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Abstract—This paper presents a new version of Tabu Search 

(TS) based on Cuckoo Search (CS) called (Tabu-Cuckoo Search 

TCS) to reduce the effect of the TS problems.  The proposed 

algorithm provides a more diversity to candidate solutions of TS. 

Two case studies have been solved using the proposed algorithm, 

4-Color Map and Traveling Salesman Problem. The proposed 

algorithm gives a good result compare with the original, the 

iteration numbers are less and the local minimum or non-optimal 

solutions are less. 
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I. INTRODUCTION 

A huge collection of optimization techniques have been 
suggested by a crowd of researchers of different fields; an 
infinity of refinements have made these techniques work on 
specific types of applications. All these procedures based on 
some common ideas and are furthermore characterized by a 
few additional specific features. Among the optimization 
procedures, the iterative techniques play an important role; for 
most optimization problems no procedure is known in general 
to get directly an “optimal” solution [1]. 

The general steps of an iterative procedure consists in 
constructing from a current solution i to the next solution j and 
in checking whether one should stop there or perform another 
step. Neighborhood search methods are iterative procedures in 
which a neighborhood N(i) is defined for each feasible 
solution i, and the next solution j is searched among the 
solutions in N(i) [2,3,4]. 

The origin of the Tabu Search (TS) went back to the 1970s 
and the modern form of TS was derived independently by 
Glover and Hansen [4,5]. The hybrids of the TS have 
improved the quality of solutions in numerous areas such as 
scheduling, transportation, telecommunication, resource 
allocation, investment planning. The success of the TS method 
for solving optimization problems was due to its flexible 
memory structures which allowed the search to escape the trap 
of local optima and permitted to search the forbidden regions 
and explored regions thoroughly [2]. 

Cuckoo search was inspired by the obligate brood 
parasitism of some cuckoo species by laying their eggs in the 
nests of other host birds (of other species). Some host birds 
can engage direct conflict with the intruding cuckoos. For 
example, if a host bird discovers the eggs are not their own, it 

will either throw these alien eggs away or simply abandon its 
nest and build a new nest elsewhere [7]. 

The objective of this paper is to improve the tabu search 
using the nature-inspired algorithm which cuckoo search. The 
outline of this paper is as follows. Section 2 describes the 
concepts of Tabu Search method with two basic algorithms. 
Section 3 includes the concepts of Cuckoo Search. Section 4 
deals with proposal of Tabu-Cuckoo Search (TCS) algorithm. 
Section 4 presents 2 case studies which are solved by TCS and 
TS with experimental results of each one. Section 5 includes 
the conclusions of this paper.  

II. TABU SEARCH 

Tabu Search (TS) is a meta-heuristic search which is 
designed to cross the boundaries of feasibility and search 
beyond the space of local optimality. The use of flexible 
memory based structures is the center strategy of the TS 
method [7]. While most exploration methods keep in memory 
essentially the value f(i*) of the best solution i* visited so far, 
TS will also keep information on the itinerary through the last 
solution visited. Such information will be used to guide the 
move from i to next solution j to be chosen in N(i). The role f 
the memory will be to restrict the choice of some subset of 
N(i) by forbidding for instance moves to some neighbor 
solutions [8]. It would therefore be more appropriate to 
include TS in a class of procedures called dynamic 
neighborhood search techniques [7]. 

Formally let us consider an optimization problem in the 
following way : given a set S of feasible solutions and a 

function f : S , find some solution i* in S such that f(i*) is 
acceptable with respect to some criterion (or criteria). 
Generally a criterion of acceptability for a solution i* would 

be to have f(i*)  f(i) for every i in S. In such situation TS 
would be an exact minimization algorithm provided the 
exploration process would guarantee that after a finite number 
of steps such an i* would be reached [5,7]. 

In most contexts however no guarantee can be given that 
such an i* will be obtained; therefore TS could simply be 
viewed as an extremely general heuristic procedure. Since TS 
will in fact include in its own operating rules some heuristic 
techniques, it would be more appropriate to characterize TS as 
a metaheuristic. Its role will often be to guide and to orient the 
search of another (more local) search procedure [8].  

As a first step towards the description of TS, the classical 
descent method will be illustrated [1]: 

http://en.wikipedia.org/wiki/Obligate_parasite
http://en.wikipedia.org/wiki/Obligate_parasite
http://en.wikipedia.org/wiki/Cuckoo
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Step 1: Choose an initial solution i in S. 

