs, or

solutions, will carry over to the next generation;

3) The number of nests is fixed and there is a probability

that a host can discover an alien egg. If this happens, the host

can either discard the egg or the nest and this result in

building a new nest in a new location. Based on these three

rules, the basic steps of the Cuckoo Search (CS) can be

summarized as the pseudo code shown as below [10, 11, 12].

Cuckoo Search via Levy Flight Algorithm

Input: Population of the problem;

Output: The best of solutions;

 Objective function f(x), x = (x1, x2, ...xd)
T

 Generate initial population of n host nests xi

 (i = 1, 2, ..., n)

 While (t <Max Generation) or (stop criterion)

Get a cuckoo randomly by Levy flight
Evaluate its quality/fitness Fi

Choose a nest among n(say,j)randomly

If (Fi > Fj) replace j by the new solution;

A fraction(pa) of worse nests are abandoned and new

ones are built;

Keep the best solutions (or nests with quality

solutions);

Rank the solutions and find the current best;

Pass the current best solutions to the next generation;

 End While

When generating new solution x(t+1) for, say cuckoo i, a

Levy flight is performed

x(t+1)
i = x(t)i + α  Levy(β) ……. (1)

where α > 0 is the step size which should be related to the
scales of the problem of interests. In most cases, we can use α

= 1. The product  means entry-wise walk while

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.3, 2014

9 | P a g e
www.ijarai.thesai.org

multiplications. Levy flights essentially provide a random
walk while their random steps are drawn from a Levy
Distribution for large steps

Levy  u = t-1- β (0 < β ≤ 2) ……… (2)
this has an infinite variance with an infinite mean. Here the

consecutive jumps/steps of a cuckoo essentially form a
random walk process which obeys a power-law step-length
distribution with a heavy tail. In addition, a fraction pa of the
worst nests can be abandoned so that new nests can be built at
new locations by random walks and mixing. The mixing of the
eggs/solutions can be performed by random permutation
according to the similarity/difference to the host eggs.

IV. PROPOSAL OF TABU SEARCH ALGORITHM BASED ON

CUCKOO SEARCH

Generally, in the most heuristic search algorithms, the
guarantee of finding the optimal solutions is the big problem.
Also, local minimum (or maximum) represent the second big
problem. Therefore, the heuristic search algorithms still in
continuous developing. In this work, an attempt to improve the
performance of TS using CS which is provides more diversity
to candidate solutions of TS. CS will call in the TS when there
are no more good solutions in TS. Initially, CS will be work
with best solutions list (B) and replace the old solutions of
tabu list by the CS solutions to provide a good diversity to TS
candidate solutions. In other words, any iterative exploration
process should in some instance accept also non-improving
moves from i to j in V* (i.e. f(j) > f(i)) if one would like to
escape from local minimum, CS does this. Therefore the
proposed version of TS will be more heuristic and robust to
find the optimal solution or at least reduce the local minimum
problem. The suggested TCS as following:

Step 1: Choose an initial solution i in S. Set i*=i and k=0.

Step 2: Set k=k+1 and generate a subset V* of solution in

N(i,k).

Step 3: Choose a best j in V* and set i = j.

Step 4: Select best subset from N(i,k) add in B.
Step 5: If there is no best solution Then call the Cuckoo

Search with best subset from Tabu List.

Step 6: Select the best solutions from Cuckoo Search output to

add in the Tabu List.

Step 7: If a stopping condition is met Then stop, Else go to

Step 2.

where B represent the currently best solutions list which is

contain the best neighbors of V*, so the algorithm can recover
the best previous states when the route of behavior far of the
goal. The update step of B means delete the used neighbors
and rearrange the others. In the next section illustrates the
performance of TCS algorithm compare with others TS
algorithms.

V. CASE STUDIES AND EXPERIMENTAL RESULTS

Two standard optimization problems were used to test the
proposal algorithm and to compare their performances with
the original algorithm.

A. 4-Color Map Problem

The celebrated 4 Color Map Theorem states that any map
in the plane or on the sphere can be colored with only four
colors such that no two neighboring countries are of the same
color. The problem has a long history and inspired many
people (including many non-mathematicians and in particular
countless high school students) to attempt a solution [13].