Step 2: Generate a subset V* of solution in N(i). 

Step 3: Find a best j in V* (i.e. such that f(i)  f(k) for any k in 
V*) and set i to j. 

Step 4: If f(j)  f(i) Then stop, Else go to Step 2.  
 

In a straightforward descent method, we would generally 
take V*=N(i). However this may often be too time-consuming: 
an appropriate choice of V* may often be a substantial 
improvement. 

Except for some special cases of convexity, the use of 
descent procedures is generally frustrating since the 
researchers are likely to be trapped in a local minimum which 
may be far (with respect to the value of f) from a global 
minimum [1,2]. 

As soon as non-improving moves are possible, the risk 
visiting again is a solution and more generally of cycling is 
presented. This is the point where the use of memory is helpful 
to forbid moves which might lead to recently visited solutions. 
If such memory is introduced we may consider that the 
structure of N(i) depend upon the itinerary and hence upon the 
iteration k; so we may refer to N(i,k) instead of N(i). With 
these modifications in mind we may attempt to formalize an 
improvement of the descent algorithm in a way which will 
bring it closer to the general TS procedure. It could be stated 
as follows (i* is the best solution found so far and k the 
iteration counter) [1,2]: 

Step 1: Choose an initial solution i in S. Set i*=i and k=0. 

Step 2: Set k=k+1 and generate a subset V* of solution in 
N(i,k). 

Step 3: Choose a best j in V* (with respect to f or to some 

modified function f ) and set i = j. 
Step 4: If f(i) < f(i*) Then set i*=i. 

Step 5: If a stopping condition is met Then stop, Else go to 

Step 2. 

Observe that the classical descent procedure is included 

in this formulation (the stopping rule would simply be f(i)  
f(i*) and i* would always be the last solution).  

In TS some immediate stopping conditions could be the 

following [1, 2, 9]: 

 N(i,k+1)=. 

 k is larger than the maximum number of iterations 

that allowed. 

 the number of iterations since the last improvement 
of i* is larger than a specified number. 

 evidence can be given than an optimum solution 

has been obtained. 

 tabu list is full.  

 no improved solutions. 
While these stopping rules may have some influence on 

the search procedure and on its results, it is important to 
realize that the definition of N(i,k) at each iteration k and the 
choice of V* are crucial [2]. 

The definition N(i,k) implies that some recently visited 
solutions are removed from N(i); they are considered as tabu 
solutions which should be avoided in the next iteration. Such 

memory based on recent will partially prevent cycling. For 
instance keeping at iteration k a list T (tabu list) of the last |T| 
solutions visited will prevent cycles of size at most |T|. In such 
case N(i,k)=N(i)-T will be taken. However this list T may be 
extremely impractical in use; therefore the exploration process 
in S in terms of moves from one solution to the next [1,2]. In 
addition to, there are other versions of TS algorithms, but the 
above is the classical. 

III. CUCKOO SEARCH 

CS is a heuristic search algorithm which has been 
proposed recently by Yang and Deb [10]. The algorithm is 
inspired by the reproduction strategy of cuckoos. At the most 
basic level, cuckoos lay their eggs in the nests of other host 
birds, which may be of different species. The host bird may 
discover that the eggs are not its own and either destroy the 
egg or abandon the nest all together. This has resulted in the 
evolution of cuckoo eggs which mimic the eggs of local host 
birds. To apply this as an optimization tool, Yang and Deb 
used three ideal rules [10, 11]: 

1) Each cuckoo lays one egg, which represents a set of 

solution co-ordinates, at a time and dumps it in a random 

nest; 

2) A fraction of the nests containing the best eggs, or 

solutions, will carry over to the next generation; 

3) The number of nests is fixed and there is a probability 

that a host can discover an alien egg. If this happens, the host 

can either discard the egg or the nest and this result in 

building a new nest in a new location. Based on these three 

rules, the basic steps of the Cuckoo Search (CS) can be 

summarized as the pseudo code shown as below [10, 11, 12]. 
 

Cuckoo Search via Levy Flight Algorithm 

Input: Population of the problem; 

Output: The best of solutions; 

     Objective function f(x), x = (x1, x2, ...xd)
T 

     Generate initial population of n host nests xi 

        (i = 1, 2, ..., n) 

     While (t <Max Generation) or (stop criterion) 

Get a cuckoo randomly by Levy flight 
Evaluate its quality/fitness Fi 

Choose a nest among n(say,j)randomly 

If (Fi > Fj) replace j by the new solution; 

A fraction(pa) of worse nests are abandoned and new 

ones are built; 

Keep the best solutions (or nests with quality 

solutions); 

Rank the solutions and find the current best; 

Pass the current best solutions to the next generation; 

     End While 

 
When generating new solution x(t+1) for, say cuckoo i, a 

Levy flight is performed 

x(t+1)
i = x(t)i + α  Levy(β) …….  (1) 

where α > 0 is the step size which should be related to the 
scales of the problem of interests. In most cases, we can use α 

= 1. The product  means entry-wise walk while 
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multiplications. Levy flights essentially provide a random 
walk while their random steps are drawn from a Levy 
Distribution for large steps 

Levy   u = t-1- β  (0 < β ≤ 2) ……… (2) 
this has an infinite variance with an infinite mean. Here the 

consecutive jumps/steps of a cuckoo essentially form a 
random walk process which obeys a power-law step-length 
distribution with a heavy tail. In addition, a fraction pa of the 
worst nests can be abandoned so that new nests can be built at 
new locations by random walks and mixing. The mixing of the 
eggs/solutions can be performed by random permutation 
according to the similarity/difference to the host eggs. 

IV. PROPOSAL OF TABU SEARCH ALGORITHM BASED ON 

CUCKOO SEARCH 

Generally, in the most heuristic search algorithms, the 
guarantee of finding the optimal solutions is the big problem. 
Also, local minimum (or maximum) represent the second big 
problem. Therefore, the heuristic search algorithms still in 
continuous developing. In this work, an attempt to improve the 
performance of TS using CS which is provides more diversity 
to candidate solutions of TS. CS will call in the TS when there 
are no more good solutions in TS. Initially, CS will be work 
with best solutions list (B) and replace the old solutions of 
tabu list by the CS solutions to provide a good diversity to TS 
candidate solutions. In other words, any iterative exploration 
process should in some instance accept also non-improving 
moves from i to j in V* (i.e. f(j) > f(i)) if one would like to 
escape from local minimum, CS does this. Therefore the 
proposed version of TS will be more heuristic and robust to 
find the optimal solution or at least reduce the local minimum 
problem. The suggested TCS as following: 

 

Step 1: Choose an initial solution i in S. Set i*=i and k=0. 

Step 2: Set k=k+1 and generate a subset V* of solution in 

N(i,k). 

Step 3: Choose a best j in V* and set i = j. 

Step 4: Select best subset from N(i,k) add in B. 
Step 5: If there is no best solution Then call the Cuckoo 

Search with best subset from Tabu List. 

Step 6: Select the best solutions from Cuckoo Search output to 

add in the Tabu List. 

Step 7: If a stopping condition is met Then stop, Else go to 

Step 2. 

 
where B represent the currently best solutions list which is 

contain the best neighbors of V*, so the algorithm can recover 
the best previous states when the route of behavior far of the 
goal. The update step of B means delete the used neighbors 
and rearrange the others. In the next section illustrates the 
performance of TCS algorithm compare with others TS 
algorithms. 

V. CASE STUDIES AND EXPERIMENTAL RESULTS 

Two standard optimization problems were used to test the 
proposal algorithm and to compare their performances with 
the original algorithm. 

A.  4-Color Map Problem  

The celebrated 4 Color Map Theorem states that any map 
in the plane or on the sphere can be colored with only four 
colors such that no two neighboring countries are of the same 
color. The problem has a long history and inspired many 
people (including many non-mathematicians and in particular 
countless high school students) to attempt a solution [13]. 

The proof of the four color theorem by Haken and Appel 
[14] was so involved it required computational support to 
complete. It is well known that determining if a graph can be 
colored by a certain number of colors is NP-complete, but it is 
also known that even approximating the chromatic number of 
a graph is NP-hard [15]. There exist two main categories of 
algorithms: successive augmentation algorithms [16], which 
color a graph one vertex at a time, disallowing vertices from 
being re-colored and iterative improvement algorithms, which 
allow backtracking and re-coloring. Leighton’s [17] RLF 
algorithm is an example of the first and Tabu searches and 
genetic algorithms are examples of the second [18].  