The proof of the four color theorem by Haken and Appel
[14] was so involved it required computational support to
complete. It is well known that determining if a graph can be
colored by a certain number of colors is NP-complete, but it is
also known that even approximating the chromatic number of
a graph is NP-hard [15]. There exist two main categories of
algorithms: successive augmentation algorithms [16], which
color a graph one vertex at a time, disallowing vertices from
being re-colored and iterative improvement algorithms, which
allow backtracking and re-coloring. Leighton’s [17] RLF
algorithm is an example of the first and Tabu searches and
genetic algorithms are examples of the second [18].

In 4-color map problem there is a vector (N), where N is
the number of cities in the map. An adjacency array of
dimension NxN is used to identify the neighborhood of
adjacent cities. The neighborhood search operator used is
simply swapping two randomly chosen points.

B. Traveling Salesman Problem TSP

TSP is one of the major success stories for optimization
because of its simplicity and applicability (or perhaps simply
because of its intriguing name), the TSP has for decades
served as an initial proving ground for new ideas related to
both these alternatives. These new ideas make the TSP an
ideal subject for a case study [19].

The origins of the Traveling Salesman Problem (TSP) are
somewhat mysterious. It is a classical combinatorial
optimization problem and can be described as follows: a
salesman, who has to visit clients in different cities, wants to
find the shortest path starting from his home city, visiting
every city exactly once and ending back at the starting point.
More formally [19]:

Given a set of n nodes and costs associated with each pair
of nodes, find a closed tour of minimal total cost that contains
every node exactly once.

In other words, a set {c1, c2, . . ., cN} of cities is given and
for each pair {ci, cj} of distinct cities a distance d(ci, cj). The
goal is to find an ordering Π of the cities that minimizes the
quantity

 N – 1

∑ d(c Π(i), c Π(i + 1)) + d(c Π(N), c Π(1))

 i = 1
This quantity is referred to as the tour length, since it is the

length of the tour a salesman would make when visiting the
cities in the order specified by the permutation, returning at
the end to the initial city. The concentrated in this paper would
be on the symmetric TSP, in which the distances satisfy [19]:

d(ci ,cj) = d(cj ,ci) for 1 ≤ i , j ≤ N

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.3, 2014

10 | P a g e
www.ijarai.thesai.org

In computing terms the problem can be represented by a
graph where all the nodes correspond to cities and the edges
between nodes correspond to direct roads between cities [19].

In 4-color map problem there is a vector (N), where N is
the number of cities in the tour. An adjacency array of
dimension NxN is used to identify the neighborhood of
adjacent cities. The neighborhood search operator used is
simply swapping two randomly chosen points.

C. Results

The researchers of TS have been proposed several
modifications and hybrids algorithms with other techniques,
one of these are Simulated Annealing Tabu Search (SATS)
[20]. In this paper the proposed TCS will be compared with
standard TS and SATS to illustrate the performance of each
one.

In this paper, results of average 10 independent runs for all
of these algorithms have proved that all of these algorithms are
good technique capable of finding solutions close to the
optimum, but a local minimum problem occur in very special
cases. Results indicate that the proposal algorithm TCS have a
faster convergence than the original TS and SATS.

Figure 1 illustrates the curve of number of iteration with
number of cities in 4-color map problem in only solved cases
using TS, SATS and TCS. Figure 2 illustrates the number of
local minimum non-optimal solutions occur with number of
cities in 4-color map problem using TS, SATS and TCS.
Figure 3 illustrates the curve of number of iteration with
number of cities in TSP in only solved cases using TS, SATS
and TCS. Figure 4 illustrates the number of local minimum
and non-optimal solutions occur with number of cities in TSP
using TS, SATS and TCS.