In 4-color map problem there is a vector (N), where N is 
the number of cities in the map. An adjacency array of 
dimension NxN is used to identify the neighborhood of 
adjacent cities. The neighborhood search operator used is 
simply swapping two randomly chosen points. 

B. Traveling Salesman Problem TSP 

TSP is one of the major success stories for optimization 
because of its simplicity and applicability (or perhaps simply 
because of its intriguing name), the TSP has for decades 
served as an initial proving ground for new ideas related to 
both these alternatives. These new ideas make the TSP an 
ideal subject for a case study [19].  

The origins of the Traveling Salesman Problem (TSP) are 
somewhat mysterious. It is a classical combinatorial 
optimization problem and can be described as follows: a 
salesman, who has to visit clients in different cities, wants to 
find the shortest path starting from his home city, visiting 
every city exactly once and ending back at the starting point. 
More formally [19]:  

Given a set of n nodes and costs associated with each pair 
of nodes, find a closed tour of minimal total cost that contains 
every node exactly once. 

In other words, a set {c1, c2, . . ., cN} of cities  is given and 
for each pair {ci, cj} of distinct cities a distance d(ci, cj ). The 
goal is to find an ordering Π of the cities that minimizes the 
quantity 

                         N – 1 

∑ d(c Π(i), c Π(i + 1 ) ) + d(c Π(N), c Π( 1 ) )  

                         i = 1 
This quantity is referred to as the tour length, since it is the 

length of the tour a salesman would make when visiting the 
cities in the order specified by the permutation, returning at 
the end to the initial city. The concentrated in this paper would 
be on the symmetric TSP, in which the distances satisfy [19]: 

d(ci ,cj ) = d(cj ,ci ) for 1 ≤ i ,  j ≤ N 
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In computing terms the problem can be represented by a 
graph where all the nodes correspond to cities and the edges 
between nodes correspond to direct roads between cities [19].  

In 4-color map problem there is a vector (N), where N is 
the number of cities in the tour. An adjacency array of 
dimension NxN is used to identify the neighborhood of 
adjacent cities. The neighborhood search operator used is 
simply swapping two randomly chosen points. 

C. Results 

The researchers of TS have been proposed several 
modifications and hybrids algorithms with other techniques, 
one of these are Simulated Annealing Tabu Search (SATS) 
[20]. In this paper the proposed TCS will be compared with 
standard TS and SATS to illustrate the performance of each 
one.  

In this paper, results of average 10 independent runs for all 
of these algorithms have proved that all of these algorithms are 
good technique capable of finding solutions close to the 
optimum, but a local minimum problem occur in very special 
cases. Results indicate that the proposal algorithm TCS have a 
faster convergence than the original TS and SATS.  

Figure 1 illustrates the curve of number of iteration with 
number of cities in 4-color map problem in only solved cases 
using TS, SATS and TCS. Figure 2 illustrates the number of 
local minimum non-optimal solutions occur with number of 
cities in 4-color map problem using TS, SATS and TCS. 
Figure 3 illustrates the curve of number of iteration with 
number of cities in TSP in only solved cases using TS, SATS 
and TCS. Figure 4 illustrates the number of local minimum 
and non-optimal solutions occur with number of cities in TSP 
using TS, SATS and TCS. 

 
Fig. 1. Average of No. of Iterations for 4-Color Map Problem Using TS, 

SATS and TCS 

 

 
Fig. 2. Average of Non-Optimal Solutions for 4-Color Map Problem Using 

TS, SATS and TCS 

 
Fig. 3. Average of No. of Iterations for TSP Using TS, SATS and TCS 

 
Fig. 4. Average of Non-Optimal Solutions for TSP Using TS, SATS and 

TCS 
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VI. CONCLUSIONS 

The presented approach TCS is an important version of 
TS. TCS can increase the performance of optimal solutions 
finding, also, it can reduce the non-optimal solutions and local 
minimum problem. TCS depends on storing the best neighbors 
in the currently best solutions list to use these solutions in the 
CS to for improving whenever the algorithm in local minimum 
or cannot find the new best neighbor. The suggested approach 
achieves two important features of methods’ searching which 
are called intensification and diversification. TCS gives less 
iteration numbers compare with TS and SATS. Also it has 
been reduced the non-optimal solutions and local minimum 
problem. 
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