Fig. 1. Average of No. of Iterations for 4-Color Map Problem Using TS,

SATS and TCS

Fig. 2. Average of Non-Optimal Solutions for 4-Color Map Problem Using

TS, SATS and TCS

Fig. 3. Average of No. of Iterations for TSP Using TS, SATS and TCS

Fig. 4. Average of Non-Optimal Solutions for TSP Using TS, SATS and

TCS

0

10

20

30

40

50

0 10 20 30 40

A
v
e
r
a

g
e
 o

f
It

e
r
a

ti
o
n

Nodes

TS

SATS

TCS

0

2

4

6

8

10 15 20 25 30

N
o

n
-O

p
ti

m
al

 S
o

lu
ti

o
n

s

Nodes

TS

SATS

TCS

0

10

20

30

40

50

60

70

80

0 10 20 30 40

A
ve

ra
ge

 o
f

It
er

a
ti

o
n

Nodes

TS

SATS

TCS

0

2

4

6

8

10

10 15 20 25 30

N
o

n
-O

p
ti

m
al

 S
o

lu
ti

o
n

s

Nodes

TS

SATS

TCS

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 3, No.3, 2014

11 | P a g e
www.ijarai.thesai.org

VI. CONCLUSIONS

The presented approach TCS is an important version of
TS. TCS can increase the performance of optimal solutions
finding, also, it can reduce the non-optimal solutions and local
minimum problem. TCS depends on storing the best neighbors
in the currently best solutions list to use these solutions in the
CS to for improving whenever the algorithm in local minimum
or cannot find the new best neighbor. The suggested approach
achieves two important features of methods’ searching which
are called intensification and diversification. TCS gives less
iteration numbers compare with TS and SATS. Also it has
been reduced the non-optimal solutions and local minimum
problem.

REFERENCES

[1] A. Hertz, E. Taillard and D. de Werra, “A Tutorial on Tabu Search”,
EPFL, 1995.

[2] F. Glover, M. Laguna, A. Hertz, E. Taillard and D. de Werra, “Tabu

Search”, Annals of Operation Research, Vol. 41, 1993.

[3] F. Glover, “Tabu Search, Part 2”, ORSA Journal on Computing 2, pp. 4-
32, 1990.

[4] P. Hansen, and N. Mladenović, N., “Variable Neighborhood Search:
Principles and Applications”, European Journal of Operational

Research, 130, pp. 449-467, 2001.

[5] F. Glover, “Tabu Search, Part 1”, ORSA Journal on Computing 1, pp.
190-206, 1989.

[6] R. B. Payne, M. D. Sorenson, and K. Klitz, “The Cuckoos”, Oxford

University Press, (2005).

[7] F. Glover and M. Leguna, “Tabu Search”, Kluwer Academic Publisher,
1997.

[8] A. Hertz and D. de Werra, “The Tabu Search Metaheuristic : how we

used it”, Annals of Mathematics and Artificial Intelligence 1, pp. 111-
121, 1990.

[9] D. Deng, J. Ma and H. Shen, “A Simple and Efficient Tabu Search
Heuristics for Kirkman Schoolgirl Problem”, Technical Report,

University of Turku, Finland, 2005.

[10] X. S. Yang and S. Deb, "Cuckoo Search via Lévy Flights". World
Congress on Nature & Biologically Inspired Computing (NaBIC 2009).

IEEE Publications. pp. 210–214, December, 2009.

[11] H. Zheng and Y. Zhou, “A Novel Cuckoo Search Optimization
Algorithm Base on Gauss Distribution”, Journal of Computational

Information Systems 8: 10, 4193–4200, 2012.

[12] Xin-She Yang, “Cuckoo Search and Firefly Algorithm”, Springer Press,
2014.

[13] Peter, Alfeld. “Bivariate Splines and the Four Color Map Problem”,

http://www.math.utah.edu/~alfeld/talks/S13/4CMP.html

[14] Wilson. Robin. “Four Colors Suffice”, Princeton University Press, 2000.

[15] Garey. Johnson, D. S., “Computers and Intractability: A Guide to the

Theory of NP-Completeness”, San Francisco: Freeman, 1977.

[16] Lewandowski, Gary. Condon, Anne. “Experiments with Parallel Graph
Coloring Heuristics and Applications of Graph Coloring”. DIMACS

Series in Discrete Mathematics, DIMACS ,1994.

[17] Leighton, F T. “A Graph Coloring Algorithm for Large Scheduling
Problems”, Journal of Research of the National Bureau of Standards,

Vol. 84, No. 6, pp 489-506, 1979.

[18] Palmer, Daniel. Kirschenbaum, Marc. Shifflet, Jason. Seiter, Linda.
“Swarm Reasoning”, www.jcu.edu/math/swarm/papers/SIS2005.pdf

[19] Gaertner Dorian. “Natural Algorithms for Optimisation Problems”.

M.Sc. Thesis, Imperial College, 2004.

[20] A. Lim, B. Bodrigus and J. Zhang, “Tabu Search Embedded Simulated
Annealing for Shortest Route Cut and Fill Problem”, Journal of

Operations Research Society, Vol. 56, No. 7, pp. 816-824, July 2005.

